JPH0478520B2 - - Google Patents

Info

Publication number
JPH0478520B2
JPH0478520B2 JP59066988A JP6698884A JPH0478520B2 JP H0478520 B2 JPH0478520 B2 JP H0478520B2 JP 59066988 A JP59066988 A JP 59066988A JP 6698884 A JP6698884 A JP 6698884A JP H0478520 B2 JPH0478520 B2 JP H0478520B2
Authority
JP
Japan
Prior art keywords
discharge hole
gas discharge
gas
cooling plate
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59066988A
Other languages
Japanese (ja)
Other versions
JPS60210857A (en
Inventor
Mitsuo Nakatani
Ryuichi Ueda
Tetsuo Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59066988A priority Critical patent/JPS60210857A/en
Publication of JPS60210857A publication Critical patent/JPS60210857A/en
Publication of JPH0478520B2 publication Critical patent/JPH0478520B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/061Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by controlling the temperature of the apparatus or parts thereof, e.g. using cooling means or thermostats

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は人工衛星に搭載された赤外線検知器を
宇宙空間への熱放射によつて冷却する放射冷却器
の性能を向上させるための改良に関するものであ
る。
[Detailed Description of the Invention] (a) Technical Field of the Invention The present invention relates to an improvement for improving the performance of a radiation cooler that cools an infrared detector mounted on an artificial satellite by heat radiation into outer space. It is something.

(b) 技術の背景 最近の資源探査衛星に搭載される赤外線カメラ
用の赤外線検知器にはHgCdTe等の多元半導体か
ら成る光量子型検知素子が用いられている。これ
らは高感度であり、かつ応答速度も早いけれども
100〓程度の超低温でなければ作動しない。そし
て環境温度5〓という宇宙空間ではあるが熱伝導
媒体が存在しない真空中における冷却方法は熱輻
射以外にはなく、このため輻射効率が高く、した
がつて前記検知器の冷却効果の良好な放射冷却器
の開発が強く要望されている。
(b) Technical background Infrared detectors for infrared cameras mounted on recent resource exploration satellites use photon detection elements made of multicomponent semiconductors such as HgCdTe. Although these have high sensitivity and fast response speed,
It will not work unless the temperature is extremely low, around 100℃. In outer space, where the environmental temperature is 5〓, there is no cooling method other than thermal radiation in a vacuum where there is no heat conduction medium. Therefore, the radiation efficiency is high, and therefore the radiation has a good cooling effect on the detector. There is a strong demand for the development of coolers.

(c) 従来技術と問題点 第1図は従来の放射冷却器の構造と動作を説明
するための図であり、aは全体構成を示す側断面
図、bは冷却板の構造を示す側断面図である。同
図において1は人工衛星本体、2は衛星側面、3
は地球、4は赤外線、5はミラー、6は赤外線検
知器、7は冷却板、7′は冷却板の放熱面、8は
ガス吸入孔、9はガス放出孔、10はアウトガ
ス、11はシールド板、12は反射板、40は放
射冷却器、50は宇宙空間をそれぞれ示してい
る。
(c) Prior art and problems Figure 1 is a diagram for explaining the structure and operation of a conventional radiation cooler, where a is a side sectional view showing the overall configuration, and b is a side sectional view showing the structure of the cooling plate. It is a diagram. In the figure, 1 is the satellite body, 2 is the satellite side, and 3
is the earth, 4 is the infrared rays, 5 is the mirror, 6 is the infrared detector, 7 is the cooling plate, 7' is the heat radiation surface of the cooling plate, 8 is the gas intake hole, 9 is the gas discharge hole, 10 is the outgas, 11 is the shield 12 is a reflecting plate, 40 is a radiation cooler, and 50 is outer space.

