JPH0477852B2 - - Google Patents

Info

Publication number
JPH0477852B2
JPH0477852B2 JP9365384A JP9365384A JPH0477852B2 JP H0477852 B2 JPH0477852 B2 JP H0477852B2 JP 9365384 A JP9365384 A JP 9365384A JP 9365384 A JP9365384 A JP 9365384A JP H0477852 B2 JPH0477852 B2 JP H0477852B2
Authority
JP
Japan
Prior art keywords
voltage
output
potential
amplifier
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9365384A
Other languages
Japanese (ja)
Other versions
JPS60237321A (en
Inventor
Tamotsu Kobayashi
Takashi Torimaru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP9365384A priority Critical patent/JPS60237321A/en
Publication of JPS60237321A publication Critical patent/JPS60237321A/en
Publication of JPH0477852B2 publication Critical patent/JPH0477852B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • G01F1/60Circuits therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、被測定流体を流す導電性管路の内面
に絶縁性のライニングを施さないライニングレス
の電磁流量計に係り、特に導電性管路の管壁への
管電位形成の改良に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a liningless electromagnetic flowmeter that does not provide an insulating lining on the inner surface of a conductive pipe through which a fluid to be measured flows, and particularly relates to a liningless electromagnetic flowmeter that does not provide an insulating lining on the inner surface of a conductive pipe through which a fluid to be measured flows. Concerning the improvement of tube potential formation on the tube wall of a tract.

<従来技術> 電磁流量計は一般に流量に対応して導電性管路
内に発生した信号電圧が導電性の導管で短絡され
るのを防ぐために導電性管路の内面を絶縁性のラ
イニング材でライニングしている。
<Prior art> Electromagnetic flowmeters generally use an insulating lining material on the inner surface of the conductive pipe to prevent the signal voltage generated in the conductive pipe in response to the flow rate from being short-circuited by the conductive pipe. It is lined.

しかし、最近はライニング材の変形による事故
などを防止するためライニングのない電磁流量計
が提案されている。かかる従来の電磁流量計の構
成を第1図に示す。
However, recently, electromagnetic flowmeters without linings have been proposed to prevent accidents caused by deformation of the lining material. The configuration of such a conventional electromagnetic flowmeter is shown in FIG.

第1図において、導電性管路1に被測定流体2
が満され、この導電性管路1を横断して励磁コイ
ル3により磁界Bが被測定流体2に印加されてい
る。導電性管路1は紙面に直角方向に円筒状を成
しており、図はその中央断面を示す。被測定流体
2が流れると測定電極4a,4b間に流量信号が
発生する。流量信号は増幅器5の入力端に与えら
れて増幅される。一方、導電性管路1の測定電極
4a,4bの近傍には、その近傍の導電性管路1
の電位を検出する管電位電極6a,6bが設けら
れており、この両端の管電位電圧は増幅器7の入
力端に与えられて増幅される。増幅器5,6の各
出力は偏差増幅器8の入力端に与えられ、それ等
の差がとられて増幅される。偏差増幅器8の出力
は給電増幅器9に与えられ、その出力電流IWが導
電性管路1の管電位電極6a,6bの接地電極G
側の導電性管路1に固定された給電電極10a,
10bに供給され、導電性管路1に電位分布を形
成する。
In FIG. 1, a fluid to be measured 2 is connected to a conductive conduit 1.
is filled, and a magnetic field B is applied to the fluid to be measured 2 by the excitation coil 3 across the conductive conduit 1 . The conductive conduit 1 has a cylindrical shape in a direction perpendicular to the plane of the paper, and the figure shows its central cross section. When the fluid to be measured 2 flows, a flow rate signal is generated between the measurement electrodes 4a and 4b. The flow rate signal is applied to the input end of the amplifier 5 and amplified. On the other hand, in the vicinity of the measurement electrodes 4a and 4b of the conductive conduit 1, the conductive conduit 1 in the vicinity
Tube potential electrodes 6a and 6b are provided to detect the potential of the tube, and the tube potential voltage at both ends thereof is applied to the input end of an amplifier 7 and amplified. The respective outputs of the amplifiers 5 and 6 are applied to the input terminal of the deviation amplifier 8, and the difference between them is taken and amplified. The output of the deviation amplifier 8 is given to the feed amplifier 9, and its output current IW is applied to the ground electrode G of the tube potential electrodes 6a and 6b of the conductive conduit 1.
A power supply electrode 10a fixed to the side conductive conduit 1,
10b to form a potential distribution in the conductive conduit 1.

