JPH0478323A - Sliding type constant velocity joint - Google Patents

Sliding type constant velocity joint

Info

Publication number
JPH0478323A
JPH0478323A JP2190773A JP19077390A JPH0478323A JP H0478323 A JPH0478323 A JP H0478323A JP 2190773 A JP2190773 A JP 2190773A JP 19077390 A JP19077390 A JP 19077390A JP H0478323 A JPH0478323 A JP H0478323A
Authority
JP
Japan
Prior art keywords
ball
balls
ball groove
yoke
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2190773A
Other languages
Japanese (ja)
Inventor
Takumi Matsumoto
巧 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2190773A priority Critical patent/JPH0478323A/en
Publication of JPH0478323A publication Critical patent/JPH0478323A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D2003/22303Details of ball cages

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bearings For Parts Moving Linearly (AREA)

Abstract

PURPOSE:To reduce frictional resistance at the time of sliding by forming a joint so that the direction of the driving force working to balls with a joint angle at 0 is not inclined against a flat surface formed with centers of multiple balls, and eliminating component of a force for extruding the balls to the axial direction. CONSTITUTION:In the case that a first and a second axes 20, 24 are on one line, a first and a second ball channels 33, 37 are inclined and extended along a virtual surface S including centers C of balls 20 and axes thereof. In this case, the described ball channels 33, 37 are inclined reversely in point symmetry against the centers C of the balls 28, and since the described ball channels 33, 37 cross each other, the balls 28 are positioned at a cross part of both the ball channels 33, 37. Under this condition, the direction of the driving force working to the balls 28 is not inclined against the flat surface formed with centers of six balls 28. Generation of the force of extruding the balls 28 to the axial direction is therefore eliminated, and the force for pressing the balls 28 against a cage 30 is reduced by that quantity, and sliding resistance at the time of sliding is reduced to reduce the vibration and the noise.

Description

【発明の詳細な説明】 (a楽土の利用分野) 本発明はスライド式等速ジヨイントに関し、特にボール
をはさんで位置する2つのボール溝の傾斜によって等速
性を確保する、車両のドライブシャフトやプロペラシャ
フトに組み込むのに適する等速ジヨイントに関する。
Detailed Description of the Invention (Field of Application of A Rakudo) The present invention relates to a sliding constant velocity joint, and in particular to a drive shaft for a vehicle that ensures constant velocity by the inclination of two ball grooves located with balls sandwiched between them. Concerning constant velocity joints suitable for incorporation into propeller shafts and propeller shafts.

(従来の技術) 複数のボール溝を内周面に有する外輪と、前記ボール溝
と同数のボール溝を外周面に有する、前記外輪に挿入さ
れる内輪と、前記外輪の各ボール溝と前記内輪の各ボー
ル溝との間に配置されるボールと、これらボールを保持
するケージとからなり、前記外輪のボール溝と前記内輪
のボール溝とか、外輪および内輪の軸線と前記ボールの
中心とを含む仮想面に対して互いに等角度で交差するよ
うに形成された、レブロ式と呼称される等速ジヨイント
がある(たとえば、特開昭62−31724号公報)。
(Prior Art) An outer ring having a plurality of ball grooves on an inner peripheral surface, an inner ring inserted into the outer ring and having the same number of ball grooves as the ball grooves on the outer peripheral surface, and each ball groove of the outer ring and the inner ring. and a cage that holds these balls, and includes the ball grooves of the outer ring and the ball groove of the inner ring, the axes of the outer ring and the inner ring, and the center of the balls. There is a constant velocity joint called a Lebro type which is formed so as to intersect each other at equal angles to a virtual plane (for example, Japanese Patent Laid-Open No. 31724/1983).

前記等速ジヨイントは、外輪のボール溝と内輪のボール
溝とを交差させることにより等速性を確保すると共に、
軸線方向の移動、すなわちスライドを可能にしている。
The constant velocity joint ensures constant velocity by intersecting the ball groove of the outer ring and the ball groove of the inner ring, and
It allows for axial movement, or sliding.

