JPH0478112A - Composite magnetic core - Google Patents
Composite magnetic coreInfo
- Publication number
- JPH0478112A JPH0478112A JP2190456A JP19045690A JPH0478112A JP H0478112 A JPH0478112 A JP H0478112A JP 2190456 A JP2190456 A JP 2190456A JP 19045690 A JP19045690 A JP 19045690A JP H0478112 A JPH0478112 A JP H0478112A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- soft magnetic
- magnetic
- magnetic core
- alloy powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002131 composite material Substances 0.000 title claims description 29
- 239000000843 powder Substances 0.000 claims abstract description 82
- 239000002184 metal Substances 0.000 claims abstract description 26
- 229910052751 metal Inorganic materials 0.000 claims abstract description 26
- 229910001004 magnetic alloy Inorganic materials 0.000 claims abstract description 25
- 239000000956 alloy Substances 0.000 claims abstract description 11
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 10
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 claims abstract description 7
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 230000000737 periodic effect Effects 0.000 claims abstract description 3
- 239000011810 insulating material Substances 0.000 claims description 8
- 239000006247 magnetic powder Substances 0.000 abstract description 30
- 239000012212 insulator Substances 0.000 abstract 2
- 239000000203 mixture Substances 0.000 description 18
- 239000010935 stainless steel Substances 0.000 description 14
- 229910001220 stainless steel Inorganic materials 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 230000035699 permeability Effects 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 7
- 239000000696 magnetic material Substances 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000012856 packing Methods 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000003822 epoxy resin Substances 0.000 description 5
- 230000004907 flux Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 229920000647 polyepoxide Polymers 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- 238000009694 cold isostatic pressing Methods 0.000 description 4
- 239000000428 dust Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 238000001513 hot isostatic pressing Methods 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 238000000889 atomisation Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910000565 Non-oriented electrical steel Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 239000002320 enamel (paints) Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Landscapes
- Ignition Installations For Internal Combustion Engines (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は複合磁心に係り、特に長尺で円形断面を有し、
透磁率などの磁気特性が優れ、かつ機械的強度が大きな
複合磁心に関する。[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a composite magnetic core, particularly a composite magnetic core that is long and has a circular cross section,
It relates to a composite magnetic core that has excellent magnetic properties such as magnetic permeability and high mechanical strength.
(従来の技術)
例えば自動車のエンジン点火装置のイグニッションコイ
ルなどに使用される比較的長尺な磁心には、従来、電磁
鋼板の積層体や巻回体が用いられてきた。ところで、イ
グニッションコイルでは高周波励磁が必要とされるが、
従来の電磁鋼板製の磁心は周波数特性が劣るために、以
下に示すような問題があった。(Prior Art) Laminated bodies or wound bodies of electromagnetic steel sheets have conventionally been used for relatively long magnetic cores used, for example, in ignition coils of automobile engine ignition devices. By the way, high frequency excitation is required for ignition coils.
Conventional magnetic cores made of electromagnetic steel sheets have poor frequency characteristics and have the following problems.
すなわち、イグニッションコイルに数KHz以上の高周
波励磁を行なうと、渦電流損失の増大によって、磁化特
性が低下してしまう。これによって、イグニッションコ
イルの二次電圧が低下し、ミススパークが発生し易いと
いう問題か生じている。That is, when the ignition coil is subjected to high frequency excitation of several KHz or more, the magnetization characteristics deteriorate due to an increase in eddy current loss. This causes a problem in that the secondary voltage of the ignition coil decreases and mis-sparking is likely to occur.
また、電磁鋼板の積層体で磁心を形成する場合には、矩
形の電磁鋼板要素を積層する構造であるため、断面が円
形状の磁心を形成することが実質的に困難であり、通常
、角形断面を有するものか使用されている。そのため角
形の磁心にコイルを1回してイグニッションコイルを形
成する際に、磁心の稜線部にコイルが当接して、切断し
易く、またコイルのエナメル被覆が剥離し易くなるなど
巻線性が極めて低い欠点がある。In addition, when forming a magnetic core with a laminate of electromagnetic steel sheets, since the structure is such that rectangular electromagnetic steel sheet elements are laminated, it is virtually difficult to form a magnetic core with a circular cross section. A cross section is used. Therefore, when forming an ignition coil by wrapping a coil once around a square magnetic core, the coil comes into contact with the ridgeline of the magnetic core, making it easy to cut, and the enamel coating of the coil easily peels off, resulting in extremely poor winding properties. There is.
また断面が角形の磁心は、一般に円筒状の収納容器内に
収納してイグニッションコイル等に形成されるため、磁
心の占積率を大きくとることが困難である。そのため、
製品となるコイル全体の容積が増大して、配置スペース
の利用効率が大幅に低下してしまう欠点がある。Further, since a magnetic core having a rectangular cross section is generally housed in a cylindrical container and formed into an ignition coil or the like, it is difficult to increase the space factor of the magnetic core. Therefore,
This has the disadvantage that the overall volume of the coil as a product increases, resulting in a significant decrease in the efficiency of utilization of the arrangement space.
そこで円柱形状に形成して巻線性を向上させることが容
易であり、かつ占積率を大きく設定することが可能な圧
粉磁心が、近年多用化されている。Therefore, powder magnetic cores, which can be easily formed into a cylindrical shape to improve winding properties and can have a large space factor, have been widely used in recent years.