この様にして形成された電位分布の測定電極4
a,4bの近傍の電位は管電位電極6a,6bで
検出されて増幅器7を介して偏差増幅器8に帰還
され、平衡した状態で安定する。
Measuring electrode 4 for potential distribution formed in this way
Potentials near a and 4b are detected by tube potential electrodes 6a and 6b and fed back to deviation amplifier 8 via amplifier 7, and are stabilized in a balanced state.

以上の様に構成することにより、被測定流体2
の導電性管路1の内周面の近傍に生じた流量信号
に起因する電位分布とほぼ同一の電位分布が導電
性管路1に生じるので、被測定流体2と導電性管
路1との間に電流の出入りがなく等価的に絶縁性
のライニングが施されたと同様になる。
By configuring as above, the measured fluid 2
Since almost the same potential distribution as that caused by the flow rate signal generated near the inner peripheral surface of the conductive pipe 1 occurs in the conductive pipe 1, the relationship between the fluid 2 to be measured and the conductive pipe 1 is There is no current flowing in and out between them, and it is equivalent to applying an insulating lining.

一方、流量信号は測定電極4a,4bから変換
部11に与えられ、例えば電流出力に変換されて
出力端12に電流出力として得られる。変換部1
1は、また励磁コイル3を励磁する励磁電流を励
磁線13a,13bを介して供給する。
On the other hand, the flow rate signal is applied from the measurement electrodes 4a, 4b to the converting section 11, where it is converted into, for example, a current output, and is obtained at the output end 12 as a current output. Conversion part 1
1 also supplies an excitation current for exciting the excitation coil 3 via excitation lines 13a and 13b.

以上の説明から判る様に、給電電極10a,1
0bより給電する出力電流IWにより導電性管路1
に形成される電位分布は被測定流体2の導電性管
路1の内面が絶縁されているとしたときの内周面
近傍の電位分布と同一である必要がある。
As can be seen from the above explanation, the power supply electrodes 10a, 1
Conductive conduit 1 due to the output current I W supplied from 0b
The potential distribution formed therein needs to be the same as the potential distribution in the vicinity of the inner peripheral surface when the inner surface of the conductive conduit 1 of the fluid to be measured 2 is insulated.

しかし、電磁流量計では測定電極4a,4bに
は流量信号の他に測定電極4a,4bと被測定
流体2との界面電位が被測定流体2が流れること
によつて変化するために発生する雑音(以下、フ
ロー雑音という。)被測定流体2と測定電極4
a,4bとの間に発生する電極電位の時間的な変
動による直流電位変動雑音、などの雑音が重畳し
ている。したがつて、測定電極にはこれ等の雑音
電圧も同時に検出され、これに基づいて出力電流
IWが帰還されるので導電性管路1には雑音電圧を
も含んだ形で電位が形成される。導電性管路にお
ける電位分布は流量信号に対応した電位分布が形
成されなければならないが、導電性管路内の雑音
分布と流量信号の電位分布が一般に異なつている
ので、雑音電圧を含んだ電圧で帰還をかけると雑
音成分については過大な補償になり、測定電極間
に検出される雑音成分が増大する。このため測定
電極間に得られる流量信号の信号対雑音比(S/
N比)が低下し、変換部11の出力揺動,出力変
動の原因を作る。更に、雑音成分についての電流
をも給電電極を介して導電性管路に流すので、消
費電力の増大を招く欠点がある。
However, in the electromagnetic flowmeter, in addition to the flow rate signal, the measurement electrodes 4a and 4b have noise generated because the interfacial potential between the measurement electrodes 4a and 4b and the fluid to be measured 2 changes as the fluid to be measured 2 flows. (Hereinafter referred to as flow noise.) Fluid to be measured 2 and measurement electrode 4
Noise such as DC potential fluctuation noise due to temporal fluctuations in electrode potential occurring between electrodes a and 4b is superimposed. Therefore, these noise voltages are also detected at the measurement electrode at the same time, and the output current is determined based on this.
Since I W is fed back, a potential is formed in the conductive conduit 1 including a noise voltage. The potential distribution in the conductive conduit must correspond to the flow rate signal, but since the noise distribution in the conductive conduit and the potential distribution of the flow rate signal are generally different, the voltage including the noise voltage must be formed. If feedback is applied, the noise component will be overcompensated, and the noise component detected between the measurement electrodes will increase. Therefore, the signal-to-noise ratio (S/
N ratio) decreases, causing output fluctuations and output fluctuations of the converter 11. Furthermore, since the current for the noise component is also passed through the conductive conduit through the power supply electrode, there is a drawback that power consumption increases.

