JPH03237324A - Temperature sensor - Google Patents

Temperature sensor

Info

Publication number
JPH03237324A
JPH03237324A JP3267590A JP3267590A JPH03237324A JP H03237324 A JPH03237324 A JP H03237324A JP 3267590 A JP3267590 A JP 3267590A JP 3267590 A JP3267590 A JP 3267590A JP H03237324 A JPH03237324 A JP H03237324A
Authority
JP
Japan
Prior art keywords
magnetic field
temperature
thin wire
sensing part
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3267590A
Other languages
Japanese (ja)
Other versions
JPH0739973B2 (en
Inventor
Koichi Nara
奈良 広一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2032675A priority Critical patent/JPH0739973B2/en
Publication of JPH03237324A publication Critical patent/JPH03237324A/en
Publication of JPH0739973B2 publication Critical patent/JPH0739973B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To evade the influence of a magnetic field and to improve the reliability of this sensor by winding a thin wire where electric resistance is varied attending on the change in temperature spirally and forming a humidity sensing part. CONSTITUTION:The humidity sensing part is formed by winding the thin wire of platinum where electric resistance in varied with the change of temperature spirally at a pi/2<1/2>d pitch to a diameter (d). The thin wire is rewound while the same pitch is maintained to cancel a voltage induced owing to the variation of a magnetic field and when resistance is measured on a DC basis, an error due to the variation of the magnetic field is evaded. Further, spiral sensors which are formed of different kinds of material are brought into thermal contact with each other to obtain two values of the strength of the magnetic field and the temperature.

Description

【発明の詳細な説明】 最近超伝導マグネットの実用化によって、Il々な分野
で高い磁場を使用することが増加しているが、安全及び
省エネルギの銭点からマグネット各部の温度管理が重要
な課題である。 しかし通常使用されている温度計は磁
場の影響を受けその指示厘が偏差を生ずる。この偏差は
個々の温度計を磁場下で校正することにより補正が原理
的には可能であるが、その補正量が温度計が磁場となす
角度にも依存するため、事実上温度計の輪と磁場が平行
あるいは垂直の二つの場合のみの磁場中の校正結果から
個々の温度センサの設置されている状況下での校正量を
M験から類推するしかなかった。
[Detailed Description of the Invention] Recently, with the practical application of superconducting magnets, the use of high magnetic fields has increased in various fields, but temperature control of each part of the magnet is important from the point of view of safety and energy saving. This is a challenge. However, commonly used thermometers are affected by magnetic fields and their readings vary. In principle, this deviation can be corrected by calibrating each thermometer under a magnetic field, but since the amount of correction also depends on the angle that the thermometer makes with the magnetic field, it is effectively possible to correct this deviation by calibrating each thermometer under a magnetic field. From the calibration results in the magnetic field only when the magnetic fields are parallel or perpendicular, it was only possible to infer the amount of calibration under the conditions where each temperature sensor is installed from the M experiment.

本発明に基づいて製作された温度センサは、磁場により
受ける影響が磁場の方向に依存しない。
The temperature sensor manufactured according to the present invention is not affected by the magnetic field depending on the direction of the magnetic field.

すなわち磁場中の校正は依然必要となるものの。That is, although calibration in a magnetic field is still required.

センサの位厘の磁場の強さのみを知れば、センサの設置
方向によらず同一の補正を行なうことで十分となり、マ
グネット周辺のように磁場の方向が場所により複雑に変
化するような環境下でも信頼性を失わないことを特徴と
する。
If you only know the strength of the magnetic field around the sensor, it is sufficient to make the same correction regardless of the sensor's installation direction. However, it is characterized by not losing reliability.

本発明は細線の電気抵抗Rが磁界H中では零磁界中の電
気抵抗R・から以下のように変化することにもとづいて
いる。
The present invention is based on the fact that the electrical resistance R of a thin wire in a magnetic field H changes from the electrical resistance R in a zero magnetic field as follows.