このような圧粉磁心は、一般に軟磁性粉と絶縁性を有す
るバインダとの混合体をプレス成形すること1こよって
製造される。Such powder magnetic cores are generally manufactured by press-molding a mixture of soft magnetic powder and an insulating binder.
このようにして製造された圧粉磁心は占積率を大きく設
定することが可能であるため、比較的に機器を小形に形
成することかできる上に、高周波領域においても渦電流
損失か小さい軟磁性粉を使用しているため、周波数特性
が良好となる。Since the powder magnetic core manufactured in this way can have a large space factor, it is possible to make the equipment relatively compact, and even in the high frequency range, the eddy current loss is small. Since magnetic powder is used, frequency characteristics are good.
(発明が解決しようとする課題)
このような従来の圧粉磁心は、絶縁性を有するエポキシ
樹脂等のバインダで粒状の磁性材料粉を相互に結合して
形成されており、各バインダ部が磁気的なギャップとな
るため、周波数の高低によって透磁率が大きな変化を受
けることは少ない。(Problems to be Solved by the Invention) Such conventional powder magnetic cores are formed by bonding granular magnetic material powder to each other with a binder such as an insulating epoxy resin, and each binder part has a magnetic Therefore, the magnetic permeability is unlikely to change significantly depending on the frequency.
しかし、概して透磁率は小さく、特に8〜12KH2程
度の周波数領域で使用される磁心としては、従来材の電
磁鋼板を積層して形成した磁心と比較して、磁気特性が
劣る欠点があった。However, magnetic permeability is generally low, and magnetic cores used particularly in the frequency range of about 8 to 12 KH2 have a drawback of inferior magnetic properties compared to magnetic cores formed by laminating conventional magnetic steel sheets.
また磁性材料粉として一般にアスペクト比(粉体の縦横
の寸法比)が1に近い粒状の軟磁性粉を使用していたた
め、長尺の圧粉磁心を形成したときに軸方向に多数の磁
気的ギャップが形成され易い。したがって透磁率等の磁
気特性が低いという問題点がある。In addition, since granular soft magnetic powder with an aspect ratio (the ratio of vertical and horizontal dimensions of the powder) close to 1 was generally used as magnetic material powder, when a long dust core was formed, there were many magnetic particles in the axial direction. Gaps are likely to form. Therefore, there is a problem that magnetic properties such as magnetic permeability are low.
ざらに圧粉磁心に共通する難点であるが、圧粉磁心はバ
インダによって磁性材料粉を固定化しただけで形成され
ているため、衝撃に対する強度が弱く、外力あるいは機
械的な振動が付加するような条件下で使用する場合には
、その信頼性が低下し易い傾向がある。そしてこの傾向
は磁心がより長尺化するに伴ってより顕著になる。This is a common problem with powder magnetic cores, but since powder magnetic cores are formed by simply fixing magnetic material powder with a binder, they have low impact resistance and are susceptible to external forces or mechanical vibrations. When used under such conditions, the reliability tends to decrease. This tendency becomes more pronounced as the magnetic core becomes longer.
近年、高周波数領域で使用される電気機器の小型化が望
まれており、より鉄損を低減して動作磁束密度の増大を
図ることが要請されている。In recent years, there has been a desire to downsize electrical equipment used in high frequency regions, and there is a need to further reduce iron loss and increase operating magnetic flux density.
本発明は上記の問題点を解決するためにさなれたもので
あり、長尺で円形断面を有し、高周波数領域においても
透磁率などの磁気的特性が優れ、かつ機械的強度が大き
く耐久性に優れた複合磁心を提供することを目的とする
。The present invention was developed to solve the above problems, and has a long length with a circular cross section, excellent magnetic properties such as magnetic permeability even in a high frequency region, and high mechanical strength and durability. The purpose is to provide a composite magnetic core with excellent properties.
(課題を解決するための手段と作用)
上記目的を達成するため本発明に係る複合磁心は、偏平
形状を有する軟磁性合金粉と絶縁材とから成る圧粉磁心
と、この圧粉磁心を収容する金属製外管とを備え、上記
軟磁性合金粉の偏平面か上記金属製外管の軸方向に配向
されており、上記軟磁性合金粉は60重量%以上90重
量%以下のNiおよび不可避的に含まれる不純物から成
るFe−Ni合金であることを特徴とする。(Means and effects for solving the problems) In order to achieve the above object, a composite magnetic core according to the present invention includes a powder magnetic core made of a flat-shaped soft magnetic alloy powder and an insulating material, and a powder magnetic core that houses the powder magnetic core. the flat surface of the soft magnetic alloy powder is oriented in the axial direction of the metal outer tube, and the soft magnetic alloy powder contains 60% by weight or more and 90% by weight of Ni and unavoidable The Fe-Ni alloy is characterized by containing impurities.
また軟磁性合金粉を構成するFeの5重量%以下を、周
期律表第IVa族、Va族、VTa族元素およびCuか
ら選択される少なくとも1種の元素で置換してもよい。Further, 5% by weight or less of Fe constituting the soft magnetic alloy powder may be replaced with at least one element selected from elements of Group IVa, Va, VTa, and Cu of the periodic table.
また軟磁性合金粉のアスペクト比(厚さに対する偏平面
の最大長さの比)を5以上に設定するとよい。Further, the aspect ratio (ratio of the maximum length of the flat surface to the thickness) of the soft magnetic alloy powder is preferably set to 5 or more.
