JPH0477640A - Temperature sensor - Google Patents

Temperature sensor

Info

Publication number
JPH0477640A
JPH0477640A JP19339190A JP19339190A JPH0477640A JP H0477640 A JPH0477640 A JP H0477640A JP 19339190 A JP19339190 A JP 19339190A JP 19339190 A JP19339190 A JP 19339190A JP H0477640 A JPH0477640 A JP H0477640A
Authority
JP
Japan
Prior art keywords
temperature
magnetic field
resistance
sensor
resistances
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19339190A
Other languages
Japanese (ja)
Inventor
Koichi Nara
奈良 広一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP19339190A priority Critical patent/JPH0477640A/en
Publication of JPH0477640A publication Critical patent/JPH0477640A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To measure temperature in a fluctuating magnetic field with high accuracy by constituting a sensor of two kinds of temperature sensor in one set. and obtaining the difference between the two sensors. CONSTITUTION:A piece of thin wire such as platinum or the like whose electric resistance is changed with temperature is wound around a temperature sensitive part 1 at the about 0 pitch with respect to a diameter (d). The thin wire is wound around a temperature sensitive part 2 at a pitch (p) of pi/2d with respect to the diameter (d). A unitary body is formed with the temperature sensitive parts 1 and 2, and a sensor is formed. The resistances R5 and R3 which are balanced in a zero magnetic field at the lower limit humidity at the temperature used with this sensor are measured. The resistances R5 and R3 which are balanced in the maximum magnetic field in use are also measured. These two measurements impart the linear equalities of the resistances R5 and R3. The resistances R5 and R3 at the temperature can be determined by solving the two linear equalities as equations. The resistance R5 is fixed to this value. The resistance R3 is calibrated with respect to the temperature in the entire range of the temperature in use. Then, the resistance R3 does not depned on the magnetic field any more. The temperature sensor which is not dependent on the magnetic field as a whole is obtained. The temperature and the like of a superconductive magnet can be measured with high accuracy.

Description

【発明の詳細な説明】 最近超伝導マグネットの実用化によって、様々な分野で
高い磁場を使用することが増加しているが、安全及び省
エネルギの観点からマグネット各部の温度管理が重要な
課題である。しかし通常使用されている温度計は磁場の
影響を受けその指示値が偏差を生ずる。この偏差は個々
の温度計を磁場下で校正することにより補正が原理的に
は可能であり、従来は磁場の値を知り必要な補正を加え
ることにより温度が決定されてきた。
[Detailed Description of the Invention] With the recent practical application of superconducting magnets, the use of high magnetic fields has increased in various fields, but temperature control of each part of the magnet is an important issue from the viewpoint of safety and energy saving. be. However, normally used thermometers are affected by magnetic fields and their readings vary. In principle, this deviation can be corrected by calibrating each thermometer under a magnetic field, and conventionally the temperature has been determined by knowing the value of the magnetic field and making necessary corrections.

しかし、超伝導技術の発展により超伝導磁石の磁場の値
を数Hzあるいは数10Hzといった周波数で変動させ
ることができるようになり、新しい応用分野が広がフた
ことで上記の技術では問題が出てきた。これは上記セン
サの抵抗値が変動磁場による影響を受は変動fm場と同
じ周波数で変動し、その値を精密に測定することはおろ
か、補正がまったくできない状態になることに起因する
However, with the development of superconducting technology, it has become possible to vary the value of the magnetic field of a superconducting magnet at a frequency of several Hz or several tens of Hz, and new fields of application have expanded, causing problems with the above technology. It's here. This is because the resistance value of the sensor is influenced by the fluctuating magnetic field and fluctuates at the same frequency as the fluctuating fm field, making it impossible to accurately measure or correct the value at all.

本発明に基づいて製作された温度センサは、二種−朝の
温度センサから構成され、それぞれのセンサが磁場によ
り受ける影響が異なるため、その差を取ることにより、
その出力がまったく磁場に依存しないことを用いている
。このセンサにより変動磁界下の温度測定が高精度に行
えるようになる。
The temperature sensor manufactured based on the present invention is composed of two types of morning temperature sensors, and since each sensor is influenced differently by the magnetic field, by taking the difference,
It uses the fact that its output does not depend on the magnetic field at all. This sensor enables highly accurate temperature measurements under fluctuating magnetic fields.

本発明は細線の電気抵抗Rが磁界H中では零磁界中の電
気抵抗R@から以下のように変化することにもとづいて
いる。
The present invention is based on the fact that the electrical resistance R of a thin wire in a magnetic field H changes from the electrical resistance R in a zero magnetic field as follows.