(発明か解決しようとする課題) 前記等速ジヨイントでは、1つのボールとそれは挾む溝
に着目すると、ジヨイント角をとらない状態において、
第6図aに示すように、外輪のボール溝10と内輪のボ
ール溝11とが平面視においてV字状を呈するように交
差している。そのため、たとえば、駆動軸12に連なる
外輪から駆動力Fか加わると、ボール13とボール溝1
0との接触点からボール13の中心に向って駆動力か伝
達され、その方向か複数のボール中心か成′1−平面に
対して傾くことから、ボール溝10からボール13に駆
動軸12の軸線方向へ向くベクトル分力F1か、また同
様に2ボール満11からボール13にベクトル分力F2
か作用する結果、ボール13は両ベクトル分力の差の絶
対値f (−lF+  Fy  I)の力によってケー
ジ14の窓15に向けて押し付けられる。この場合、隣
りのボールには逆向きの力か作用する。
(Problem to be solved by the invention) In the above-mentioned constant velocity joint, when focusing on one ball and the groove in which it is held, in a state where the joint angle is not taken,
As shown in FIG. 6a, the ball groove 10 of the outer ring and the ball groove 11 of the inner ring intersect so as to form a V-shape in plan view. Therefore, for example, when a driving force F is applied from the outer ring connected to the drive shaft 12, the ball 13 and the ball groove 1
The driving force is transmitted from the point of contact with the ball 13 toward the center of the ball 13, and since the centers of the plurality of balls are tilted with respect to the formation plane, the drive shaft 12 is transmitted from the ball groove 10 to the ball 13. Vector component force F1 directed in the axial direction, or similarly vector component force F2 from two balls 11 to ball 13
As a result of this action, the ball 13 is pressed toward the window 15 of the cage 14 by a force f (-lF+Fy I), the absolute value of the difference between the two vector force components. In this case, an opposite force acts on the adjacent ball.

したがって、駆動軸12と被駆動軸16とか角度をとら
ない状態、すなわちジヨイント角がない状態のとき、駆
動力を受けているジヨイントか軸線方向ヘスライトする
と、ボール13がケージの窓15に押し付けられて回転
するため、t’ −ル13と窓15との間に大きなすべ
り抵抗か発生し、スライド性を低下させる。
Therefore, when the driving shaft 12 and the driven shaft 16 do not form an angle, that is, when there is no joint angle, when the joint receiving the driving force moves forward in the axial direction, the ball 13 is pressed against the window 15 of the cage. Due to the rotation, a large sliding resistance is generated between the t'-rule 13 and the window 15, reducing the sliding property.

第6図すに示1−ように、駆動軸12と被駆動軸16と
かジヨイント角をとった状態になると、ボールとボール
溝との接触点からボールに作用する駆動力か、複数のポ
ーール中心が成す平面に対してさらに傾くようになるた
め、駆動力のヘクトル分力F1.F2かさらに大きくな
る結果、両へクトル分力の差の絶対値はflのようにな
り、前記傾向がさらに顕著になる。この場合、隣りのボ
ールにおいは逆にベクトル分力F、、F2が小さくなり
つるが、全体ではジヨイント角をとらない状態よりスラ
イド抵抗が大きくなる。
As shown in Figure 6, when the drive shaft 12 and the driven shaft 16 form a joint angle, the driving force acting on the ball from the contact point between the ball and the ball groove, or the center of the plurality of poles. , the hector component of the driving force F1. As a result of F2 becoming even larger, the absolute value of the difference between the two hector component forces becomes fl, and the above-mentioned tendency becomes even more remarkable. In this case, the vector components F, .

したがって、本発明の目的は、スライド時のすへりによ
る摩擦抵抗を低減できるスライド式等速ジヨイントを提
供することにある。
Therefore, an object of the present invention is to provide a sliding constant velocity joint that can reduce the frictional resistance caused by the heel during sliding.