<発明の目的> 本発明は、前記の従来技術に鑑み、測定電極で
検出する雑音電圧の影響を低減し、出力揺動の少
ない電磁流量計を提供することを目的とする。
<Object of the Invention> In view of the above-mentioned prior art, an object of the present invention is to provide an electromagnetic flowmeter that reduces the influence of noise voltage detected by measurement electrodes and has less output fluctuation.

<本発明の構成> この目的を達成する本発明の構成は、電磁流量
計に係り、測定電極からの電圧を増幅する増幅手
段と、少くとも増幅手段の出力に関連した出力を
整流し平滑する整流平滑手段と、この整流平滑手
段の出力を励磁に同期した交流電圧に変換する変
換手段とを具備し、この変換手段の出力に関連し
た電流を給電電極に流して被測定流体を流す導電
性管路の内面近傍に発生した電位に近似した電位
分布を導電性管路に形成するようにしたことを特
徴とするものである。
<Configuration of the present invention> The configuration of the present invention that achieves this object relates to an electromagnetic flowmeter, and includes an amplifying means for amplifying the voltage from the measuring electrode, and rectifying and smoothing at least an output related to the output of the amplifying means. A conductive device comprising a rectifying and smoothing means and a converting means for converting the output of the rectifying and smoothing means into an alternating current voltage synchronized with excitation, and causing a current related to the output of the converting means to flow through a power supply electrode to cause the fluid to be measured to flow. The present invention is characterized in that a potential distribution similar to the potential generated near the inner surface of the conduit is formed in the conductive conduit.

<実施例> 以下、本発明の実施例について図面に基づき説
明する。なお、従来技術と同一機能を有する部分
には同一の符号を付し、重複する説明は省略す
る。
<Example> Hereinafter, an example of the present invention will be described based on the drawings. Note that parts having the same functions as those in the prior art are denoted by the same reference numerals, and redundant explanations will be omitted.

第2図は本発明の第1の実施例を示すブロツク
図である。第1図に示す従来技術と異なる点は、
流量信号を受信する増幅器5の出力を励磁電流に
対応した比較電圧Vrが与えられた同期整流回路
14に入力し直流に変換した後、平滑回路15で
平滑し、この出力を比較電圧Vrに対応した交流
信号にDC/AC変換回路16で変換して偏差増幅
器8の非反転入力としている点である。この様な
構成によつて高周波雑音などが除去されて流量信
号に対応した電圧と管電位電圧との偏差がゼロに
なる様に給電電極に出力電流IWが供給される。
FIG. 2 is a block diagram showing a first embodiment of the present invention. The difference from the conventional technology shown in Fig. 1 is that
The output of the amplifier 5, which receives the flow rate signal, is input to the synchronous rectifier circuit 14 to which a comparison voltage V r corresponding to the excitation current is applied, where it is converted into direct current, smoothed by the smoothing circuit 15, and this output is converted into the comparison voltage V r The DC/AC conversion circuit 16 converts the AC signal into an AC signal corresponding to the AC signal, which is used as a non-inverting input of the deviation amplifier 8. With such a configuration, high frequency noise etc. are removed and the output current I W is supplied to the power supply electrode so that the deviation between the voltage corresponding to the flow rate signal and the tube potential voltage becomes zero.

