JPH0477220B2 - - Google Patents

Info

Publication number
JPH0477220B2
JPH0477220B2 JP27297185A JP27297185A JPH0477220B2 JP H0477220 B2 JPH0477220 B2 JP H0477220B2 JP 27297185 A JP27297185 A JP 27297185A JP 27297185 A JP27297185 A JP 27297185A JP H0477220 B2 JPH0477220 B2 JP H0477220B2
Authority
JP
Japan
Prior art keywords
compressor
condenser
refrigeration cycle
throttle device
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP27297185A
Other languages
Japanese (ja)
Other versions
JPS62131158A (en
Inventor
Kazuhide Junai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP27297185A priority Critical patent/JPS62131158A/en
Publication of JPS62131158A publication Critical patent/JPS62131158A/en
Publication of JPH0477220B2 publication Critical patent/JPH0477220B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は空気調和機冷凍サイクルの効率改善
をはかつた制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a control method for improving the efficiency of an air conditioner refrigeration cycle.

〔従来の技術〕[Conventional technology]

第4図は従来の効率改善を目的とした空気調和
機冷凍サイクルを示す図である。
FIG. 4 is a diagram showing a conventional air conditioner refrigeration cycle aimed at improving efficiency.

図において、1は圧縮機、2は凝縮器、3はキ
ヤピラリによる絞り装置、4は蒸発器、5はアキ
ユムレータ、6は凝縮器2及びキヤピラリ3の冷
媒液が蒸発器4に流入することを阻止する電磁弁
で圧縮機1の運転時は開路、停止時は閉路する
ようになつている。7は圧縮機1の吐出口と吸入
口を接続するバイパス、8はバイパス7中に設け
た弁である電磁弁で圧縮機1の運転時は閉路、
停止時は開路するようになつている。9は凝縮器
2側から圧縮機1の吐出口への冷媒の流れを阻止
する逆止弁である。
In the figure, 1 is a compressor, 2 is a condenser, 3 is a capillary throttle device, 4 is an evaporator, 5 is an accumulator, and 6 is a block that prevents the refrigerant liquid in the condenser 2 and capillary 3 from flowing into the evaporator 4. The solenoid valve is designed to open the circuit when the compressor 1 is operating and close the circuit when the compressor 1 is stopped. 7 is a bypass that connects the discharge port and suction port of the compressor 1; 8 is a solenoid valve that is a valve provided in the bypass 7; the circuit is closed when the compressor 1 is in operation;
The circuit is designed to be open when stopped. 9 is a check valve that prevents the flow of refrigerant from the condenser 2 side to the discharge port of the compressor 1.

このように構成された冷凍サイクルにおいて、
蒸発器4を熱利用側熱交換器とした冷房時におけ
る動作について説明すると、通常運転時において
は電磁弁6は開路、電磁弁8は閉路してい
る。いま、室内温度が設定温度以下になると、圧
縮機1は運転を停止すると同時に、電磁弁6閉
路とし、逆止弁9との間で凝縮器2内の高圧冷媒
液を閉じ込め、蒸発器4内の低温冷媒との混合で
起こる熱損失を防ぎ、また、電磁弁8を開路し
圧縮機1の吐出口と吸入口をバイパス7を通じて
均圧化し再起動時における圧縮機1の負荷の軽減
を図つている。また、圧縮機1の起動時における
冷媒の液戻りも防止できるばかりでなく、起動と
同時に凝縮器2に溜められた冷媒液が電磁弁6
の開路とともに蒸発器4に流れ込み、直ちに冷媒
の蒸発が始まるのですばやく室内の冷却を行ない
冷凍サイクルの効率を高めいている。
In the refrigeration cycle configured in this way,
To explain the operation during cooling when the evaporator 4 is used as a heat exchanger on the heat utilization side, during normal operation, the solenoid valve 6 is open and the solenoid valve 8 is closed. Now, when the indoor temperature falls below the set temperature, the compressor 1 stops operation, closes the solenoid valve 6, confines the high-pressure refrigerant liquid in the condenser 2 between it and the check valve 9, and closes the high-pressure refrigerant liquid in the evaporator 4. In addition, by opening the solenoid valve 8 and equalizing the pressure at the discharge port and suction port of the compressor 1 through the bypass 7, it is possible to reduce the load on the compressor 1 at the time of restart. It's on. Moreover, not only can the return of the refrigerant at the time of starting the compressor 1 be prevented, but also the refrigerant liquid accumulated in the condenser 2 can be removed from the solenoid valve 6 at the same time as the start of the compressor 1.
When the refrigerant opens, the refrigerant flows into the evaporator 4 and evaporation of the refrigerant begins immediately, quickly cooling the room and increasing the efficiency of the refrigeration cycle.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のように構成された、従来の冷凍サイクル
は装置の効率を高める有効な手段であるが、近来
冷凍サイクルの制御をよりきめ細かく行なうため
絞り装置として従来のキヤピラリ3による絞り装
置と電磁弁6を統合した全閉機能を持つ電動式
絞り装置が利用されるようになつてきた。しかし
ながら、この全閉機能を持つ電動式絞り装置では
全開から全閉にいたるまでに数秒の時間を必要と
し、圧縮機1を停止した時通常の運転開度から全
閉にいたるまでに凝縮器2側の高圧の冷媒液が蒸
発器4にかなり流れ込み、従来の効果が薄れてし
まい、また従来の効果を得ようとして圧縮機1が
停止する前に電動式絞り装置を全閉すると高圧が
上昇し装置に悪影響を及ぼすと云う問題が生じて
きた。
The conventional refrigeration cycle configured as described above is an effective means of increasing the efficiency of the device, but in recent years, in order to control the refrigeration cycle more precisely, the conventional throttling device using the capillary 3 and the solenoid valve 6 have been used as the throttling device. Electric diaphragms with an integrated full-close function have come into use. However, this electric throttle device with a fully closing function requires several seconds to go from fully open to fully closed, and when the compressor 1 is stopped, the condenser 2 A large amount of high-pressure refrigerant liquid flows into the evaporator 4, weakening the conventional effect, and if the electric throttle device is fully closed before the compressor 1 stops in an attempt to obtain the conventional effect, the high pressure increases. A problem has arisen in that it has an adverse effect on equipment.