(B題を解決するための手段) 本発明に係るスライド式等速ジヨイントは、第1の軸に
連結される第1のヨーク部材であって円周方向に等間隔
をおいて配置された複数のヨークを有し、各ヨークか円
周方向の両側に第1のボール溝を備える第1のヨーク部
材と、第2の軸に連結される第2のヨーク部材であって
円周方向に等間隔をおいて配置された、前記ヨークの数
と同数のヨークを有し、各ヨークが円周方向の両側に第
2のボール溝を備えかつ前記第1のヨーク部材の隣り合
う2つのヨーク間に配置される第2のヨーク部材と、前
記茶菓1のボール溝と前記茶菓2のボール溝とによって
画定された空間内に配置されるボールと、これらボール
を保持するケージとを含み、前記茶菓1のボール溝と前
記茶菓2のボール溝とは、当該第1のボール溝と当該第
2のボール溝との間に配置された前記ボールの中心と、
前記第1の軸および前記第2の軸か一直線上に位置する
ときのこれら軸の軸線とを含む仮想面に沿って傾斜して
伸びており、前記茶菓1のボール溝の傾斜および前記茶
菓2のボール溝の傾斜は、当該第1のボール溝と当該第
2のボール溝との間の前記ボールの中心に対して点対称
となる逆向きである。
(Means for Solving Problem B) The sliding constant velocity joint according to the present invention includes a first yoke member connected to a first shaft, and a plurality of first yoke members arranged at equal intervals in the circumferential direction. a first yoke member having a first ball groove on both sides in the circumferential direction of each yoke, and a second yoke member connected to a second shaft and having first ball grooves on both sides of each yoke in the circumferential direction. The number of yokes is the same as the number of yokes arranged at intervals, each yoke having a second ball groove on both sides in the circumferential direction, and between two adjacent yokes of the first yoke member. a second yoke member disposed in the tea confectionery 1, a ball disposed in a space defined by a ball groove of the tea confectionery 1 and a ball groove of the confectionery tea cake 2, and a cage for holding these balls; 1 and the ball groove of the tea confectionery 2 are the center of the ball disposed between the first ball groove and the second ball groove,
It extends obliquely along a virtual plane including the first axis and the axes of the second axis when these axes are located on a straight line, and the slope of the ball groove of the tea confection 1 and the confection 2 The inclinations of the ball grooves are opposite in direction and are point symmetrical with respect to the center of the ball between the first ball groove and the second ball groove.

(作用および効果) ジヨイント角がゼロのとき、すなわち第1の軸と第2の
軸とが一直線上に位置するとき、ボールをはさんでボー
ルの円周方向の両側にある第1のボール溝と第2のボー
ル溝とが互いに交差しているため、ボールは両ボール溝
の交差部分に位置する。この状態で、ボールと各ボール
溝との接触点からボールに作用する駆動力は複数のボー
ル中心が成す平面に対して傾かず、したがって前記平面
か駆動力の方向に一致することから、ボールを第1の軸
の軸線方向へ押し出そうとする力は発生しないため、ス
ライドしてもその抵抗は小さくなる。そして、駆動力は
、たとえば第1のヨーク部材のヨークの第1のボール溝
からボールを経て第2のヨーク部材のヨークの第2のボ
ール溝へ、実質的に同一のピッチ円方向へ伝達される。
(Operation and Effect) When the joint angle is zero, that is, when the first axis and the second axis are located on a straight line, the first ball grooves on both sides of the ball in the circumferential direction with the ball in between Since the ball groove and the second ball groove intersect with each other, the ball is located at the intersection of both ball grooves. In this state, the driving force acting on the ball from the point of contact between the ball and each ball groove is not inclined with respect to the plane formed by the centers of the plurality of balls, and therefore the plane coincides with the direction of the driving force. Since no force is generated to push it in the axial direction of the first shaft, even if it slides, the resistance is small. The driving force is transmitted, for example, from the first ball groove of the yoke of the first yoke member, through the ball, to the second ball groove of the yoke of the second yoke member, in substantially the same pitch circle direction. Ru.