R=R・(1+AH,,t+BHfj)但しここでH・
・、H上はそれぞれIa&iの方向と白金等の温度の変
化に伴い電気抵抗が変化する平行・垂直な磁界の成分で
あり、  A、  Bは磁界に依存しない定数である。
R=R・(1+AH,,t+BHfj) However, here H・
・, H are components of parallel and perpendicular magnetic fields whose electrical resistance changes with changes in the direction of Ia & i and the temperature of platinum, etc., respectively, and A and B are constants that do not depend on the magnetic field.

AとBは一般に興なるためRは異方性を持つが、直径d
に対しピッチpがπ/ ff dとなるような螺旋状に
巻いたものに限り磁界の方向によらなくなり、以下のよ
うになる。
Since A and B generally exist, R has anisotropy, but the diameter d
On the other hand, only those spirally wound with a pitch p of π/ff d are independent of the direction of the magnetic field, as shown below.

これからも明らかなようにこのセンサでは電気紙tiC
Rは磁界の強さにのみ依存し、磁場の方向への依存性を
持たない。
As will be clear from this, in this sensor, electric paper tiC
R depends only on the strength of the magnetic field and has no dependence on the direction of the magnetic field.

従って対象のセンサは磁場中で任意の方向で温度に対し
校正すれば、設置場所において磁場の強さのみを知るこ
とにより校正データをそのまま補正量として使用するこ
とができ、磁場下の測温への信頼性が非常に高まること
が期待できる[実施例] Ia線をdとし、そのピッチpをπ/ ff dとなる
ように巻き、第1図のように螺旋状に構成する。このま
までは磁場が変化すると誘起電圧が端子間に現われ直流
測定では誤差の原因となる。そこでそのまま同じピッチ
を保ちつつ第2図のように巻戻してくればその電圧はキ
ャンセルされ、 直流的に抵抗を測定する場合でも磁場
の変動による誤差を回遊できる。また異なる種類のN&
lでは一般に磁気抵抗も異なるため、第3rMのごとく
異種材料で製作された複数個(第3図では2個)の螺旋
状センサを互いに熱的に接触させて配置すれば磁界の強
さと温度の二つの値を知ることもできる。
Therefore, if the target sensor is calibrated for temperature in a magnetic field in any direction, the calibration data can be used as a correction amount by knowing only the strength of the magnetic field at the installation location, and can be used for temperature measurement under magnetic fields. [Example] Let the Ia wire be d, and wind it with a pitch p of π/ff d to form a spiral shape as shown in FIG. 1. If this continues, an induced voltage will appear between the terminals when the magnetic field changes, causing errors in DC measurements. Therefore, if you rewind the wire as shown in Figure 2 while keeping the same pitch, that voltage will be canceled, and even when measuring resistance using direct current, you will be able to recover from errors caused by magnetic field fluctuations. Also different types of N&
In general, the magnetic resistance is different in the 3rd rM, so if multiple (two in Figure 3) spiral sensors made of different materials are placed in thermal contact with each other, the magnetic field strength and temperature can be adjusted. It is also possible to know two values.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は細線を螺旋状に巻いた斜視図。 第2図は細線を轡戻しを含めて螺旋状に巻いた斜視図。 第3図はセンサを二重に配置した斜視図。 Figure 1 is a perspective view of thin wire wound spirally. Fig. 2 is a perspective view of a thin wire wound in a spiral, including turning. FIG. 3 is a perspective view showing a double arrangement of sensors.

Claims (1)

【特許請求の範囲】 1、温度の変化に伴い電気抵抗が変化する細線を、直径
dに対しピッチpがπ/√(2)dとなるような螺旋状
に巻いたものを感温部とする温度センサ。 2、異なる種類の金属細線で製作した特許請求の範囲第
1項の温度センサを二本以上を互いに熱的に接触させた
ものを感温部とする温度センサ。
[Claims] 1. The temperature-sensing part is a thin wire whose electrical resistance changes with changes in temperature, wound spirally so that the pitch p is π/√(2)d with respect to the diameter d. temperature sensor. 2. A temperature sensor in which two or more temperature sensors according to claim 1 made of different types of thin metal wires are brought into thermal contact with each other as a temperature sensing part.
JP2032675A 1990-02-14 1990-02-14 Temperature sensor Expired - Lifetime JPH0739973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2032675A JPH0739973B2 (en) 1990-02-14 1990-02-14 Temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2032675A JPH0739973B2 (en) 1990-02-14 1990-02-14 Temperature sensor