R=Rs(1+AH,,2+BH工2)の増加比を変化
させることが出来る。
The increase ratio of R=Rs (1+AH,,2+BH 2) can be changed.

たとえばビ・ンチ0で巻いたセンサは巻き軸に平行に磁
場がかかると抵抗R9は以下のようになる。
For example, when a sensor is wound with 0 wires and a magnetic field is applied parallel to the winding axis, the resistance R9 becomes as follows.

n、=RD@ (1+AH2) 一方直径dに対しピッチpがπ/2dとなるような螺旋
状に巻いたものの抵抗R9は磁界の方向によらなくなり
、以下のようになる。
n, = RD@ (1+AH2) On the other hand, the resistance R9 of a spirally wound product with a pitch p of π/2d for a diameter d does not depend on the direction of the magnetic field, and is as follows.

但しここでH〜、H上はそれぞれ細線の方向と平行・垂
直な磁界の成分であり、  A、  Bは磁界に依存し
ない定数である。AとBは一般に異なるがAはBより大
きい、これにより電流の流れる方向と磁場のなす角によ
り抵抗の増加量は異なるという異方性が現れる。
However, here, H~ and H are components of the magnetic field parallel and perpendicular to the direction of the thin wire, respectively, and A and B are constants that do not depend on the magnetic field. A and B are generally different, but A is larger than B. This causes anisotropy in that the amount of increase in resistance differs depending on the angle formed by the direction of current flow and the magnetic field.

この異方性を用いることにより、細線の場合はそのピッ
チを変えることにより、薄膜の場合はその膜の磁場とな
す方向を変えることにより、抵抗一般にBはAに比して
非常に小さくAに刻して簾視できる。いま磁場0の時の
抵抗をR,=2R1゜RQ = 3 Rzととると、抵
抗差R<=Ro−Reは以下のようになる。
By using this anisotropy, in the case of a thin wire, by changing the pitch, and in the case of a thin film, by changing the direction of the magnetic field of the film, the resistance B is generally very small compared to A. It can be carved and viewed through a blind. Now, assuming that the resistance when the magnetic field is 0 is R, = 2R1°RQ = 3Rz, the resistance difference R<=Ro-Re is as follows.

Rd= Rq −Rp =R,(3+2AH2)−R,(2+2AH2)=R。Rd= Rq −Rp =R, (3+2AH2)-R, (2+2AH2)=R.

これから明らかなように電気抵抗差Rmは磁界によらな
い、電気抵抗差は簡単に測定できる量であり、il場に
依存しないセンサを簡単に構成できることになる。
As is clear from this, the electrical resistance difference Rm does not depend on the magnetic field, and is an easily measurable quantity, so that a sensor that does not depend on the il field can be easily constructed.

従って対象のセンサは電気抵抗差を磁場中で温度に対し
校正すれば、磁場中でそのまま無補正で使用することが
でき、変動磁場下での測温への信頼性が非常に高まるこ
とがu書できる。
Therefore, once the electrical resistance difference of the target sensor is calibrated against temperature in a magnetic field, it can be used as is in the magnetic field without correction, and the reliability of temperature measurement under fluctuating magnetic fields is greatly increased. I can write.

[実施例1] 白金等の電気抵抗が温度変化する細線を、直径dに対し
ピッチはぼ0に巻いたものと、直径をdとし、そのピッ
チpをπ/2dとなるように巻いたものを、第1図のよ
うに一体化してセンサとする。第1図では変動磁場によ
る誘起電圧が端子間る に現ねう乎とを防ぐため、同じピッチを保ちつつ巻き戻
すように細線が巻かれている。抵抗差測定はたとえば第
2図あるいは第3図のような回路を用いて以下のように
行うことが出来る。
[Example 1] A thin wire made of platinum or the like whose electrical resistance changes with temperature is wound with a diameter of d and a pitch of approximately 0, and a wire with a diameter of d and a pitch of π/2d. are integrated into a sensor as shown in FIG. In FIG. 1, the thin wire is wound so as to maintain the same pitch and unwind in order to prevent the induced voltage caused by the varying magnetic field from appearing between the terminals. The resistance difference measurement can be carried out as follows using, for example, a circuit as shown in FIG. 2 or 3.