第1の軸と第2の軸とがジヨイント角をとったとき、ボ
ールと各ボール溝との接触点からボール中心に作用する
駆動力は複数のボール中心が成す平面に対して傾くため
、駆動力のベクトル分力が発生するようになり、ボール
溝からボールにボールを押し出そうとする力が作用する
。この力の反力をケージで受け、ボールの位置を固定す
る。これにより、等速ジヨイントのトルク伝達面は2つ
の軸それぞれの軸線の2等分面上に固定され、等速性か
確保される。
When the first axis and the second axis form a joint angle, the driving force acting on the ball center from the contact point between the ball and each ball groove is tilted with respect to the plane formed by the multiple ball centers, so the driving force A vector component of the force is generated, and a force that tries to push the ball out of the ball groove acts on the ball. The reaction force of this force is received by the cage and the position of the ball is fixed. As a result, the torque transmission surface of the constant velocity joint is fixed on the bisecting plane of the respective axes of the two shafts, and uniform velocity is ensured.

第1の軸と第2の軸とかジヨイント角をとったとき、ボ
ール溝からボールにボールを押し出そうとする力が発生
するが、この力は、ジヨイント角がセロのとき全く発生
しないため、その分たけ全体として小さい。このように
、ボールをケージに押し付ける力が小さくなる結果、ス
ライド時のすへり抵抗を減らし、振動や騒音を低減てき
る。
When the first and second shafts have a joint angle, a force is generated that tries to push the ball out of the ball groove, but this force does not occur at all when the joint angle is zero. Therefore, the overall size is small. In this way, the force pressing the ball against the cage is reduced, which reduces the sliding resistance and reduces vibration and noise.

ケージとボールとの間の摩擦力を小さくてきることによ
り、発熱か抑えられるため、高速回転軸の等速継手とし
て有効に使用てきる。
By reducing the frictional force between the cage and the balls, heat generation can be suppressed, so it can be effectively used as a constant velocity joint for high-speed rotating shafts.

駆動力の伝達か、第1のボール溝、ボールそして第2の
ボール溝というように、実質的に同一のピッチ円上で行
われることから、限られたスペース内でトルク伝達面の
面積を大きくすることかできる。
Since the transmission of driving force is carried out on essentially the same pitch circle, such as the first ball groove, the ball, and the second ball groove, the area of the torque transmission surface can be increased within a limited space. I can do something.

(実施例) スライド式等速ジヨイントは、第1図および第2図に示
すように、第1の軸20に連結される第1のヨーク部材
22と、第2の?b24に連結される第2のヨーク部材
26と、ボール28と、ケージ30とを含む。
(Example) As shown in FIGS. 1 and 2, the sliding constant velocity joint includes a first yoke member 22 connected to a first shaft 20, and a second yoke member 22 connected to a first shaft 20. It includes a second yoke member 26 connected to b24, a ball 28, and a cage 30.

第1のヨーク部材22は、第3図に詳細に示すように、
円周方向に等間隔をおいて配置される複数のヨーク32
を有する。図示の実施例では3つのヨーク32が設けら
れており、各ヨーク32は円周方向の両側に第1のボー
ル溝33を備える。
The first yoke member 22, as shown in detail in FIG.
A plurality of yokes 32 arranged at equal intervals in the circumferential direction
has. In the illustrated embodiment, three yokes 32 are provided, and each yoke 32 is provided with a first ball groove 33 on both sides in the circumferential direction.

ボール溝33は、軸20の軸線Oの回りの一定直径のピ
ッチ円P上に中心を持つ円筒溝てあって、後述するよう
に、その中心軸線りが傾斜するように形成される。3つ
のヨーク32はエンドプレート34に片持状に支持され
ており、軸20はエンドプレート34からヨーク32と
は反対の方向へ伸びている。
The ball groove 33 is a cylindrical groove whose center is on a pitch circle P of a constant diameter around the axis O of the shaft 20, and is formed so that its center axis is inclined, as will be described later. The three yokes 32 are supported by an end plate 34 in a cantilevered manner, and the shaft 20 extends from the end plate 34 in a direction opposite to the yokes 32.