この発明は上記のような問題点を解消するため
になされたもので、電動式絞り装置を使用した冷
凍サイクルにおいても、その制御方法により従来
の冷凍サイクルの効率改善を損なわないようにす
るものである。
This invention was made in order to solve the above-mentioned problems, and it is possible to control the refrigeration cycle using an electric throttling device without impairing the efficiency improvement of the conventional refrigeration cycle. be.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る冷凍サイクル装置の制御方法は
温度信号等により圧縮機1が停止しようとした
際、絞り装置が全閉となつてから圧縮機1を停止
するとともに、凝縮器側の送風装置を制御したも
のである。
The control method for a refrigeration cycle device according to the present invention stops the compressor 1 after the throttle device is fully closed when the compressor 1 is about to stop due to a temperature signal, etc., and also controls the blower device on the condenser side. This is what I did.

〔作用〕[Effect]

この発明における冷凍サイクルは、絞り装置が
全閉して凝縮器2に冷媒液を溜め込み、また、凝
縮器側の送風装置11により高圧の上昇を抑制す
る。
In the refrigeration cycle according to the present invention, the expansion device is fully closed to store refrigerant liquid in the condenser 2, and the blower device 11 on the condenser side suppresses a rise in high pressure.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明す
る。第1図は冷房時における冷凍サイクルを示し
た図であり、この図において、1,2,4,5,
7〜9は上記従来装置と全く同一のものである。
10は凝縮器2と蒸発器4の間に設けられたステ
ツピングモータなどで駆動される絞り装置である
電動式絞り装置であり、11は凝縮器2の送風装
置、12は蒸発器4の送風装置、13は室温セン
サー、14は圧力センサー、15は室温センサー
13や圧力センサー14の信号などにより圧縮機
1、電磁弁8、電動式絞り装置10、凝縮器側
送風装置11、蒸発器側送風装置12を制御する
制御回路である。
An embodiment of the present invention will be described below with reference to the drawings. Figure 1 is a diagram showing the refrigeration cycle during cooling, and in this figure, 1, 2, 4, 5,
7 to 9 are completely the same as the conventional device described above.
Reference numeral 10 denotes an electric throttle device that is a throttle device driven by a stepping motor or the like provided between the condenser 2 and the evaporator 4, 11 is an air blower for the condenser 2, and 12 is an air blower for the evaporator 4. 13 is a room temperature sensor, 14 is a pressure sensor, 15 is a compressor 1, a solenoid valve 8, an electric throttling device 10, a condenser side blower device 11, an evaporator side blower according to signals from the room temperature sensor 13 and pressure sensor 14, etc. This is a control circuit that controls the device 12.