以下、第3図に示す波形図を用いて第2図に示
す実施例の動作について説明する。励磁コイル3
には変換部11より第3図aに示す様な+、0、
−、0の3値をとる励磁電流Ifが供給されてい
る。励磁コイル3に励磁電流Ifが供給され被測定
流体2が流れることにより測定電極4a,4b間
に流量信号を含む電圧が得られる。この電圧は電
流出力等に変換する変換部11で第3図bで示す
各時点t1,t2,t3,t4においてサンプリングされ
る。変換部11は、このサンプリングされた各値
を用いて雑音を除去する演算を施して電流出力と
する。測定電極3a,3b間に得られる電圧は第
3図cに示す様に励磁電流(第3図a)に同期し
た流量信号の他にフロー雑音のうち高い周波数成
分を持つ電圧が重畳されている。この電圧は増幅
器5で増幅され、励磁電流に対応した比較電圧が
与えられた同期整流回路14で同期整流され第3
図dに示す波形の電圧とされる。平滑回路15で
は第3図dに示す波形の電圧を平滑して第3図e
に示す様な高周波成分を含むフロー雑音を除去し
た波形の電圧を得る。平滑回路15の出力電圧は
DC/AC変換回路16で励磁電流に対応した極性
の電圧(第3図f)として偏差増幅器8の非反転
入力端に与えられる。偏差増幅器8の反転入力端
には管電位電極6a,6bの管電位電圧が与えら
れ、偏差増幅器8の両入力端の電圧差がゼロにな
る様に給電増幅器9より出力電流IWが給電電極1
0a,10bに供給される。この様にしてフロー
雑音や直流電位変動雑音などが除去され、流量信
号に対応した電位分布が導電性管路1に形成され
る。
The operation of the embodiment shown in FIG. 2 will be described below using the waveform diagram shown in FIG. Excitation coil 3
The conversion unit 11 outputs +, 0, as shown in FIG. 3a.
An excitation current If having three values of - and 0 is supplied. When the excitation current I f is supplied to the excitation coil 3 and the fluid 2 to be measured flows, a voltage including a flow rate signal is obtained between the measurement electrodes 4a and 4b. This voltage is sampled at each time point t 1 , t 2 , t 3 , t 4 shown in FIG. 3b by a converter 11 which converts it into a current output or the like. The converting unit 11 performs a calculation to remove noise using each of the sampled values, and outputs a current. As shown in Fig. 3c, the voltage obtained between the measurement electrodes 3a and 3b is a flow signal synchronized with the excitation current (Fig. 3a) and a voltage having a high frequency component of flow noise superimposed thereon. . This voltage is amplified by an amplifier 5, and synchronously rectified by a synchronous rectifier circuit 14 to which a comparison voltage corresponding to the excitation current is applied.
The voltage has the waveform shown in Figure d. The smoothing circuit 15 smoothes the voltage having the waveform shown in FIG.
Obtain a voltage waveform from which flow noise including high frequency components has been removed, as shown in . The output voltage of the smoothing circuit 15 is
The DC/AC conversion circuit 16 applies the voltage to the non-inverting input terminal of the deviation amplifier 8 as a voltage (FIG. 3f) with a polarity corresponding to the excitation current. The tube potential voltage of the tube potential electrodes 6a and 6b is applied to the inverting input terminal of the deviation amplifier 8, and the output current IW is applied to the feeding electrode from the feeding amplifier 9 so that the voltage difference between both input terminals of the deviation amplifier 8 becomes zero. 1
0a and 10b. In this way, flow noise, DC potential fluctuation noise, etc. are removed, and a potential distribution corresponding to the flow rate signal is formed in the conductive conduit 1.

第4図は第2図における同期整流回路の他の実
施例を示す回路図である。第5図は第4図に示す
回路の動作を説明する波形図である。
FIG. 4 is a circuit diagram showing another embodiment of the synchronous rectifier circuit in FIG. 2. FIG. 5 is a waveform diagram illustrating the operation of the circuit shown in FIG. 4.

測定電極4a,4b間の接触電位差が励磁周期
に比較して時間的にゆつくり変動する場合に、こ
の変動分をも同時に除去するためには、例えば第
4図に示すサンプル同期整流回路17を増幅器5
の出力端に接続した構成にすると有効である。ス
イツチSW1,SW2の一端が増幅器5の出力端に接
続され、その他端はそれぞれ抵抗を介して増幅器
18の非反転入力端と反転入力端に接続されてい
る。第5図aに示す励磁電流に対応して測定電極
4a,4b間に得られる電圧が第5図bに示す様
にフロー雑音を重畳してほぼ直線的にゆつくり変
動する場合に第5図c,dで示すタイミングt1
t4で測定電極間に得られる電圧をサンプリングす
ると結果として次式で示す演算がなされ、ゆつく
り変動する接触電位差の影響が除去される。
When the contact potential difference between the measurement electrodes 4a and 4b fluctuates slowly over time compared to the excitation period, in order to remove this fluctuation at the same time, for example, a sample synchronous rectifier circuit 17 shown in FIG. amplifier 5
It is effective to configure it by connecting it to the output end of the One ends of the switches SW 1 and SW 2 are connected to the output end of the amplifier 5, and the other ends are connected to the non-inverting input end and the inverting input end of the amplifier 18 via resistors, respectively. When the voltage obtained between the measurement electrodes 4a and 4b in response to the excitation current shown in FIG. 5a is superimposed with flow noise and slowly fluctuates almost linearly as shown in FIG. 5b, as shown in FIG. Timing t 1 ~ shown by c and d
When the voltage obtained between the measurement electrodes is sampled at t 4 , the calculation shown in the following equation is performed as a result, and the influence of the slowly fluctuating contact potential difference is removed.