第2のヨーク部材26は、円周方向に等間隔をおいて配
置される、前記ヨーク32の数と同数のヨーク36を有
する。図示の実施例では3つのヨーク36が設けられて
いる。各ヨーク36は円周方向の両側に第2のボール溝
37を備え、第1のヨーク部材22の隣り合う2つのヨ
ーク32の間に配置される。ボール7137は、軸24
の軸線、したがって軸30と軸24とか一直線上に位置
したときの軸線0の回りの一定直径のピッチ円P上に中
心を持つ円筒溝てあって、後述するように、その中心軸
線が傾斜するように形成される。3つのヨーク36はエ
ンドプレート28に片持状に支持されており、軸24は
エンドプレート38からヨーク36とは反対の方向へ伸
びている。
The second yoke member 26 has the same number of yokes 36 as the yokes 32 arranged at equal intervals in the circumferential direction. In the illustrated embodiment, three yokes 36 are provided. Each yoke 36 is provided with second ball grooves 37 on both sides in the circumferential direction, and is disposed between two adjacent yokes 32 of the first yoke member 22. The ball 7137 is connected to the shaft 24
There is a cylindrical groove whose center is on the pitch circle P of a constant diameter around the axis 0 when the axis 30 and the axis 24 are located on a straight line, and as described later, the central axis is inclined. It is formed like this. The three yokes 36 are cantilevered by the end plate 28, and the shaft 24 extends from the end plate 38 in a direction opposite to the yokes 36.

第2のヨーク部材26の構成は第1のヨーク部材22の
構成と実質的に同しである。したがって、同一のヨーク
部材を用いることにより、本発明に係る等速ジヨイント
を実施することかてきる。しかし、図示の実施例では、
円筒状のケーシング40かエンドプレート38から伸び
ており、第1のヨーク部材22のヨーク32をほぼ覆っ
ている。これはグリースを封入するための便宜に基づく
。すなわち、ケーシング40をエンドプレート38と一
体に設けておき、図示しないブーツをケーシング40と
軸20との間に掛は渡すことにより、グリースを封入て
きる。
The configuration of the second yoke member 26 is substantially the same as the configuration of the first yoke member 22. Therefore, by using the same yoke member, it is possible to implement the constant velocity joint according to the present invention. However, in the illustrated embodiment,
A cylindrical casing 40 extends from the end plate 38 and substantially covers the yoke 32 of the first yoke member 22. This is based on the convenience of encapsulating the grease. That is, the casing 40 is provided integrally with the end plate 38, and a boot (not shown) is passed between the casing 40 and the shaft 20, thereby enclosing the grease.

ボール28はヨーク32の各Mlのボール溝33と、ヨ
ーク36の8第2のボール溝37とによって画定された
空間内に配置される。図示の実施例では、合計6個のボ
ール28を備える。ボール28はピッチ円P上に中心を
持つ半径のものて、2つのボール溝33.37に接する
The ball 28 is arranged in a space defined by each Ml ball groove 33 of the yoke 32 and the eight second ball grooves 37 of the yoke 36. In the illustrated embodiment, a total of six balls 28 are provided. The ball 28 has a radius centered on the pitch circle P and touches two ball grooves 33, 37.

ケージ30かこれらボール28を保持する。A cage 30 holds these balls 28.

ケージ30は、図示の実施例では、円筒状の中央保持部
42と、中央保持部42の一方の端から放射状に伸びる
端保持部43と、中央保持部42の他方の端から放射状
に伸びる端保持部44とを備える。ボール28は各保持
部に対して回転可能である。6個のボール28はケージ
30によって、常に同一平面内に位置決めされる。
In the illustrated embodiment, the cage 30 includes a cylindrical central holding part 42, an end holding part 43 extending radially from one end of the central holding part 42, and an end extending radially from the other end of the central holding part 42. A holding part 44 is provided. Ball 28 is rotatable relative to each holding portion. The six balls 28 are always positioned in the same plane by the cage 30.