上記のように構成された冷凍サイクルの制御装
置15においては、第2図のタイムチヤートに示
す如く、いま、a時点で室温センサー13が設定
温度以下になると制御装置15内で温調信号16
がONからOFFに変わる。この温調信号16が
OFFになつても圧縮機運転信号17はOFFとな
らず、まず、電動式絞り装置の開度信号18が閉
方向となり、その開度を徐々に閉じ始める。ま
た、このとき凝縮器側の送風装置11の回転数指
令19を最高回転数とし、凝縮器2の冷却を高め
電動式絞り装置10の開度が閉じていくことによ
る高圧側圧力の上昇を防ぎ、開度が全閉となるb
時点で圧縮機1と凝縮器の送風装置11を停止
し、逆止弁9と電動式絞り装置10との間で冷媒
液を閉じ込め、蒸発器4側への冷媒流入による熱
損失をなくし、また、電磁弁信号20がONと
なり、圧縮機1の吐出口と吸入口のバイパス7を
開き低高圧のバランスを行ない、再起動時におけ
る圧縮機1の負荷を軽減している。
In the refrigeration cycle control device 15 configured as described above, as shown in the time chart of FIG.
changes from ON to OFF. This temperature control signal 16
Even when it is turned off, the compressor operation signal 17 does not turn off, and first, the opening signal 18 of the electric throttle device becomes in the closing direction, and the opening starts to gradually close. In addition, at this time, the rotation speed command 19 of the blower device 11 on the condenser side is set to the maximum rotation speed to increase the cooling of the condenser 2 and prevent the increase in pressure on the high pressure side due to the closing of the electric throttle device 10. , the opening is fully closed b
At this point, the compressor 1 and condenser blower 11 are stopped, the refrigerant liquid is confined between the check valve 9 and the electric throttle device 10, and heat loss due to refrigerant flowing into the evaporator 4 side is eliminated. , the solenoid valve signal 20 is turned on, and the bypass 7 between the discharge port and the suction port of the compressor 1 is opened to balance low and high pressures, thereby reducing the load on the compressor 1 at the time of restart.

また上記実施例において、温調信号16が
OFFになつた後、逆止弁9と電動式絞り装置1
0との間に設けられた圧力センサー14により、
第3図に示す如く凝縮器2内の圧力21がある一
定値P1を越えたC時点で凝縮器側送風装置11
の回転数を最大として制御してもよい。
Further, in the above embodiment, the temperature control signal 16 is
After turning OFF, check valve 9 and electric throttle device 1
The pressure sensor 14 provided between the
As shown in FIG.
It may be controlled by setting the rotation speed to the maximum.