以下本発明の各構成要素および組成の限定理由を説明す
る。The reasons for limiting each component and composition of the present invention will be explained below.
本発明の対象となる複合磁心に使用される軟磁性合金粉
としては、下記一般式
Fe Nl ・・・・・・(
1)100−a a
(但し、60≦a≦90重量%)
で表わされる組成を有する粉状の鉄ニツケル合金か採用
される。The soft magnetic alloy powder used in the composite magnetic core that is the object of the present invention has the following general formula: FeNl (
1) A powdered iron-nickel alloy having a composition expressed as 100-a a (60≦a≦90% by weight) is employed.
ここで上記(1)式中において、Niは飽和磁束密度の
改善に有効であり、Feとの合金において磁歪および磁
気異方性を調整し優れた軟磁気特性を得るために60〜
90重量%の範囲で構成される。含有量か60重量%未
満の場合は、磁歪か大きくなり、90重量%を超える場
合には飽和磁束密度が低下してしまう。特に優れた軟磁
気特性を得るためには添加量を70〜85重量%の範囲
に設定することが望ましい。Here, in the above formula (1), Ni is effective in improving the saturation magnetic flux density, and in order to adjust the magnetostriction and magnetic anisotropy in the alloy with Fe and obtain excellent soft magnetic properties.
It is comprised in the range of 90% by weight. If the content is less than 60% by weight, the magnetostriction will increase, and if it exceeds 90% by weight, the saturation magnetic flux density will decrease. In order to obtain especially excellent soft magnetic properties, it is desirable to set the amount added in the range of 70 to 85% by weight.
またVla族、Va族、IVa族元素およびCuは軟磁
性特性の改善、インダクタンス値の改善および温度変化
に対する磁気特性の安定化に有効な元素である。その含
有量が5重量%を超えると、飽和磁束密度が低くなるた
め、その量を5重量%以下とした。好ましくは1〜4重
量%である。Furthermore, Vla group, Va group, IVa group elements, and Cu are effective elements for improving soft magnetic properties, improving inductance values, and stabilizing magnetic properties against temperature changes. When the content exceeds 5% by weight, the saturation magnetic flux density becomes low, so the amount is set to 5% by weight or less. Preferably it is 1 to 4% by weight.
なお、上記Fe−Ni系軟磁性合金粉において、0、S
等の通常のFe系合金に含まれているような不可避的な
不純物を微量含んでいても、本発明の効果を損うもので
はない。In addition, in the above Fe-Ni-based soft magnetic alloy powder, 0, S
Even if it contains trace amounts of unavoidable impurities such as those contained in ordinary Fe-based alloys, the effects of the present invention will not be impaired.
また本発明において使用するFe−Ni系軟磁性合金粉
は、例えば通常のアトマイズ法なとによって製造される
。Moreover, the Fe-Ni based soft magnetic alloy powder used in the present invention is manufactured by, for example, a normal atomization method.
なお軟磁性合金粉の偏平度は粉砕強度および粉砕時間を
変えることによって調整される。Note that the flatness of the soft magnetic alloy powder is adjusted by changing the crushing strength and crushing time.
ここで本発明に使用される圧粉磁心は、前記のように調
製された、偏平形状を有し、かつ保磁力か小さい軟磁性
粉と、絶縁材である有機系バインダなどとの混合体をプ
レス等により圧縮成形したものである。The powder magnetic core used in the present invention is made of a mixture of soft magnetic powder having a flat shape and having a small coercive force prepared as described above, and an organic binder as an insulating material. It is compression molded using a press or the like.
また上記軟磁性粉としては、磁気特性を改善するために
、第4図に示すように、特に偏平形状を有する軟磁性粉
1を使用することが本発明の特徴の1つである。この偏
平状の軟磁性粉1の厚さtに対する偏平面の最大長さ1
の比をアスペクト比Rとした場合に、その値は5以上に
設定される。Moreover, one of the features of the present invention is that, as the soft magnetic powder, in order to improve the magnetic properties, soft magnetic powder 1 having a particularly flat shape is used as shown in FIG. 4. The maximum length 1 of the flat surface with respect to the thickness t of this flat soft magnetic powder 1
When the aspect ratio R is the ratio of R, the value is set to 5 or more.
アスペクト比Rが5未満の場合には後述する配向性が低
下するため磁気特性も低下する。特に顕著な磁気特性の
改善効果を発現させるためにはアスペクト比を20以上
に設定することが望ましい。If the aspect ratio R is less than 5, the orientation described below will be degraded, and the magnetic properties will also be degraded. In order to achieve a particularly remarkable effect of improving magnetic properties, it is desirable to set the aspect ratio to 20 or more.
なお粉砕操作によって製造する軟磁性粉のアスペクト比
は、原料となる軟磁性材料片の粉砕強度や粉砕時間を適
宜変更することにより調整される。Note that the aspect ratio of the soft magnetic powder produced by the crushing operation is adjusted by appropriately changing the crushing strength and crushing time of the soft magnetic material pieces serving as the raw material.
また金属製外管としては、圧粉磁心に対する巻線を容易
にするために、断面が円形状を有するものが好ましく、
またその材質は、使用用途に応じて適宜選択するものと
する。例えば軟磁性材からなる外管を用いれば、より磁
気特性の向上が図れ、また内部に充填される軟磁性材と
は異なる軟磁性材を用いることによって、中間的な磁気
特性を付与することも可能となる。また、ステンレスの
ような耐蝕性金属材料を用いることにより、過酷な条件
下での使用が可能となり、さらに磁心全体の機械的強度
の向上も図ることができる。In addition, the metal outer tube preferably has a circular cross section in order to facilitate winding around the powder magnetic core.