ヨーク32の名菓1のボール溝33とヨーク36の名菓
2のボール溝37とは、当該第1のボール溝33と当該
第2のボール溝37との間に配置されたボール28の中
心Cと、第1の軸20および第2の軸24か一直線上に
位置するときのこれら軸の軸線0とを含む仮想面Sに沿
って傾斜して伸びている。この場合、第1のヨーク部材
22のすへてのボール溝33の傾斜は同じ向きてあり、
第2のヨーク部材26のすへてのボール溝37の傾斜は
同し向きである。そして、名菓1のボール溝33の傾斜
および名菓2のボール溝37の傾斜は、ボール28の中
心Cに対して点対称となる逆向きである。各ヨーク部材
のヨークのボール溝の傾斜は、第2図に示すように、エ
ンドプレートからヨークの自由端に向けて先細となるよ
うなものの外、エンドプレートからヨークの自由端に向
けて末広となるようなものてもよい。
The ball groove 33 of the famous confectionery 1 of the yoke 32 and the ball groove 37 of the famous confectionery 2 of the yoke 36 are connected to the center C of the ball 28 disposed between the first ball groove 33 and the second ball groove 37. , extends obliquely along a virtual plane S that includes the axis 0 of the first axis 20 and the second axis 24 when they are located on a straight line. In this case, the slopes of all the ball grooves 33 of the first yoke member 22 are in the same direction,
The slopes of all the ball grooves 37 of the second yoke member 26 are in the same direction. The inclination of the ball groove 33 of the famous confectionery 1 and the inclination of the ball groove 37 of the famous confectionery 2 are point symmetrical and opposite directions with respect to the center C of the ball 28. As shown in Figure 2, the slope of the ball groove in the yoke of each yoke member is not only tapered from the end plate to the free end of the yoke, but also widened from the end plate to the free end of the yoke. It may be something like that.

第4図に示すように、ジヨイント角かセロのとき、ボー
ル28をはさんでボール28の円周方向の両側にある第
1のボール溝33と第2のボール溝37とが互いに交差
しているため、ボール28は両ボール満33.27の交
差部分に位置する。
As shown in FIG. 4, when the joint angle is zero, the first ball groove 33 and the second ball groove 37 on both sides of the ball 28 in the circumferential direction intersect with each other. Therefore, the ball 28 is located at the intersection of the two balls.

この状態て、ボール28と各ボール溝33.37との接
触点からボール中心に作用する駆動力の方向は、6個の
ボール中心か成す平面に対して傾かないことから、第5
図aに示すように、ボール28を軸の軸線方向へ押し出
そうとする力は発生しない。この場合、駆動力Fは、た
とえば第1のヨーク部材22のヨーク32の第1のボー
ル溝33からピッチ円Pの接線方向に伝達される。
In this state, the direction of the driving force acting on the ball center from the contact point between the ball 28 and each ball groove 33, 37 is not inclined with respect to the plane formed by the six ball centers, so the fifth
As shown in Figure a, no force is generated to push the ball 28 in the axial direction of the shaft. In this case, the driving force F is transmitted, for example, from the first ball groove 33 of the yoke 32 of the first yoke member 22 in the tangential direction of the pitch circle P.

第1の軸20と第2の軸24とかジヨイント角をとった
とき(第5図b)、スライド時のボールと各ボール溝と
の接触点からボール中心に作用する駆動力の方向が6個
のボール中心の成゛す平面に対して傾くため、駆動力の
ベクトル分力か発生するようになり、ボール溝からボー
ル28にボールを押し出そうとする力f2か作用する。
When the first shaft 20 and the second shaft 24 have a joint angle (Fig. 5b), there are six directions of driving force acting on the center of the ball from the contact point between the ball and each ball groove during sliding. Since the ball is tilted with respect to the plane formed by the center of the ball, a vector component of the driving force is generated, and a force f2 is applied to push the ball from the ball groove to the ball 28.

この力の反力をケージ30て受け、ボール28の位置を
固定する。これにより、等速ジヨイントのトルク伝達面
は2つの軸20.24それぞれの軸線の2等分面上に固
定され、等速性か確保される。
The reaction force of this force is received by the cage 30 and the position of the ball 28 is fixed. Thereby, the torque transmission surface of the constant velocity joint is fixed on the bisecting plane of the respective axes of the two shafts 20, 24, and uniform velocity is ensured.