また、同図破線で示したように電動式絞り装置
10が全閉となつても、凝縮器2内の圧力21が
ある値P2以下になるd時点まで凝縮器側送風装
置11を運転するようにして、すばやく凝縮器2
内の圧力21を下げることにより蒸発器4側との
圧力差を小さくし逆止弁9および電動式絞り装置
10からの圧力差による洩れを小さくし、さらに
効果を上げることができる。
Furthermore, as shown by the broken line in the same figure, even if the electric throttle device 10 is fully closed, the condenser-side blower device 11 is operated until the point d when the pressure 21 in the condenser 2 becomes less than a certain value P2. In this way, quickly remove the condenser 2.
By lowering the internal pressure 21, the pressure difference between the evaporator 4 and the evaporator 4 is reduced, thereby reducing leakage caused by the pressure difference from the check valve 9 and the electric throttle device 10, thereby further increasing the effect.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば圧縮機運転中に
絞り装置の開度を全閉としても凝縮器側送風装置
により停止前の異常な高圧の上昇を防ぎ、凝縮器
内に冷媒液を閉じこめることができ、絞り装置を
使用した冷凍サイクルにおいても従来と同様に冷
凍サイクルの高効率運転が行なえる。
As described above, according to the present invention, even if the opening of the throttle device is fully closed during compressor operation, the condenser-side blower device prevents an abnormally high pressure from rising before the stop, and confines the refrigerant liquid in the condenser. Therefore, even in a refrigeration cycle using a throttling device, the refrigeration cycle can be operated with high efficiency in the same way as in the past.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例による空気調和
機の冷凍サイクルを示す図、第2図は、この発明
による制御方法を示すタイムチヤート図、第3図
は、この発明の他の実施例を示すタイムチヤート
図、第4図は、従来の空気調和機の冷凍サイクル
を示す図である。 1は圧縮機、2は凝縮器、4は蒸発器、10は
電動式絞り装置、11は凝縮器側送風装置、14
は圧力センサ、15は制御装置である。なお図
中、同一符号は同一又は相当部分を示す。
FIG. 1 is a diagram showing a refrigeration cycle of an air conditioner according to one embodiment of the present invention, FIG. 2 is a time chart diagram showing a control method according to the present invention, and FIG. 3 is a diagram showing another embodiment of the present invention. FIG. 4 is a time chart showing the refrigeration cycle of a conventional air conditioner. 1 is a compressor, 2 is a condenser, 4 is an evaporator, 10 is an electric throttle device, 11 is a condenser side blower device, 14
1 is a pressure sensor, and 15 is a control device. In the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 全閉機能を持つ絞り装置、圧縮機の吐出口と
吸入口とを接続したバイパスを該圧縮機の運転時
に閉じ停止時に開く弁、および上記圧縮機の吐出
口と上記バイパスへの凝縮器側からの冷媒の流れ
を阻止する逆止弁を設けて、圧縮機の運転、停止
による熱損失を軽減した冷凍サイクルにおいて、
上記圧縮機が停止するとき、上記絞り装置が全閉
となるまで圧縮機の停止を禁止するとともに、凝
縮器側の送風装置を最高回転数で運転することを
特徴とする冷凍サイクルの制御方法。 2 前記冷凍サイクルの逆止弁と絞り装置間に圧
力センサーを設け凝縮器内に封じ込められた冷媒
の圧力が所定の値に下るまで凝縮器側の送風装置
を運転することを特徴とする特許請求の範囲第1
項記載の冷凍サイクルの制御方法。
[Scope of Claims] 1. A throttle device with a fully closing function, a valve that connects a bypass between a discharge port and a suction port of a compressor when the compressor is in operation and opens when the compressor is stopped, and a valve that connects the discharge port and the suction port of the compressor. In a refrigeration cycle that is equipped with a check valve that prevents the flow of refrigerant from the condenser side to the bypass to reduce heat loss due to compressor operation and stop,
When the compressor is stopped, the compressor is prohibited from stopping until the throttle device is fully closed, and a blower device on the condenser side is operated at the maximum rotational speed. 2. A patent claim characterized in that a pressure sensor is provided between the check valve and the throttle device of the refrigeration cycle, and the blower device on the condenser side is operated until the pressure of the refrigerant sealed in the condenser falls to a predetermined value. range 1
A method for controlling a refrigeration cycle as described in Section 1.
JP27297185A 1985-12-04 1985-12-04 Method of controlling refrigeration cycle Granted JPS62131158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27297185A JPS62131158A (en) 1985-12-04 1985-12-04 Method of controlling refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27297185A JPS62131158A (en) 1985-12-04 1985-12-04 Method of controlling refrigeration cycle

Publications (2)

Publication Number Publication Date
JPS62131158A JPS62131158A (en) 1987-06-13
JPH0477220B2 true JPH0477220B2 (en) 1992-12-07

Family

ID=17521342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27297185A Granted JPS62131158A (en) 1985-12-04 1985-12-04 Method of controlling refrigeration cycle

Country Status (1)

Country Link
JP (1) JPS62131158A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0830616B2 (en) * 1989-10-13 1996-03-27 ダイキン工業株式会社 Refrigeration system operation controller
JPH0754770Y2 (en) * 1990-02-15 1995-12-18 ダイキン工業株式会社 Air conditioner
CN113631873B (en) * 2019-04-02 2023-05-16 三菱电机株式会社 Heat source side unit and refrigeration cycle device

Also Published As

Publication number Publication date
JPS62131158A (en) 1987-06-13

Similar Documents

Publication Publication Date Title
US4549404A (en) Dual pump down cycle for protecting a compressor in a refrigeration system
JP2537314B2 (en) Refrigeration cycle equipment
JP3461633B2 (en) Air conditioner
JPH0477220B2 (en)
US4584844A (en) Heat pump
JPH0526434Y2 (en)
JP2951043B2 (en) Air conditioner
JPS6287763A (en) Method of controlling refrigeration cycle
JPS61276660A (en) Controller for capacity of air conditioner
JP2522116B2 (en) Operation control device for air conditioner
JPH0213908Y2 (en)
JPH0333991B2 (en)
JPS6313429Y2 (en)
JPH0218447Y2 (en)
JPS60207858A (en) Method of controlling capacity of turbo-refrigerator
JPH068461Y2 (en) Refrigeration equipment
JPH05256496A (en) Operation controller for air conditioner
JPH0113971Y2 (en)
JP2512072B2 (en) Air conditioner refrigeration cycle
JPS5823291A (en) Air conditioner
JPS63231153A (en) Air conditioner
JPH0268461A (en) Method of controlling air conditioner
JPH0317177Y2 (en)
JPS6326833B2 (en)
JP2960211B2 (en) Pressure sensor destruction prevention control device for air conditioner