Further, the material thereof shall be appropriately selected depending on the intended use. For example, by using an outer tube made of soft magnetic material, the magnetic properties can be further improved, and by using a soft magnetic material different from the soft magnetic material filled inside, intermediate magnetic properties can be imparted. It becomes possible. Furthermore, by using a corrosion-resistant metal material such as stainless steel, it is possible to use the magnetic core under harsh conditions, and the mechanical strength of the entire magnetic core can also be improved.
さらに圧粉磁心は、金属製外管の内容積に対する占積率
が98%以上となるように、金属製外管内に充填される
。また、充填された圧粉磁心の充填密度は75%以上と
することが好ましい。Further, the powder magnetic core is filled into the metal outer tube so that the space factor with respect to the inner volume of the metal outer tube is 98% or more. Further, the packing density of the filled powder magnetic core is preferably 75% or more.
上記占積率は、上記圧粉磁心を一体化させたものとして
換算し、この圧粉磁心の金属製外管の内容積に対する占
積率として求めたもので、具体的には金属製外管の各断
面における外管内の面積に対する圧粉磁心の面積の割合
の平均値により求めるものとする。The above-mentioned space factor is calculated as the space factor for the internal volume of the metal outer tube of the powder magnetic core, which is calculated as the powder magnetic core is integrated. It shall be determined by the average value of the ratio of the area of the powder magnetic core to the area inside the outer tube in each cross section.
この占積率が98%未満であるということは、金属製外
管と圧粉磁心との間に、磁気特性の低下を招くような空
間が形成されることを意味する。The fact that the space factor is less than 98% means that a space is formed between the metal outer tube and the powder magnetic core that causes a decrease in magnetic properties.
つまり、圧粉磁心の占積率を98%以上、好ましくは1
00%により近付けることによって、金属製外管の存在
が磁気特性の低下要因となることが防止され、良好な磁
気特性が得られる。In other words, the space factor of the dust core should be 98% or more, preferably 1
By approaching 00%, the presence of the metal outer tube is prevented from becoming a factor in deteriorating the magnetic properties, and good magnetic properties can be obtained.
また、上記充填密度は、軟磁性粉の固有密度を基準とし
、この密度値に対する実際に外管内に充填された軟磁性
粉の密度値の比率(密度比)として求めたものである。Moreover, the above-mentioned packing density is determined as the ratio (density ratio) of the density value of the soft magnetic powder actually filled in the outer tube to this density value, using the specific density of the soft magnetic powder as a reference.
この充填密度が75%未満であると、磁気特性の低下を
招いてしまう。If this packing density is less than 75%, the magnetic properties will deteriorate.
本発明の目的とする特性を有する複合磁心は、偏平形状
を有する軟磁性粉と絶縁材との混合体を金属製外管内に
充填した後に、金属製外管をスウ工−ジングマシンなど
を使用して周方向から転打したり、または熱間静水圧プ
レス(HI P)処理して縮径したりすることにより、
上記軟磁性粉の偏平面を金属製外管の軸方向に配向させ
た圧粉磁心を形成するとともに、圧粉磁心と金属製外管
とを一体化して製造される。The composite magnetic core having the characteristics targeted by the present invention can be obtained by filling a metal outer tube with a mixture of flat-shaped soft magnetic powder and an insulating material, and then using a rolling machine or the like to remove the metal outer tube. By rolling and rolling from the circumferential direction or by hot isostatic pressing (HIP) treatment to reduce the diameter,
A powder magnetic core is formed in which the oblique plane of the soft magnetic powder is oriented in the axial direction of a metal outer tube, and the powder magnetic core and the metal outer tube are integrated.
また他の製造方法として偏平形状を有する軟磁性粉と絶
縁材との混合体を冷間静水圧プレス(CIP)処理して
圧縮成形することにより、上記軟磁性粉の偏平面を長手
方向に配向させた圧粉磁心を形成した後に、得られた圧
粉磁心を円形断面を有する金属製外管内に装填し一体に
固定する製造方法でもよい。As another manufacturing method, a mixture of flat-shaped soft magnetic powder and an insulating material is subjected to cold isostatic pressing (CIP) and compression molded, so that the flat plane of the soft magnetic powder is oriented in the longitudinal direction. A manufacturing method may also be used in which, after forming the powder magnetic core, the obtained powder magnetic core is loaded into a metal outer tube having a circular cross section and fixed integrally.
このようなスウエージング法、HIP処理法、CIP処
理法を利用することにより、金属製外管と混合体との間
に空隙を殆ど形成することなく、両者を一体化すること
ができ、同時に高い充填密度を存し、円形断面で長尺の
圧粉磁心を形成することかできる。By using the swaging method, HIP treatment method, and CIP treatment method, it is possible to integrate the metal outer tube and the mixture with almost no voids between them, and at the same time It has a high packing density and can form a long powder magnetic core with a circular cross section.