Publications (2)

Publication Number Publication Date
JPH03237324A true JPH03237324A (en) 1991-10-23
JPH0739973B2 JPH0739973B2 (en) 1995-05-01

Family

ID=12365451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2032675A Expired - Lifetime JPH0739973B2 (en) 1990-02-14 1990-02-14 Temperature sensor

Country Status (1)

Country Link
JP (1) JPH0739973B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008053412A1 (en) * 2008-10-27 2010-05-06 Block Transformatoren-Elektronik Gmbh & Co Kg Verden Inductive element e.g. transformer, for use in measuring circuit, has measuring coil arranged around core such that magnetic effects of magnetic field around core and on sections of measuring coil are compensated
FR3002036A1 (en) * 2013-02-14 2014-08-15 Hispano Suiza Sa MEASURING THE HOMOGENEOUS TEMPERATURE OF A WINDING BY INCREASING THE RESISTANCE OF A WIRE

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008053412A1 (en) * 2008-10-27 2010-05-06 Block Transformatoren-Elektronik Gmbh & Co Kg Verden Inductive element e.g. transformer, for use in measuring circuit, has measuring coil arranged around core such that magnetic effects of magnetic field around core and on sections of measuring coil are compensated
FR3002036A1 (en) * 2013-02-14 2014-08-15 Hispano Suiza Sa MEASURING THE HOMOGENEOUS TEMPERATURE OF A WINDING BY INCREASING THE RESISTANCE OF A WIRE
WO2014125220A1 (en) * 2013-02-14 2014-08-21 Hispano-Suiza Measurement of the homogeneous temperature of a coil by increasing the resistance of a wire
CN105209873A (en) * 2013-02-14 2015-12-30 雷比诺动力系统公司 Measurement of the homogeneous temperature of a coil by increasing the resistance of a wire
RU2645900C2 (en) * 2013-02-14 2018-02-28 Лабиналь Пауэр Системз Measurement of the homogeneous temperature of coil by increasing resistance of the wire

Also Published As

Publication number Publication date
JPH0739973B2 (en) 1995-05-01

Similar Documents

Publication Publication Date Title
US6667682B2 (en) System and method for using magneto-resistive sensors as dual purpose sensors
ATE434192T1 (en) THIN FILM MAGNETIC FIELD SENSOR
CN109283380A (en) The measurement method of line current, device, equipment and storage medium in electric system
US11598686B2 (en) Temperature compensation of strain gauge output
JPH0571908A (en) Dimension measuring device
JP2545740B2 (en) Temperature sensor
JPH03237324A (en) Temperature sensor
JPH10122810A (en) Magnetic turning angle sensor
JPH0477640A (en) Temperature sensor
KR100462386B1 (en) Coefficient Of Heat Expansion Of Non-magnetic Substance Measuring Device In Accordance With The Magnetic Field Change
JPH0420822A (en) Temperature and magnetic field sensor
JP2000149223A (en) Magnetic field sensor
JPS5979860A (en) Apparatus for measuring current
CN220602750U (en) Film type temperature sensor
US10866267B2 (en) Electric current sensor
JP3643222B2 (en) Magnetoresistive element and magnetic linear measuring device
KR20070100474A (en) Temperature sensor for shielding magnetic field
JPS604084Y2 (en) displacement transducer
JPS6142122Y2 (en)
JP2010223913A (en) Noncontact position sensor
US10365241B2 (en) Sensing system for a humidity sensor
KR900000980B1 (en) Angle measure apparatus using for magnetic resistor factor
JPH0323872B2 (en)
JPH0529872B2 (en)
SU953605A2 (en) Constant magnetic field measuring device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term