eS=e1−e2−e3+e4 (1) ここで、e1〜e4は第5図c,dに示すタイミン
グt1〜t4に対応してサンプリングされた電圧を示
す。サンプリングのタイミングt1〜t4は変換部1
1で発生されたサンプリング信号S1,S2(第2図
には図示せず)によつて決められる。スイツチ
SW1はサンプリング信号S1,スイツチSW2はサン
プリング信号S2によりそれぞれ閉成されて測定電
極間の電圧がサンプリングされる。
e S =e 1 −e 2 −e 3 +e 4 (1) Here, e 1 to e 4 represent voltages sampled corresponding to timings t 1 to t 4 shown in FIGS. 5c and 5d. Sampling timing t 1 to t 4 is the conversion unit 1
1 (not shown in FIG. 2 ). switch
SW 1 is closed by the sampling signal S 1 and switch SW 2 is closed by the sampling signal S 2 to sample the voltage between the measurement electrodes.

第6図は本発明の第2の実施例を示すブロツク
図である。この実施例はマイクロコンピユータを
用いて構成した場合の例である。測定電極4a,
4b間の電圧は増幅器5により増幅されマイクロ
コンピユータ19からのサンプリング信号S3によ
りサンプル回路20でサンプリングされ、アナロ
グ・デジタル変換器(以下、A/D変換器と略称
する)21に取り込まれる。取り込まれたデータ
はマイクロプロセツサ(以下、CPUと略称する)
22がアドレスバス23を介して指定するメモリ
(ROM/RAM)24内の所定の場所に入出力ポ
ート(I/Oポート)25を介してデータ・バス
26により格納される。メモリ24内に格納され
たデータはメモリ24のROMにあらかじめ格納
された演算手順にしたがい、(1)式に示す演算、平
滑および励磁電流Ifに同期したDC/AC変換など
の処理が施され、フロー雑音,直流電位変動雑
音,接触電位差の緩慢な変動などが除去される。
この様な演算がなされて雑音が除去された流量信
号に対応する電圧はデジタル・アナログ変換器
(D/A変換器)27を介して偏差増幅器8の非
反転入力端に印加され、その反転入力端には管電
位電極6a,6bの管電位電圧が増幅器7を介し
て与えられ、これらの入力端の電位差がゼロにな
るように給電電極10a,10bに給電増幅器9
を介して出力電流IWが流され、導電性管路1に流
量信号に対応した電位分布が形成される。なお、
励磁コイル3にはCPU22の制御のもとに例え
ば第5図aの波形の如くなる様にI/Oポート2
5を介して与えられる励磁切換信号S4によりスイ
ツチSW3〜SW6を切換えて、定電流源28から励
磁電流Ifが供給される。一方、流量信号に対応す
る電圧はD/A変換器29を介して、例えば統一
電流信号として出力される。
FIG. 6 is a block diagram showing a second embodiment of the present invention. This embodiment is an example in which a microcomputer is used. Measuring electrode 4a,
The voltage across 4b is amplified by an amplifier 5, sampled by a sampling circuit 20 using a sampling signal S3 from a microcomputer 19, and taken into an analog-to-digital converter (hereinafter referred to as an A/D converter) 21. The captured data is processed by a microprocessor (hereinafter abbreviated as CPU)
22 is stored in a predetermined location in the memory (ROM/RAM) 24 designated via the address bus 23 via the data bus 26 via the input/output port (I/O port) 25. The data stored in the memory 24 is subjected to processing such as the calculation shown in equation (1), smoothing, and DC/AC conversion synchronized with the excitation current I f according to the calculation procedure stored in advance in the ROM of the memory 24. , flow noise, DC potential fluctuation noise, slow fluctuations in contact potential difference, etc. are removed.
The voltage corresponding to the flow rate signal from which noise has been removed by performing such calculations is applied to the non-inverting input terminal of the deviation amplifier 8 via the digital-to-analog converter (D/A converter) 27, The tube potential voltage of the tube potential electrodes 6a, 6b is applied to the ends via an amplifier 7, and a feed amplifier 9 is applied to the feed electrodes 10a, 10b so that the potential difference between these input ends becomes zero.
An output current IW is caused to flow through the conductive pipe 1, and a potential distribution corresponding to the flow rate signal is formed in the conductive conduit 1. In addition,
The excitation coil 3 is connected to the I/O port 2 under the control of the CPU 22 so that the waveform shown in FIG.
The switches SW 3 to SW 6 are switched by the excitation switching signal S 4 applied via the constant current source 28, and the excitation current If is supplied from the constant current source 28. On the other hand, the voltage corresponding to the flow rate signal is output via the D/A converter 29 as, for example, a unified current signal.