また軟磁性粉として、アスペクト比か大きな偏平形状を
有する軟磁性粉を使用してスウエージング処理、H1P
処理またはCIP処理を行なった場合には、軟磁性粉等
の混合体は、徐々に縮径されることにより、各軟磁性粉
は、その偏平面か軸方向に配向されつつ高密度化される
。この際軟磁性粉のアスペクト比が5未満であると配向
が不充分となる。In addition, as soft magnetic powder, soft magnetic powder with a large aspect ratio or a flat shape is used, and the swaging process, H1P
When the treatment or CIP treatment is performed, the diameter of the mixture of soft magnetic powders etc. is gradually reduced, so that each soft magnetic powder is oriented in its oblique plane or in the axial direction and densified. . At this time, if the aspect ratio of the soft magnetic powder is less than 5, the orientation will be insufficient.
上記構成に係る複合磁心によれば、構成材料としてアス
ペクト比が大きな偏平形状を有し、磁気特性が優れた軟
磁性粉を使用しており、この偏平面か軸方向に配向され
て、高密度の圧粉磁心が形成される。そのため、アスペ
クト比か小さな軟磁性粉で形成した従来の圧粉磁心上比
較して、軸方向に配列する粉体間に形成される磁気的ギ
ャップが大幅に減少し磁気特性が大幅に改善される。According to the composite magnetic core having the above configuration, soft magnetic powder having a flat shape with a large aspect ratio and excellent magnetic properties is used as a constituent material, and the flat surface is oriented in the axial direction to achieve high density. A powder magnetic core is formed. Therefore, compared to a conventional dust core made of soft magnetic powder with a small aspect ratio, the magnetic gap formed between the powder particles arranged in the axial direction is greatly reduced, and the magnetic properties are greatly improved. .
また金属製外管によって圧粉磁心が保護される構造であ
るため、磁心全体としての強度が高まり、過酷な条件下
で使用される場合にも優れた耐久性と信頼性とを保持で
きる。Furthermore, since the powder magnetic core is protected by the metal outer tube, the strength of the magnetic core as a whole is increased, and excellent durability and reliability can be maintained even when used under harsh conditions.
(実施例)
次に本発明の複合磁心について以下の実施例を参照して
より具体的に説明する。(Examples) Next, the composite magnetic core of the present invention will be described in more detail with reference to the following examples.
実施例1〜7、比較例1〜4
実施例1〜7として第1表左欄に示す組成を有する合金
粉末をアトマイズ法により調製し、得られた粉末を粉砕
し、さらに温度1100℃で1時間水素中で熱処理する
ことにより、平均粒径80〜120μm1アスペクト比
(1/l)が90の偏平状のFe−Ni系軟磁性合金粉
末を得た。Examples 1 to 7, Comparative Examples 1 to 4 As Examples 1 to 7, alloy powders having the compositions shown in the left column of Table 1 were prepared by an atomization method, the obtained powders were pulverized, and further 1 By heat-treating in hydrogen for an hour, a flat Fe--Ni based soft magnetic alloy powder having an average particle size of 80 to 120 μm and an aspect ratio (1/l) of 90 was obtained.
次に各軟磁性合金粉末に、平均粒径が50μ山のエポキ
シ樹脂粉末を1重量%添加し、充分に混合して均一な混
合体を調製した。Next, 1% by weight of epoxy resin powder having an average particle size of 50 μm was added to each soft magnetic alloy powder and thoroughly mixed to prepare a uniform mixture.
一方金属製外管として、外径15m1内径13鵬、長さ
300a11の円形断面のステンレス管を用意し、この
ステンレス管内に、上記混合体を充填した後に、ステン
レス管の両端開口をシリコンゴムで封止した。On the other hand, as a metal outer tube, a stainless steel tube with a circular cross section of 15 m in outer diameter, 13 m in inner diameter, and 300 m in length was prepared, and after filling the above mixture into the stainless steel tube, the openings at both ends of the stainless steel tube were sealed with silicone rubber. It stopped.
次に上記混合体を充填したステンレス管をスウ工−ジン
グマシンにセットし、ステンレス管を回転させながら、
ステンレス管の外表面を四方から径方向に転打して、外
径8mm、内径5.4−まで縮径することにより、第1
図に示すような金属製外管としてのステンレス管2内に
圧粉磁心3が充填された複合磁心4を得た。上記圧粉磁
心3は、軟磁性合金粉としてのアトマイズ合金粉1と、
絶縁材としてのエポキシ樹脂粉末5とから成る。Next, set the stainless steel tube filled with the above mixture in the suction machine, and while rotating the stainless steel tube,
The outer surface of the stainless steel pipe was rolled in the radial direction from all sides to reduce the outer diameter to 8 mm and the inner diameter to 5.4 mm.
A composite magnetic core 4 was obtained in which a powder magnetic core 3 was filled in a stainless steel tube 2 as a metal outer tube as shown in the figure. The powder magnetic core 3 includes atomized alloy powder 1 as soft magnetic alloy powder,
It consists of epoxy resin powder 5 as an insulating material.
なおこれらの実施例1〜7の複合磁心4・・・の占積率
はいずれも98.0〜99,5%で充填密度は88.0
〜88゜7%の範囲であった。Note that the space factors of the composite magnetic cores 4 of Examples 1 to 7 are all 98.0 to 99.5%, and the packing density is 88.0.
The range was 88.7%.
そして得られた複合磁心の磁気特性を評価するため、交
流での初透磁率μ をLCRメータをO
使用して測定する一方、機械的強度を評価するために抗
折試験に供した。Then, in order to evaluate the magnetic properties of the obtained composite magnetic core, the initial magnetic permeability μ in alternating current was measured using an LCR meter using O 2 , while a bending test was conducted to evaluate the mechanical strength.