第1図に示す如く従来の放射冷却器40は人工
衛星本体1の側面2に搭載され、該衛星本体1に
付設されたミラー5を介して地球3が放射する赤
外線4を地球の鉛直線と直交する方向で受光する
赤外線検知器6と、該検知器6が取付けられた面
を前記衛星本体1側に向け、そのの反対面を山型
に形成してこれを放熱面7′として宇宙空間側へ
向け、かつ内部で発生したアウトガス10を吸入
するガス吸入孔8をその側壁部分に装備し、吸入
したアウトガス10を放出するガス放出孔9を宇
宙空間50と対向する形で配置された放熱面7′
上に備えた冷却板7と、外周部分を金属壁によつ
て覆われたこの該冷却板7の応周端を起点として
宇宙空間50側へ漏斗状に拡がる反射板12と、
一方の端部が該反射板12の外周端からさらに宇
宙空間50側へ漏斗状に拡がり、他方の端部が前
記衛星側面2に固定されたシールド板11とによ
つて構成されている。前記冷却板7の放熱面7′
が山型になつているのは、宇宙空間50側から入
射する熱線等の影響を受けない範囲内でその放熱
面積を増加させるためである。なお、前述した経
路によつて赤外線検知器6へ矢印A方向から入射
する赤外線4は、前記検知器6によつてその光量
子が計測される。そしてこのような赤外線検知器
6を搭載した衛星1が所定の軌道を飛行して地球
上の赤外線4の状況を調査することによつて地球
に存在する各種の資源状態が探査される。しかし
ながらこのような従来の構造では、放射冷却器4
0の内部で発生したアウトガス10を冷却板7に
設けられたガス吸入孔8から吸入して矢印C方向
すなわち宇宙空間50側へ放出するために前記冷
却板7に設けられたガス放出孔9による放熱面
7′の放熱面積の減少が微妙に影響して矢印Dで
示す放熱量が減殺され、該冷却板7の放熱能力が
低下し、そために検知器6の温度が上昇しして該
検知器6の動作が不安定なものとなつていた。
As shown in FIG. 1, a conventional radiation cooler 40 is mounted on a side surface 2 of a satellite body 1, and directs infrared rays 4 emitted by the earth 3 through a mirror 5 attached to the satellite body 1 into the vertical line of the earth. An infrared detector 6 receives light in orthogonal directions, and the surface on which the detector 6 is attached faces the satellite main body 1 side, and the opposite surface is formed into a mountain shape, and this is used as a heat dissipation surface 7' to be used in space. A heat dissipation device is equipped with a gas inlet hole 8 facing toward the side and inhaling the outgas 10 generated internally in its side wall portion, and a gas discharge hole 9 for discharging the inhaled outgas 10 is arranged to face the outer space 50. Surface 7'
a cooling plate 7 provided above, and a reflecting plate 12 that extends in a funnel shape toward the outer space 50 from the circumferential end of the cooling plate 7 whose outer periphery is covered with a metal wall;
One end part extends from the outer peripheral end of the reflector plate 12 in a funnel shape toward the outer space 50 side, and the other end part is constituted by the shield plate 11 fixed to the satellite side surface 2. Heat radiation surface 7' of the cooling plate 7
The reason why it is shaped like a mountain is to increase its heat dissipation area within a range that is not affected by heat rays etc. incident from the outer space 50 side. Incidentally, the photon of the infrared rays 4 incident on the infrared detector 6 from the direction of arrow A along the above-described path is measured by the detector 6. A satellite 1 carrying such an infrared detector 6 flies in a predetermined orbit and investigates the state of infrared rays 4 on the earth, thereby investigating the state of various resources existing on the earth. However, in such a conventional structure, the radiation cooler 4
The gas discharge hole 9 provided in the cooling plate 7 is used to inhale the outgas 10 generated inside the cooling plate 7 through the gas suction hole 8 provided in the cooling plate 7 and release it in the direction of arrow C, that is, toward the outer space 50. The decrease in the heat dissipation area of the heat dissipation surface 7' has a subtle influence, and the amount of heat dissipation shown by the arrow D is reduced, the heat dissipation ability of the cooling plate 7 is reduced, and the temperature of the detector 6 rises. The operation of the detector 6 had become unstable.

(d) 発明の目的 本発明は上記の欠点を是正するためになされた
もので、放射冷却器の内部で発生したアウトガス
を外部へ放出するために設けられたガス放出孔に
よつて減少した冷却板の放熱面積を補ない冷却性
能の向上を図るようにしたガス抜き構造を提供す
ることを目的とするものである。
(d) Purpose of the Invention The present invention has been made to correct the above-mentioned drawbacks, and the present invention has been made to correct the above-mentioned drawbacks. The object of the present invention is to provide a gas venting structure that improves cooling performance without compensating for the heat dissipation area of the plate.

(e) 発明の構成 本発明による放射冷却器は、内部で発生したア
ウトガス10を吸入するガス吸入孔8をその側壁
部分に装備し、吸入したアウトガス10を放出す
るガス放出孔9を宇宙空間50と対向する形で配
置された放熱面7′上に備えた冷却板7を装備し
てなる人工衛星搭載用の放射冷却器において、前
記ガス放出孔9と、このガス放出孔9を形成起点
としてガス吸入孔8に通じ、かつその壁面を放熱
面とするガス放出孔壁面19とによつて構成され
たガス抜き構造30を第2図に示すように前記冷
却板7内に装備する。
(e) Structure of the Invention The radiation cooler according to the present invention is equipped with a gas suction hole 8 on its side wall for sucking out gas 10 generated inside, and a gas discharge hole 9 for releasing the sucked out gas 10 into outer space 50. In the radiation cooler for use in an artificial satellite, which is equipped with a cooling plate 7 provided on a heat radiation surface 7' disposed to face the gas discharge hole 9, the gas discharge hole 9 is used as a formation starting point. As shown in FIG. 2, a gas venting structure 30 is provided in the cooling plate 7, which communicates with the gas suction hole 8 and is constituted by a gas discharge hole wall surface 19 whose wall surface serves as a heat radiation surface.