第7図に本発明の第3の実施例を示すブロツク
図を示す。測定電極4a,4b間の電圧を増幅器
5で受信し、その出力を偏差増幅器29の非反転
入力端に入力する。偏差増幅器29の出力は励磁
電流Ifと同じ波形の比較電圧Vrを比較電圧とする
同期整流回路14で同期整流され、平滑回路15
で平滑された後、比較電圧Vrと乗算器30で乗
算され、偏差増幅器29の反転入力端に入力され
る。偏差増幅器29が平衡した状態では出力回路
31からは流量信号と比較電圧との比が出力さ
れ、結果として励磁電流Ifで割算された電圧が得
られる。この場合に乗算器30は例えば第2図に
おけるAC/DC変換回路16に対応し、励磁電流
と同位相に変調する機能をも併せ持つている。一
方、管電位電圧は偏差増幅器8で受信された後、
偏差増幅器8の反転入力となり、その非反転入力
は乗算器30の出力が入力され、これ等の偏差が
ゼロになるように給電増幅器9より給電電極10
a,10bに出力電流IWが供給され、導電性管路
1に流量信号に対応した電位分布が形成される。
なお、励磁コイル3には抵抗rを介して励磁回路
32より励磁電流Ifが供給されている。
FIG. 7 is a block diagram showing a third embodiment of the present invention. The voltage between the measurement electrodes 4a and 4b is received by the amplifier 5, and its output is input to the non-inverting input terminal of the deviation amplifier 29. The output of the deviation amplifier 29 is synchronously rectified by a synchronous rectifier circuit 14 which uses a comparison voltage V r having the same waveform as the excitation current I f as a comparison voltage.
After being smoothed by the comparison voltage V r , it is multiplied by the multiplier 30 and input to the inverting input terminal of the deviation amplifier 29 . When the deviation amplifier 29 is in a balanced state, the output circuit 31 outputs a ratio between the flow rate signal and the comparison voltage, and as a result, a voltage divided by the excitation current If is obtained. In this case, the multiplier 30 corresponds to, for example, the AC/DC conversion circuit 16 in FIG. 2, and also has the function of modulating the excitation current to the same phase. On the other hand, after the tube potential voltage is received by the deviation amplifier 8,
This becomes the inverting input of the deviation amplifier 8, and its non-inverting input is inputted with the output of the multiplier 30.
An output current IW is supplied to a and 10b, and a potential distribution corresponding to the flow rate signal is formed in the conductive conduit 1.
Note that an excitation current If is supplied to the excitation coil 3 from an excitation circuit 32 via a resistor r.

第8図は本発明の第4の実施例を示すブロツク
図である。この実施例では増幅器8で測定電極間
の電圧と管電位電圧との差を求め、この差がゼロ
になるように偏差増幅器29が作動する点が第7
図の実施例と異なつている。
FIG. 8 is a block diagram showing a fourth embodiment of the present invention. In this embodiment, the amplifier 8 calculates the difference between the voltage between the measurement electrodes and the tube potential voltage, and the deviation amplifier 29 operates so that this difference becomes zero.
This is different from the embodiment shown in the figure.