前記レブロ式等速ジヨイントでは、第7図に示すように
、駆動力Fがボール13のピッチ円上に働けば、駆動ト
ルクTはFrであるか、実際には、外輪17か内輪18
から半径方向に間隙をおいて位置しているため、駆動力
は外輪17からボール13にその接触点においてF′の
ように慟〈。この駆動力F′ とモーメントアームr′
 とによって駆動トルクTを伝達する必要から、結局、
F′ = (r/r’ )Fとなり、外輪とボールとの
接触点に加わる力が大きくなって面圧か厳しくなってい
た。これに対し、本発明では、駆動力がボールの実質的
にピッチ円上に働くため、面圧を小さくすることかでき
る。
In the Revlo type constant velocity joint, as shown in FIG.
Since the outer ring 17 is located with a gap in the radial direction from the outer ring 17, the driving force is transferred from the outer ring 17 to the ball 13 at the point of contact as indicated by F'. This driving force F' and moment arm r'
Because it is necessary to transmit the driving torque T by
F' = (r/r')F, and the force applied to the contact point between the outer ring and the ball increased, resulting in severe surface pressure. In contrast, in the present invention, since the driving force acts substantially on the pitch circle of the ball, the surface pressure can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るスライド式等速ジヨイントの軸の
軸線に直交する面で切断した断面図、第2図は第1図の
2−2線に沿って切断した断面図、第3図はヨーク部材
の斜視図、第4図は作用を示す第2図と同様な断面図で
一部を示し、第5図a、bは本発明に係る等速ジヨイン
トの作用を示す平面視の模式図、第6図a、bはレブロ
式等速ジヨイントの作用を示す平面視の模式図、第7図
はレブロ式等速ジヨイントの作用を示す正面視の模式図
である。 20. 24・軸、 22、 ヨーク部材、 ボール、 :ケージ、 32、 ヨーク、 33、 ボール満。
Fig. 1 is a sectional view taken along a plane perpendicular to the axis of the sliding constant velocity joint according to the present invention, Fig. 2 is a sectional view taken along line 2-2 in Fig. 1, and Fig. 3. is a perspective view of the yoke member, FIG. 4 is a partial sectional view similar to FIG. 2 showing the action, and FIGS. 5 a and b are schematic plan views showing the action of the constant velocity joint according to the present invention. Figures 6a and 6b are schematic diagrams in plan view showing the action of the Revlot type constant velocity joint, and Fig. 7 is a schematic diagram in front view showing the action of the Revlot type constant velocity joint. 20. 24・Shaft, 22, Yoke member, Ball: Cage, 32, Yoke, 33, Ball full.

Claims (1)

【特許請求の範囲】[Claims] 第1の軸に連結される第1のヨーク部材であって円周方
向に等間隔をおいて配置された複数のヨークを有し、各
ヨークが円周方向の両側に第1のボール溝を備える第1
のヨーク部材と、第2の軸に連結される第2のヨーク部
材であって円周方向に等間隔をおいて配置された、前記
ヨークの数と同数のヨークを有し、各ヨークが円周方向
の両側に第2のボール溝を備えかつ前記第1のヨーク部
材の隣り合う2つのヨーク間に配置される第2のヨーク
部材と、前記各第1のボール溝と前記各第2のボール溝
とによって画定された空間内に配置されるボールと、こ
れらボールを保持するケージとを含み、前記各第1のボ
ール溝と前記各第2のボール溝とは、当該第1のボール
溝と当該第2のボール溝との間に配置された前記ボール
の中心と、前記第1の軸および前記第2の軸が一直線上
に位置するときのこれら軸の軸線とを含む仮想面に沿っ
て傾斜して伸びており、前記各第1のボール溝の傾斜お
よび前記各第2のボール溝の傾斜は、当該第1のボール
溝と当該第2のボール溝との間の前記ボールの中心に対
して点対称となる逆向きである、スライド式等速ジョイ
ント。
A first yoke member connected to a first shaft, having a plurality of yokes arranged at equal intervals in the circumferential direction, each yoke having a first ball groove on both sides in the circumferential direction. Prepare first
and a second yoke member connected to the second shaft, the number of yokes being equal to the number of yokes arranged at equal intervals in the circumferential direction, each yoke having a circular shape. a second yoke member having second ball grooves on both sides in the circumferential direction and disposed between two adjacent yokes of the first yoke member; a ball disposed in a space defined by a ball groove, and a cage that holds these balls; each of the first ball groove and each of the second ball groove is defined by the first ball groove; along a virtual plane that includes the center of the ball disposed between the ball groove and the second ball groove, and the axes of the first axis and the second axis when these axes are located in a straight line. The slope of each of the first ball grooves and the slope of each of the second ball grooves are such that the center of the ball between the first ball groove and the second ball groove extends. A sliding constant velocity joint that is symmetrical with respect to the opposite direction.
JP2190773A 1990-07-20 1990-07-20 Sliding type constant velocity joint Pending JPH0478323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2190773A JPH0478323A (en) 1990-07-20 1990-07-20 Sliding type constant velocity joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2190773A JPH0478323A (en) 1990-07-20 1990-07-20 Sliding type constant velocity joint