(f) 発明の実施例 以下本発明の実施例を図面によつて詳述する。(f) Examples of the invention Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図は本発明による放射冷却器の特徴である
冷却板のガス抜き構造を説明するための図であつ
て、前図と同等の部分については同一符号を付し
ており19はその壁面を放熱面とするガス放出孔
壁面、30はガス放出孔9とガス放出孔壁面19
とによつて構成されたガス抜き構造を示す。なお
第2図の説明において前図と重複する部分は煩雑
さをさける意味で省略している。
FIG. 2 is a diagram for explaining the degassing structure of the cooling plate, which is a feature of the radiation cooler according to the present invention. Parts equivalent to those in the previous figure are given the same reference numerals, and 19 indicates the wall surface. The gas discharge hole wall surface serving as a heat dissipation surface, 30 indicates the gas discharge hole 9 and the gas discharge hole wall surface 19.
This shows the gas venting structure constructed by the following. In the explanation of FIG. 2, parts that overlap with those in the previous figure are omitted to avoid complexity.

第2図に示す如く本発明は放射冷却器40に具
備され、宇宙空間50への熱放射によつて赤外線
検知器6を100〓程度の超低温に冷却する冷却板
7の構造改良に関するものであつて、当該冷却板
7の放熱面7′に設けられたガス放出孔9と、こ
のガス放出孔9を形成起点としてガス吸入孔8に
通じるガス放出孔壁面19とによつて構成された
ガス抜き構造30を当該冷却板7内に装備する。
そして該ガス放出孔壁面19からは、たとえば
E,E′方向への熱放射が行なわれる。したがつて
前記ガス放出孔9を設けたことによる損失すなわ
ち前記放熱面7′の面積減少による前記冷却板7
の冷却能力の低下は前記ガス放出孔9の壁面19
の熱放射によつてほぼ完全に補われる。なお本発
明による冷却板構造においては、前記冷却板7の
山型形成部の内側に形成される空洞によつて生じ
る前記アウトガス10の滞流も無くなるので該ア
ウトガス10の流動性は著しく改善され宇宙空間
50側へスムーズに放出される。
As shown in FIG. 2, the present invention relates to a structural improvement of the cooling plate 7 that is provided in the radiation cooler 40 and cools the infrared detector 6 to an ultra-low temperature of about 100° by radiating heat into outer space 50. A gas vent is formed by a gas discharge hole 9 provided on the heat radiation surface 7' of the cooling plate 7, and a gas discharge hole wall surface 19 which communicates with the gas suction hole 8 using the gas discharge hole 9 as a formation starting point. A structure 30 is installed within the cooling plate 7 .
Heat is radiated from the gas discharge hole wall surface 19, for example, in directions E and E'. Therefore, there is a loss due to the provision of the gas discharge holes 9, that is, a reduction in the area of the heat radiation surface 7' resulting in the loss of the cooling plate 7.
The decrease in the cooling capacity of the wall surface 19 of the gas discharge hole 9
almost completely compensated for by thermal radiation. In addition, in the cooling plate structure according to the present invention, the stagnation of the outgas 10 caused by the cavity formed inside the mountain-shaped portion of the cooling plate 7 is also eliminated, so the fluidity of the outgas 10 is significantly improved, and it can be used in space. It is smoothly discharged to the space 50 side.