第9図は本発明の第5の実施例を示すブロツク
図である。本実施例は従来の低周波励振形の電磁
流量計変換器33に増幅器7,DC/AC変換回路
16,偏差増幅器8,給電増幅器9を含むサーボ
増幅部34を追加することによりライニングレス
の電磁流量計を構成したものである。この様な構
成とすることにより既存の電磁流量計にサーボ増
幅部34を追加するだけで容易にライニングレス
の電磁流量計とすることができる。
FIG. 9 is a block diagram showing a fifth embodiment of the present invention. This embodiment is a liningless electromagnetic flow meter converter 33 by adding a servo amplifier 34 including an amplifier 7, a DC/AC conversion circuit 16, a deviation amplifier 8, and a power supply amplifier 9 to a conventional low frequency excitation type electromagnetic flowmeter converter 33. This is a configuration of a flow meter. With such a configuration, a liningless electromagnetic flowmeter can be easily obtained by simply adding the servo amplification section 34 to an existing electromagnetic flowmeter.

第10図は本発明の各実施例において給電電極
と管電位電極とを共用化したときの構成を示す構
成図である。各実施例の給電電極10aと管電位
電極6a,給電電極10bと管電位電極6bとが
各々1体となつている。この様に簡単な構成とし
ても本発明の目的を達成することができる。
FIG. 10 is a configuration diagram showing a configuration in which a power supply electrode and a tube potential electrode are shared in each embodiment of the present invention. The power supply electrode 10a and tube potential electrode 6a, and the power supply electrode 10b and tube potential electrode 6b of each embodiment are each integrated into one body. The object of the present invention can be achieved even with such a simple configuration.

なお、各実施例において同期整流回路14、平
滑回路15,DC/AC変換回路16などを測定電
極4a,4b側に入れた場合について説明した
が、これ等を必要に応じて管電位電極6a,6b
側にも入れても良い。
In each embodiment, the case where the synchronous rectifier circuit 14, the smoothing circuit 15, the DC/AC conversion circuit 16, etc. are installed on the measurement electrodes 4a, 4b side has been described, but these can be installed on the tube potential electrodes 6a, 4b as necessary. 6b
You can also put it on the side.

<発明の効果> 以上、実施例と共に具体的に説明した様に本発
明によれば、ライニングレスの電磁流量計に現わ
れるフロー雑音,直流電位変動雑音などの雑音を
除去して流量信号成分のみで導電性管路に電位分
布を形成するようにしたので流量出力の揺動を低
減することができ、更に雑音成分に起因する分だ
け出力電流を低減できるので導電性管路に電位分
布を形成するために必要な電力を低減することが
できる。
<Effects of the Invention> As described above in detail with the embodiments, according to the present invention, noises such as flow noise and DC potential fluctuation noise that appear in liningless electromagnetic flowmeters are removed, and only the flow signal component is detected. Since a potential distribution is formed in the conductive conduit, fluctuations in the flow rate output can be reduced, and the output current can also be reduced by the amount caused by noise components, so a potential distribution is formed in the conductive conduit. The power required for this can be reduced.