第2図は抵抗差測定回路図である。まず、センサの使用
温度の下FB 4度で零磁場中でバランスするR5とR
3を測定する。また使用最大磁場中でバランスするR5
とR3を測定する。このふたつの測定はそれぞれR5と
R3の一次等式を与える。
FIG. 2 is a resistance difference measurement circuit diagram. First, R5 and R balanced in zero magnetic field at FB 4 degrees below the sensor operating temperature.
Measure 3. Also, R5 balances in the maximum magnetic field used.
and measure R3. These two measurements give linear equations for R5 and R3, respectively.

このふたつの−次等式を方程式として解くことによりそ
の温度でのR5とR3が決定できる。R5をこの値に固
定し、使用温度全域で温度に対しR3を校正する。この
R3はもはや磁場に依存せず。
By solving these two -order equations as equations, R5 and R3 at that temperature can be determined. Fix R5 to this value and calibrate R3 against temperature over the entire operating temperature range. This R3 no longer depends on the magnetic field.

全体として磁場に依存しない温度センサを構成できる。As a whole, a temperature sensor that does not depend on a magnetic field can be constructed.

第3図は汎用交流ブリ・フジ回路用抵抗差測定回路図で
ある。二本の感温部は直列接続されブリッジの[流端子
lOへ接続される。感温部20両端の電圧は絶縁トラン
ス8を経て電圧分割器9により分割され感温部1からの
電圧に逆向きに直列接続され、ブリッジの電圧端子11
に加えられる。
FIG. 3 is a resistance difference measurement circuit diagram for a general-purpose AC Buri-Fuji circuit. The two temperature sensing parts are connected in series and connected to the current terminal IO of the bridge. The voltage across the temperature sensing section 20 is divided by the voltage divider 9 via the isolation transformer 8 and connected in series in the opposite direction to the voltage from the temperature sensing section 1, and is connected to the voltage terminal 11 of the bridge.
added to.

使用法は、センサの使用温度の下限温度で零磁場中で電
圧分割比に対するブリッジの抵抗値を測定する。また使
用最大磁場中でも同様に電圧分割比に対しブリッジの抵
抗値を測定する。このふたつの測定はそれぞれ電圧分割
比とブリッジ抵抗値の一次等式を与える。このふたつの
−次等式を方程式として解くことによりその温度での電
圧分割比と抵抗値が決定できる。電圧分割比をこの値に
固定し、使用温度全域で温度に対しブリッジ抵抗を校正
する。このブリッジ抵抗はもはや磁場に依存せず、全体
として磁場に依存しない温度センサを構成できる。
The method of use is to measure the resistance value of the bridge with respect to the voltage division ratio in zero magnetic field at the lower limit of the sensor's operating temperature. Also, measure the resistance of the bridge against the voltage division ratio in the same way even in the maximum magnetic field used. These two measurements give linear equations for the voltage divider ratio and bridge resistance, respectively. By solving these two -dimensional equations as equations, the voltage division ratio and resistance value at that temperature can be determined. Fix the voltage division ratio to this value and calibrate the bridge resistance against temperature over the entire operating temperature range. This bridge resistance is no longer dependent on the magnetic field, and a temperature sensor that is entirely independent of the magnetic field can be constructed.

[実施例2コ 薄膜でも本センサの構成は可能である。たとえば第4図
のチップを第5図のごとく構成すればチ・ンブ13にお
いては電流と磁場のなす角は90’となり、チ・ンブ1
2においてはそのなす角はほぼ0°である。その結果磁
場に対する抵抗の増加の度合いは前者は後者より太き東
 実施例1と同じように第2rj!Jあるいは第31i
1を用いて抵抗差を測定すれば温度センサを構成できる
[Example 2] The present sensor can also be constructed using a thin film. For example, if the chip shown in Figure 4 is configured as shown in Figure 5, the angle between the current and the magnetic field in chip 13 will be 90';
2, the angle formed is approximately 0°. As a result, the degree of increase in resistance to the magnetic field is greater in the former than in the latter.As in Example 1, the second rj! J or 31i
1 to measure the resistance difference, a temperature sensor can be constructed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は細線を巻戻しを含めて螺旋上に巻いた斜視図、
第2図は抵抗差測定回路図、第3図は汎用交流ブリッジ
回路用抵抗差測定回路図、第4図は薄膜により構成され
た温度センサチップ図・ 第5図は第4図のセンサチッ
プを二重に配置した斜視図である。 1 感温部1 2 感温部2 3 ブリッジバランス用抵抗 R3 4固定抵抗 5 ブリッジバランス用抵抗 R5 6I@出器 7 電流源 8 絶縁トランス 9 を圧分割器 10 交流ブリッジの電流端子 11 交流ブリッジの電圧端子 12 感温チップ 13 感温チップ 第4図 iE2図 頁4図
Figure 1 is a perspective view of a thin wire wound spirally, including unwinding.
Figure 2 is a resistance difference measurement circuit diagram, Figure 3 is a resistance difference measurement circuit diagram for a general-purpose AC bridge circuit, Figure 4 is a diagram of a temperature sensor chip composed of a thin film, and Figure 5 is a diagram of the sensor chip in Figure 4. It is a perspective view of double arrangement. 1 Temperature sensing part 1 2 Temperature sensing part 2 3 Resistor for bridge balance R3 4 Fixed resistor 5 Resistor for bridge balance R5 6I @ Output device 7 Current source 8 Isolation transformer 9 Voltage divider 10 Current terminal of AC bridge 11 Current terminal of AC bridge Voltage terminal 12 Temperature sensing chip 13 Temperature sensing chip Figure 4 iE2 Figure page 4