(g) 発明の効果 以上詳細に説明したように本発明による放射冷
却器は、ガス抜き構造を構成するガス放出孔壁面
を放熱面として利用することから、赤外線検知器
の冷却能力が著しく改善される。
(g) Effects of the Invention As explained in detail above, the radiation cooler according to the present invention uses the wall surface of the gas discharge hole constituting the gas venting structure as a heat radiation surface, so that the cooling ability of the infrared detector is significantly improved. Ru.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは従来の放射冷却器の側断面図と
冷却板部分の拡大断面図、第2図は本発明による
放射冷却器に用いる冷却板の1実施例構成を示す
断面図である。 図面において1は人工衛星本体、2は衛星側
面、3は地球、4は赤外線、5はミラー、6は赤
外線検知器、7は冷却板、7′は放熱面、8はガ
ス吸入孔、9はガス放出孔、10はアウトガス、
11はシールド板、12は反射板、19はガス放
出孔壁面、30はガス放出孔9およびガス放出孔
壁面19より成るガス抜き構造、40は放射冷却
器、50は宇宙空間をそれぞれ示す。
FIGS. 1a and 1b are a side sectional view and an enlarged sectional view of a cooling plate portion of a conventional radiation cooler, and FIG. 2 is a sectional view showing an embodiment of the configuration of a cooling plate used in a radiation cooler according to the present invention. . In the drawing, 1 is the satellite body, 2 is the satellite side, 3 is the earth, 4 is infrared rays, 5 is mirror, 6 is infrared detector, 7 is cooling plate, 7' is heat radiation surface, 8 is gas intake hole, 9 is Gas release hole, 10 is out gas,
Reference numeral 11 indicates a shield plate, 12 a reflector plate, 19 a gas discharge hole wall surface, 30 a gas venting structure consisting of the gas discharge hole 9 and the gas discharge hole wall surface 19, 40 a radiation cooler, and 50 an outer space.

Claims (1)

【特許請求の範囲】 1 内部で発生したアウトガス10を吸入するガ
ス吸入孔8をその側壁部分に装備し、吸入したア
ウトガス10を放出するガス放出孔9を宇宙空間
50と対向する形で配置された放熱面7′上に備
えた冷却板7を装備してなる人工衛星搭載用の放
射冷却器において、 前記ガス放出孔9と、このガス放出孔9を形成
起点としてガス吸入孔8に通じ、かつその壁面を
放熱面とするガス放出孔壁面19と、によつて構
成されたガス抜き構造30を前記冷却板7内に装
備してなることを特徴とする放射冷却器。
[Claims] 1. A gas inlet hole 8 for inhaling outgas 10 generated internally is provided in the side wall portion, and a gas discharge hole 9 for discharging the inhaled outgas 10 is arranged to face outer space 50. In the radiation cooler for use on a satellite, which is equipped with a cooling plate 7 provided on a heat dissipation surface 7', the gas discharge hole 9 is connected to the gas suction hole 8 using the gas discharge hole 9 as a formation starting point, A radiation cooler characterized in that the cooling plate 7 is equipped with a gas venting structure 30 constituted by a gas discharge hole wall surface 19 whose wall surface serves as a heat radiation surface.
JP59066988A 1984-04-03 1984-04-03 Radiative cooler Granted JPS60210857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59066988A JPS60210857A (en) 1984-04-03 1984-04-03 Radiative cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59066988A JPS60210857A (en) 1984-04-03 1984-04-03 Radiative cooler

Publications (2)

Publication Number Publication Date
JPS60210857A JPS60210857A (en) 1985-10-23
JPH0478520B2 true JPH0478520B2 (en) 1992-12-11

Family

ID=13331900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59066988A Granted JPS60210857A (en) 1984-04-03 1984-04-03 Radiative cooler

Country Status (1)

Country Link
JP (1) JPS60210857A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2624020A1 (en) 2012-01-31 2013-08-07 Kabushiki Kaisha Topcon Optical substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2624020A1 (en) 2012-01-31 2013-08-07 Kabushiki Kaisha Topcon Optical substrate

Also Published As

Publication number Publication date
JPS60210857A (en) 1985-10-23

Similar Documents

Publication Publication Date Title
KR101736418B1 (en) Dewar assembly for IR detection systems
EP0125016B1 (en) Optical shields for optical sensing devices
JPH03142330A (en) Radiation shield for infrared detector cooled thermoelectrically
JPH05242841A (en) Flat x ray imager with moisture-proof seal structure
JPH03168793A (en) Reflecting member for light source
JPH0478520B2 (en)
JP3674012B2 (en) Solid-state imaging device
GB1582652A (en) Camera tube
US4406973A (en) Black glass shield and method for absorbing stray light for image intensifiers
US4310778A (en) Television camera tube with antihalo plate
US3034010A (en) Radiation detection
US5485005A (en) Cooled x-ray sensitive photoconductor
JPH0688747A (en) Cooling type photodetector
GB2091482A (en) Black glass shield and method for absorbing stray light for image intensifiers
JPH022760B2 (en)
JPH033154B2 (en)
JPH0222522A (en) Infrared-ray optical device
JPH07281088A (en) Infrared optical system
JPH08193880A (en) Infrared detector
JP3161250B2 (en) Projection receiver
JPH0629778B2 (en) Infrared optics
JPS6333760Y2 (en)
Laurent et al. The Simbol‐X Focal Plane
JPH0247689B2 (en)
JPS6333759Y2 (en)