一方、比較例1として、実施例1で使用した軟磁性粉と
同一の組成を有し、平均粒径が80μm、アスペクト比
か1.2である粒状のアトマイズ鉄粉に、平均粒径が5
0μmのエポキシ樹脂粉末を1重量%添加して混合体を
調製した。そして得られた混合体を実施例1と同様な製
造プロセスを経て複合磁心を製造した。On the other hand, as Comparative Example 1, granular atomized iron powder having the same composition as the soft magnetic powder used in Example 1, an average particle size of 80 μm, and an aspect ratio of 1.2 was used.
A mixture was prepared by adding 1% by weight of 0 μm epoxy resin powder. Then, the obtained mixture was subjected to the same manufacturing process as in Example 1 to manufacture a composite magnetic core.
また比較例2として実施例1で調製した混合体を圧縮成
形して第2図に示すような3.8mmX3゜8nmX1
00mmの寸法で角形断面を有する従来の圧粉磁心3a
を製造した。なおこの圧粉磁心3aの充填密度は89.
0%であった。また、この圧粉磁心3aの寸法は、実施
例1で縮径したステンレス管(内径5.4HD)内に挿
入し得る最大寸法として選択したものである。In addition, as Comparative Example 2, the mixture prepared in Example 1 was compression molded to form a 3.8 mm x 3° 8 nm x 1 piece as shown in Figure 2.
Conventional powder magnetic core 3a having a square cross section with dimensions of 00 mm
was manufactured. The packing density of this powder magnetic core 3a is 89.
It was 0%. Further, the dimensions of this powder magnetic core 3a were selected as the maximum dimensions that can be inserted into the stainless steel pipe (inner diameter 5.4 HD) reduced in diameter in Example 1.
次に得られた圧粉磁心3aを抗折試験に供するとともに
、外径8−1内径5.4■のステンレス管内に挿入して
複合磁心とし、実施例1と同様に磁気特性の測定評価を
行なった。Next, the obtained powder magnetic core 3a was subjected to a bending test, and inserted into a stainless steel tube with an outer diameter of 8-1 and an inner diameter of 5.4 cm to form a composite magnetic core, and the magnetic properties were measured and evaluated in the same manner as in Example 1. I did it.
一方、比較例3として第3図に示すように縦3゜8mm
、横100、厚さ0.35mmの無方向電磁鋼板(S
14)で形成した多数の薄板6・・・を絶縁層を介して
積層して3.8mmX3.8mmX100闘の寸法を有
する従来の積層磁心7を製作し、特性評価に供した。On the other hand, as comparative example 3, as shown in Fig. 3, the height was 3°8 mm.
, width 100, thickness 0.35 mm non-oriented electrical steel plate (S
A conventional laminated magnetic core 7 having dimensions of 3.8 mm x 3.8 mm x 100 mm was manufactured by laminating a large number of thin plates 6 formed in step 14) with insulating layers interposed therebetween, and was subjected to characteristic evaluation.
また比較例4として、第1表の左欄に示すように軟磁性
合金材の組成範囲か本発明において規定する範囲から逸
脱した軟磁性合金粉を使用して実施例1〜7と同様のプ
ロセスで同一寸法の複合磁心を調製した。In addition, as Comparative Example 4, the same process as Examples 1 to 7 was carried out using soft magnetic alloy powder that deviated from the composition range of the soft magnetic alloy material or the range specified in the present invention as shown in the left column of Table 1. Composite magnetic cores with the same dimensions were prepared.
こうして得た実施例1〜7および比較例1〜4の複合磁
心の、交流における初透磁率μ およC
び抗折強度の測定結果を第1表に示す。Table 1 shows the measurement results of the initial magnetic permeability μ and C in alternating current and the bending strength of the composite magnetic cores of Examples 1 to 7 and Comparative Examples 1 to 4 thus obtained.
第1表の測定結果から明らかなように実施例1〜7に係
る複合磁心によれば、アスペクト比が小さな粒状のアト
マイズ鉄粉を軟磁性粉として使用して形成した従来の複
合磁心(比較例1)と比較して、軟磁性に優れ、アスペ
クト比が大きな偏平状のアトマイズ鉄粉を軸方向に配向
させているため、軸方向の磁気的ギャップが少ない。し
たがって高周波数領域においても高い透磁率を得ること
ができる。As is clear from the measurement results in Table 1, the composite magnetic cores according to Examples 1 to 7 are different from the conventional composite magnetic core (comparative example) formed using granular atomized iron powder with a small aspect ratio as soft magnetic powder. Compared to 1), the magnetic gap in the axial direction is small because the flat atomized iron powder with excellent soft magnetism and a large aspect ratio is oriented in the axial direction. Therefore, high magnetic permeability can be obtained even in a high frequency region.
また、磁束密度に関しては、実施例1〜7による複合磁
心は、電磁鋼板による磁心(比較例3)と同等の結果か
得られたのに対し、比較例2による磁心では管内の空隙
の存在によって約35%低下していた。Regarding magnetic flux density, the composite magnetic cores according to Examples 1 to 7 obtained the same results as the magnetic core made of magnetic steel sheets (Comparative Example 3), whereas the magnetic core according to Comparative Example 2 was due to the presence of air gaps in the tube. It was down about 35%.