この効果は、被測定流体の導電率が低くフロー
雑音,直流電位変動雑音の影響が大きい場合に特
に有効である。
This effect is particularly effective when the conductivity of the fluid to be measured is low and the influence of flow noise and DC potential fluctuation noise is large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の電磁流量計の構成を示すブロツ
ク図、第2図は本発明の第1の実施例を示すブロ
ツク図、第3図は第2図の実施例の各部の波形を
示す波形図、第4図は第2図における同期整流回
路の他の実施例を示す回路図、第5図は第4図の
回路の動作を説明する波形図、第6図は本発明の
第2の実施例を示すブロツク図、第7図は本発明
の第3の実施例を示すブロツク図、第8図は本発
明の第4の実施例を示すブロツク図、第9図は本
発明の第5の実施例を示すブロツク図、第10図
は本発明の各実施例において給電電極と管電位電
極とを共用化したときの構成を示す構成図であ
る。 1…導電性管路、2…被測定流体、4a,4b
…測定電極、6a,6b…管電位電極、8…偏差
増幅器、9…給電増幅器、10a,10b…給電
電極、11…変換部、14,17…同期整流回
路、15…平滑回路、16…DC/AC変換回路、
19…マイクロコンピユータ、20…サンプル回
路、21…A/D変換器、22…CPU、24…
メモリ、25…I/Oポート、27,29…D/
A変換器、30…乗算器、31…出力回路、32
…励磁回路。
Fig. 1 is a block diagram showing the configuration of a conventional electromagnetic flowmeter, Fig. 2 is a block diagram showing the first embodiment of the present invention, and Fig. 3 is a waveform showing waveforms of various parts of the embodiment of Fig. 2. 4 is a circuit diagram showing another embodiment of the synchronous rectifier circuit in FIG. 2, FIG. 5 is a waveform diagram explaining the operation of the circuit in FIG. 4, and FIG. FIG. 7 is a block diagram showing a third embodiment of the present invention, FIG. 8 is a block diagram showing a fourth embodiment of the present invention, and FIG. 9 is a block diagram showing a fifth embodiment of the present invention. FIG. 10 is a block diagram showing an embodiment of the present invention, and FIG. 10 is a configuration diagram showing a configuration when a power supply electrode and a tube potential electrode are shared in each embodiment of the present invention. 1... Conductive pipe line, 2... Fluid to be measured, 4a, 4b
... Measuring electrode, 6a, 6b... Tube potential electrode, 8... Deviation amplifier, 9... Feeding amplifier, 10a, 10b... Feeding electrode, 11... Conversion section, 14, 17... Synchronous rectifier circuit, 15... Smoothing circuit, 16... DC /AC conversion circuit,
19...Microcomputer, 20...Sample circuit, 21...A/D converter, 22...CPU, 24...
Memory, 25...I/O port, 27, 29...D/
A converter, 30... Multiplier, 31... Output circuit, 32
...excitation circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 測定電極からの電圧を増幅する増幅手段と、
少くとも前記増幅手段の出力に関連した出力を整
流し平滑する整流平滑手段と、前記整流平滑手段
の出力を前記励磁に同期した交流電圧に変換する
変換手段とを具備し、前記変換手段の出力に関連
した電流を給電電極に流して被測定流体を流す導
電性管路の内面近傍に発生した電位に近似した電
位分布を前記導電性管路に形成するようにしたこ
とを特徴とする電磁流量計。
1 amplification means for amplifying the voltage from the measurement electrode;
It comprises at least a rectifying and smoothing means for rectifying and smoothing an output related to the output of the amplifying means, and a converting means for converting the output of the rectifying and smoothing means into an alternating current voltage synchronized with the excitation, and the output of the converting means An electromagnetic flow rate characterized in that a potential distribution similar to a potential generated near the inner surface of the conductive conduit through which the fluid to be measured flows is formed in the conductive conduit by passing a current related to the flow through the feeding electrode. Total.
JP9365384A 1984-05-10 1984-05-10 Electromagnetic flow meter Granted JPS60237321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9365384A JPS60237321A (en) 1984-05-10 1984-05-10 Electromagnetic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9365384A JPS60237321A (en) 1984-05-10 1984-05-10 Electromagnetic flow meter

Publications (2)

Publication Number Publication Date
JPS60237321A JPS60237321A (en) 1985-11-26
JPH0477852B2 true JPH0477852B2 (en) 1992-12-09

Family

ID=14088336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9365384A Granted JPS60237321A (en) 1984-05-10 1984-05-10 Electromagnetic flow meter

Country Status (1)

Country Link
JP (1) JPS60237321A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7246530B2 (en) 2003-02-10 2007-07-24 Gambro Lundia Ab Flow sensor and method for measuring a flow rate component of a fluid containing electrically charged elements

Also Published As

Publication number Publication date
JPS60237321A (en) 1985-11-26

Similar Documents

Publication Publication Date Title
US5351554A (en) Magnetoinductive flowmeter
US4644799A (en) Electromagnetic flow meter
JPH0712607A (en) Electromagnetic flowmeter
JPH0477852B2 (en)
KR960015901B1 (en) Electromagnetic flow-meter
US12019103B2 (en) Power measurement apparatus and power measurement method
JP3204066B2 (en) Capacitive electromagnetic flowmeter
JP2932448B2 (en) Capacitive electromagnetic flowmeter
JPH0419471Y2 (en)
JPH0450506Y2 (en)
JP3659378B2 (en) Electromagnetic flow meter
JPH0450503Y2 (en)
JPS5833157A (en) Concentration measuring apparatus with zero-point calibration
JPH063381B2 (en) Electromagnetic flow meter
JP3052571B2 (en) Timing pulse generation circuit in electromagnetic flowmeter
JPH07248240A (en) Electromagnetic flowmeter
JPH0224515A (en) Electromagnetic flowmeter
JPH0450510Y2 (en)
JPH0328335Y2 (en)
JPH0450497Y2 (en)
JPH0450498Y2 (en)
JPH0524187Y2 (en)
JPH10221134A (en) Electromagnetic flowmeter
JPH0226032Y2 (en)
JPH06102072A (en) Electromagnetic flowmeter