Claims (2)

【特許請求の範囲】[Claims] (1)温度の変化に伴い電気抵抗が変化する細線をある
一定のピッチで巻いた感温部1と,感温部1と互いに熱
接触させ,感温部1とは異なっピッチで細線を巻いた感
温部2からなり,感温部1の電気抵抗と,感温部2の電
気抵抗の一部あるいは全部との抵抗差を測定することに
基づく温度センサ。
(1) The temperature-sensing part 1 is made by winding a thin wire whose electrical resistance changes with temperature changes at a certain pitch, and the temperature-sensing part 1 is brought into thermal contact with each other. A temperature sensor based on measuring the difference in resistance between the electrical resistance of the temperature sensing part 1 and a part or all of the electrical resistance of the temperature sensing part 2.
(2)温度の変化に伴い電気抵抗が変化する金属膜2枚
を,電流が流れる面の互いになす角が0ではないように
互いに熱接触させたセンサで,1枚目の電気抵抗と,2
枚目の電気抵抗の一部あるいは全部との抵抗差を測定す
ることに基づく温度センサ。
(2) A sensor in which two metal films whose electrical resistance changes with changes in temperature are brought into thermal contact with each other so that the angle between the current-flowing surfaces is not 0.
Temperature sensor based on measuring the resistance difference with part or all of the electrical resistance of the first sheet.
JP19339190A 1990-07-20 1990-07-20 Temperature sensor Pending JPH0477640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19339190A JPH0477640A (en) 1990-07-20 1990-07-20 Temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19339190A JPH0477640A (en) 1990-07-20 1990-07-20 Temperature sensor

Publications (1)

Publication Number Publication Date
JPH0477640A true JPH0477640A (en) 1992-03-11

Family

ID=16307161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19339190A Pending JPH0477640A (en) 1990-07-20 1990-07-20 Temperature sensor

Country Status (1)

Country Link
JP (1) JPH0477640A (en)

Similar Documents

Publication Publication Date Title
US3936734A (en) Method for contactless measurement of conductivity and/or temperature on metals by means of eddy currents
US2612047A (en) Probe device for fluid condition measuring apparatus
US11598686B2 (en) Temperature compensation of strain gauge output
US2769340A (en) Room temperature compensating circuits for pyrometers
US5392646A (en) Thermal type of flow rate sensor
US4363243A (en) Strain gage measurement circuit for high temperature applications using dual constant current supplies
US3339414A (en) Direct reading resistance thermometer
US3319155A (en) Electrical calibration device for strain gage bridges
US3939403A (en) Device for maintaining constant the temperature of a coil fed by an A.C. current source
JP2545740B2 (en) Temperature sensor
JPH0477640A (en) Temperature sensor
US3742764A (en) Direct reading resistance thermometer
JPH01105177A (en) Current sensor driving circuit
US3068410A (en) Expanded scale electrical measuring system having high temperature stability
US2902639A (en) Apparatus for the measurement of fluid conductivity
EP0730149A2 (en) Linearized potentiometric electrode
JPH03237324A (en) Temperature sensor
US2769959A (en) Dynamometer instrument
Andersson et al. Low temperature calibration of Manganin pressure gauges
JPS5979860A (en) Apparatus for measuring current
Martino et al. A Thermistor Anemometer for the Measurement of Very Low Air Velocities
JPH0249522Y2 (en)
US2777326A (en) Electrical temperature measuring apparatus
KR100462386B1 (en) Coefficient Of Heat Expansion Of Non-magnetic Substance Measuring Device In Accordance With The Magnetic Field Change
JPS5824771Y2 (en) Movable magnet thermometer