さらに、強度特性については、圧粉磁心のみで測定した
比較例2の磁心においては抗折強度が7kg/−と小さ
いが、実施例1〜7および比較例1および比較例4の複
合磁心によれば、ステンレス管か補強部材として機能す
るため、機械的強度が4倍程度に上昇する。また実施例
1〜7および比較例2のような圧粉磁心3.3aをステ
ンレス管2内に挿填したものは、ステンレス2管によっ
て圧粉磁心3,3aが保護されるため、長期間使用後に
おいても、圧粉磁心3,3aに割れや欠けか発生するこ
とが少なく、耐久性が著しく改善されることが実証され
た。Furthermore, regarding the strength characteristics, the flexural strength of the core of Comparative Example 2, which was measured using only the powder magnetic core, was as low as 7 kg/-; For example, since the stainless steel pipe functions as a reinforcing member, the mechanical strength increases by about four times. In addition, the powder magnetic cores 3.3a inserted into the stainless steel tube 2 as in Examples 1 to 7 and Comparative Example 2 can be used for a long period of time because the powder magnetic cores 3, 3a are protected by the two stainless steel tubes. Even after the powder magnetic cores 3, 3a were cracked or chipped, it was demonstrated that the durability was significantly improved.
さらに、上記実施例1〜7の複合磁心に一次および二次
の巻線を施してコイル化し、動作特性を調べたところ、
KHzオーダーでの励磁に対しても二次巻線側での電圧
低下もほとんどなく、また機械的なノイズの発生も認め
られなかった。Furthermore, the composite magnetic cores of Examples 1 to 7 were formed into coils by applying primary and secondary windings, and the operating characteristics were investigated.
Even with excitation on the order of KHz, there was almost no voltage drop on the secondary winding side, and no mechanical noise was observed.
以上説明の通り本発明に係る複合磁心によれば、構成材
料として軟磁気特性が優れアスペクト比か大きな偏平形
状を有する軟磁性粉を使用しており、この偏平面が軸方
向に配向されて、高密度の圧粉磁心が形成される。その
ため、アスペクト比が小さな軟磁性粉で形成した従来の
圧粉磁心と比較して、軸方向に配列する粉体間に形成さ
れる磁気的ギャップが大幅に減少し磁気特性が大幅に改
善される。As explained above, according to the composite magnetic core according to the present invention, soft magnetic powder having excellent soft magnetic properties and a flat shape with a large aspect ratio is used as a constituent material, and this flat surface is oriented in the axial direction. A high-density dust core is formed. Therefore, compared to conventional powder magnetic cores made of soft magnetic powder with a small aspect ratio, the magnetic gap formed between the powder particles arranged in the axial direction is significantly reduced, and the magnetic properties are significantly improved. .
また金属製外管によって圧粉磁心が保護される構造であ
るため、磁心全体としての強度が高まり、過酷な条件下
で使用される場合にも優れた耐久性と信頼性とを保持で
きる。Furthermore, since the powder magnetic core is protected by the metal outer tube, the strength of the magnetic core as a whole is increased, and excellent durability and reliability can be maintained even when used under harsh conditions.
さらに本発明に係る複合磁心の構造によれば、軟磁性粉
と絶縁材との混合体を充填した金属製外管をスウエージ
ングやHIP処理またはCIP処理することにより、金
属製外管内の軸方向に軟磁性粉の偏平面が配向した高密
度の磁心本体を容易に製造することが可能であり、特に
巻線性が優れる円形断面を有する複合磁心を容易に製造
することができる。Further, according to the structure of the composite magnetic core according to the present invention, the metal outer tube filled with a mixture of soft magnetic powder and an insulating material is subjected to swaging, HIP treatment, or CIP treatment, so that the axial direction inside the metal outer tube is It is possible to easily manufacture a high-density magnetic core body in which the flat planes of soft magnetic powder are oriented, and in particular, it is possible to easily manufacture a composite magnetic core having a circular cross section with excellent windability.
1・・・アトマイズ合金粉(軟磁性粉)、2・・・ステ
ンレス管(金属製外管)、3.3a・・圧粉磁心、4・
・・複合磁心、5・・・エポキシ樹脂粉末(絶縁材)、
6・・・薄板、7・・・積層磁心。1...Atomized alloy powder (soft magnetic powder), 2...Stainless steel tube (metal outer tube), 3.3a...Powder magnetic core, 4.
... Composite magnetic core, 5... Epoxy resin powder (insulating material),
6... Thin plate, 7... Laminated magnetic core.
呂願人代理人 波多野 久Ro Ganjin agent Hatano long
第1図は本発明に係る複合磁心の一実施例を示す斜視図
、第2図は角形断面を有する従来の圧粉磁心を示す斜視
図、第3図は電磁鋼板を積層して形成した従来の積層磁
心を示す斜視図、第4図は軟磁性粉の外形を示す斜視図
である。Fig. 1 is a perspective view showing an embodiment of the composite magnetic core according to the present invention, Fig. 2 is a perspective view showing a conventional powder magnetic core having a square cross section, and Fig. 3 is a conventional powder magnetic core formed by laminating electromagnetic steel plates. FIG. 4 is a perspective view showing the outer shape of the soft magnetic powder.