Publications (1)

Publication Number Publication Date
JPH0478323A true JPH0478323A (en) 1992-03-12

Family

ID=16263488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2190773A Pending JPH0478323A (en) 1990-07-20 1990-07-20 Sliding type constant velocity joint

Country Status (1)

Country Link
JP (1) JPH0478323A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8100773B2 (en) * 2005-12-28 2012-01-24 Asa Electronics Industry Co., Ltd Joint
US8539928B2 (en) 2007-12-10 2013-09-24 Federal-Mogul World Wide, Inc. Piston assembly and connecting rod having a profiled wrist pin bore therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124125A (en) * 1981-01-24 1982-08-02 Yasuo Ueno Equal-speed joint
JPS58156722A (en) * 1982-03-15 1983-09-17 Yasuo Ueno Uniform speed universal joint
JPS5997320A (en) * 1982-11-26 1984-06-05 Nissan Motor Co Ltd Same-speed universal joint

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124125A (en) * 1981-01-24 1982-08-02 Yasuo Ueno Equal-speed joint
JPS58156722A (en) * 1982-03-15 1983-09-17 Yasuo Ueno Uniform speed universal joint
JPS5997320A (en) * 1982-11-26 1984-06-05 Nissan Motor Co Ltd Same-speed universal joint

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8100773B2 (en) * 2005-12-28 2012-01-24 Asa Electronics Industry Co., Ltd Joint
US8539928B2 (en) 2007-12-10 2013-09-24 Federal-Mogul World Wide, Inc. Piston assembly and connecting rod having a profiled wrist pin bore therefor

Similar Documents

Publication Publication Date Title
US4678453A (en) Constant velocity ratio universal joint
KR970703501A (en) Variable-angle gear system
US3218827A (en) Rotary joint
KR100225740B1 (en) Cross groove constant velocity joint having fixed center
JP3212070B2 (en) Constant velocity universal joint
JPS605809B2 (en) rotating joint
JPS6225885B2 (en)
JPH0633945A (en) Constant-velocity universal joint with crossed groove
JPH0261651B2 (en)
JPH0480249B2 (en)
US4000629A (en) Homokinetic joint
US3899898A (en) Universal joint
JPH0478323A (en) Sliding type constant velocity joint
US3105369A (en) Constant velocity universal joint
JP2003184905A (en) Polygon universal joint
JP3058213B2 (en) Constant velocity universal joint
US2928263A (en) Homokinetic universal joint
JPS63308220A (en) Universal joint
US4377385A (en) Homokinetic universal joint
JPH0492119A (en) Sliding constant velocity joint
JPH0736184Y2 (en) Constant velocity universal joint
JPH04285320A (en) Slide type uniform velocity joint
JPH01210619A (en) Universal joint
JPS61248918A (en) Uniform-velocity rotary joint
JPH04285319A (en) Slide type uniform velocity joint