Claims (3)
圧粉磁心と、この圧粉磁心を収容する金属製外管とを備
え、上記軟磁性合金粉の偏平面が上記金属製外管の軸方
向に配向されており、上記軟磁性合金粉は、60重量%
以上90重量%以下のNiおよび不可避的に含まれる不
純物から成るFe−Ni合金であることを特徴とする複
合磁心。1. A powder magnetic core made of a flat-shaped soft magnetic alloy powder and an insulating material, and a metal outer tube housing the powder magnetic core, wherein the flat surface of the soft magnetic alloy powder is aligned with the axis of the metal outer tube. The soft magnetic alloy powder has a content of 60% by weight.
A composite magnetic core characterized in that it is an Fe-Ni alloy comprising 90% by weight or less of Ni and impurities unavoidably included.
期律表第IVa族、Va族、VIa族元素およびCuから選
択される少なくとも1種の元素で置換したことを特徴と
する請求項1記載の複合磁心。2. Claim 1 characterized in that 5% by weight or less of Fe constituting the soft magnetic alloy powder is replaced with at least one element selected from Group IVa, Va, and VIa elements of the periodic table and Cu. Composite magnetic core as described.
の最大長さの比)を5以上に設定したことを特徴とする
請求項1または2記載の複合磁心。3. 3. The composite magnetic core according to claim 1, wherein the soft magnetic alloy powder has an aspect ratio (ratio of the maximum length of the flat surface to the thickness) of 5 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2190456A JPH0478112A (en) | 1990-07-20 | 1990-07-20 | Composite magnetic core |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2190456A JPH0478112A (en) | 1990-07-20 | 1990-07-20 | Composite magnetic core |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0478112A true JPH0478112A (en) | 1992-03-12 |
Family
ID=16258427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2190456A Pending JPH0478112A (en) | 1990-07-20 | 1990-07-20 | Composite magnetic core |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0478112A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1661647A1 (en) * | 2003-08-05 | 2006-05-31 | Mitsubishi Materials Corporation | Fe-Ni-Mo FLAKY METAL SOFT MAGNETIC POWDER AND MAGNETIC COMPOSITE MATERIAL CONTAINING SOFT MAGNETIC POWDER |
US7622012B2 (en) | 2005-02-09 | 2009-11-24 | Mitsubishi Materials Corporation | Flat soft magnetic metal powder and composite magnetic material including the soft magnetic metal powder |
-
1990
- 1990-07-20 JP JP2190456A patent/JPH0478112A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1661647A1 (en) * | 2003-08-05 | 2006-05-31 | Mitsubishi Materials Corporation | Fe-Ni-Mo FLAKY METAL SOFT MAGNETIC POWDER AND MAGNETIC COMPOSITE MATERIAL CONTAINING SOFT MAGNETIC POWDER |
US7575645B2 (en) | 2003-08-05 | 2009-08-18 | Mitsubishi Materials Corporation | Fe-Ni-Mo soft magnetic flaky powder and magnetic composite material containing soft magnetic powder |
EP1661647A4 (en) * | 2003-08-05 | 2009-12-09 | Mitsubishi Materials Corp | Fe-Ni-Mo FLAKY METAL SOFT MAGNETIC POWDER AND MAGNETIC COMPOSITE MATERIAL CONTAINING SOFT MAGNETIC POWDER |
US7622012B2 (en) | 2005-02-09 | 2009-11-24 | Mitsubishi Materials Corporation | Flat soft magnetic metal powder and composite magnetic material including the soft magnetic metal powder |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6277426B2 (en) | Composite magnetic body and method for producing the same | |
EP2680281B1 (en) | Composite soft magnetic material having low magnetic strain and high magnetic flux density, method for producing same, and electromagnetic circuit component | |
TWI383410B (en) | Amorphous soft magnetic alloy and inductance component using the same | |
JP4828229B2 (en) | High frequency magnetic core and inductance component using the same | |
US7498080B2 (en) | Ferromagnetic powder for dust core | |
KR101792088B1 (en) | Method for manufacturing powder magnetic core, powder magnetic core, and coil component | |
WO2010103709A1 (en) | Powder magnetic core and magnetic element using the same | |
WO2018179812A1 (en) | Dust core | |
EP1077454B1 (en) | Composite magnetic material | |
JP5063861B2 (en) | Composite dust core and manufacturing method thereof | |
JP2001011563A (en) | Manufacture of composite magnetic material | |
JP7128439B2 (en) | Dust core and inductor element | |
JP2006032907A (en) | High-frequency core and inductance component using the same | |
JP2009185312A (en) | Composite soft magnetic material, dust core using the same, and their production method | |
JPH11238613A (en) | Compound magnetic material and its manufacture | |
KR20100033403A (en) | Method for the production of magnet cores, magnet core and inductive component with a magnet core | |
JP2007214425A (en) | Powder magnetic core and inductor using it | |
JP4166460B2 (en) | Composite magnetic material, magnetic element using the same, and method of manufacturing the same | |
JP2002121601A (en) | Soft magnetic metal powder particle and treating method thereof, and soft magnetic compact and its manufacturing method | |
EP2830070A1 (en) | Composite magnetic material and method for manufacturing same | |
JP4701531B2 (en) | Dust core | |
US20020043303A1 (en) | Powder magnetic core | |
JP4487025B2 (en) | Dust core | |
JPH0478112A (en) | Composite magnetic core | |
JP2010238930A (en) | Composite soft magnetic material, method of manufacturing the composite soft magnetic material, and electromagnetic circuit component |