JPH0477008B2 - - Google Patents

Info

Publication number
JPH0477008B2
JPH0477008B2 JP8827085A JP8827085A JPH0477008B2 JP H0477008 B2 JPH0477008 B2 JP H0477008B2 JP 8827085 A JP8827085 A JP 8827085A JP 8827085 A JP8827085 A JP 8827085A JP H0477008 B2 JPH0477008 B2 JP H0477008B2
Authority
JP
Japan
Prior art keywords
parts
acrylonitrile
monomer
weight
monomer mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8827085A
Other languages
Japanese (ja)
Other versions
JPS61246217A (en
Inventor
Shigemi Matsumoto
Koji Nozawa
Fumya Nagoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP8827085A priority Critical patent/JPS61246217A/en
Publication of JPS61246217A publication Critical patent/JPS61246217A/en
Publication of JPH0477008B2 publication Critical patent/JPH0477008B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、耐熱変形性、耐衝撃性に優れた熱可
塑性樹脂を製造する方法に関する。 〔従来の技術〕 従来から、ジエン系ゴムの存在下にα−メチル
スチレン、アクリロニトリル、スチレンを主成分
とする単量体を重合させ、熱可塑性樹脂をうる方
法が提案されている。 〔発明が解決しようとする問題点〕 しかしながら、これらの方法によつてえられた
共重合体は、α−メチルスチレンの含有量が少な
いばあいには成形品にしたばあいに充分な耐熱変
形性がえられず、α−メチルスチレンの含有量が
多いばあいに成形品にしたばあいに充分な耐衝撃
性がえられないという欠点がある。 また、耐熱変形性および耐衝撃性を向上させる
目的で、芳香族ビニル単量体、アクリロニトリル
単量体などとマレイミドまたはそのN−アリール
置換誘導体との共重合体と、ジエン系ゴムに芳香
族ビニル単量体、アクリロニトリル単量体などを
重合させたグラフト共重合体とを混合する方法が
提案されている(特開昭57−167341号公報)が、
この方法によつても充分な耐熱変形性および耐衝
撃性を有する成形品を与える樹脂組成物はえられ
ない。 本発明はこれらの欠点を克服した耐熱変形性お
よび耐衝撃性に優れた成形品を与える熱可塑性樹
脂を製造するためになされたものである。 〔問題点を解決するための手段〕 本発明は、ジエン系ゴムの存在下にアクリロニ
トリルおよびスチレンからなる単量体混合物を重
合させ、そののちα−メチルスチレンを主成分と
する単量体を添加し、さらにマレイミドおよび
(または)そのN−アリール置換誘導体およびア
クリロニトリルを含有する単量体混合物を少量づ
つ添加し、実質的に重合を完結させることによ
り、耐熱変形性、耐衝撃性に優れた熱可塑性樹脂
がえられることが見出されたことによりなされた
ものであり、ジエン系ゴム5〜30部(重量部、以
下同様)の存在下に95〜70部の重量体をジエン系
ゴムおよび単量体の合計量が100部になるように
重合させる際に、アクリロニトリル/スチレンが
重量比で10/90〜40/60であるアクリロニトリル
とスチレンとの単量体混合物(A)を2〜40部重合さ
せたのち、α−メチルスチレンを80〜100%(重
量%、以下同様)含有する単量体(B)を10〜80部添
加し、ついでマレイミドおよび(または)そのN
−アリール置換誘導体1〜20部を含有し、単量体
(B)と合わせてα−メチルスチレン/アクリロニト
リルが重量比で90/10〜65/35になるようにアク
リロニトリルを含有する単量体混合物(C)を18〜83
部重合させることを特徴とする耐熱変形性、耐衝
撃性に優れた熱可塑性樹脂の製法に関する。 〔実施例〕 本発明においてはジエン系ゴム5〜30部、好ま
しくは7〜25部の存在下に合計量が100部になる
ように95〜70部、好ましくは93〜75部の単量体が
重合せしめられる。 前記ジエン系ゴムとしては、たとえばポリブタ
ジエン、SBR(スチレン−ブタジエンゴム)、
NBR(アクリロニトリル−ブタジエンゴム)、ブ
チルアクリレート−ブダジエンゴムなどがあげら
れるが、これらに限定されるものではない。 ジエン系ゴムの割合が5〜30部の範囲をはずれ
ると、えられる熱可塑性樹脂からの成形品の耐衝
撃性が低下したり、耐熱変形性がわるくなつたり
する。 ジエン系ゴム5〜30部の存在下に重合せしめら
れる単量体95〜70部の重合は、アクリロニトリ
ル/スチレンが重量比で10/90〜40/60、好まし
くは15/85〜35/65であるアクリロニトリルとス
チレンとの単量体混合物(A)を2〜40、部好ましく
は2〜20部重合させたのち、α−メチルスチレン
を80〜100%、好ましくは85〜100%含有する単量
体(B)を10〜80部、好ましくは20〜80部添加し、つ
いでマレイミドおよび(または)そのN−アリー
ル置換誘導体を1〜20部、好ましくは3〜20部含
有し、単量体(B)と合わせてα−メチルスチレン/
アクリロニトリルが重量比で90/10〜65/35、好
ましくは85/15〜65/35になるようにアクリロニ
トリルを含有する単量体混合物(C)を18〜83部、好
ましくは20〜80部重合させることによりなされ
る。 単量体混合物(A)を構成するアクリロニトリル/
スチレンが重量比で10/90〜40/60の範囲をはず
れると、えられる熱可塑性樹脂の成形加工性が低
下したり、成形品の耐衝撃性が低下したりする。
アクリロニトリルおよびスチレンの30%以下を他
のビニル系単量体に置きかえてもよい。 前記他のビニル系単量体の具体例としては、α
−メチルスチレン、クロルスチレン、メタクリル
酸メチル、メタクリロニトリルなどがあげられ
る。 また単量体混合物(A)の重合量が2部未満になる
と、えられる熱可塑性樹脂から成形される成形品
の耐衝撃性が低下し、40部をこえると、耐熱変形
性が低下する。 単量体(B)中にしめるα−メチルスチレンの割合
が80%未満になると、えられる熱可塑性樹脂の耐
熱変形性がわるくなる。 単量体(B)中に20%以下の割合で含有されうる成
分としては、α−メチルスチレン以外のビニル系
単量体があげられ、スチレン、クロルスチレン、
アクリロニトリル、メタクリロニトリル、メタク
リル酸メチル、アクリル酸、メタクリル酸などが
例示される。 単量体(B)の添加量が10部より少ないと、えられ
る熱可塑性樹脂からの成形品の耐熱変形性が低下
し、80部をこえると重合転化率やえられる熱可塑
性樹脂からの成形品の耐衝撃性が低下する。 単量体混合物(C)に含有されるマレイミドおよび
(または)そのN−アリール置換誘導体の量が1
〜20部の範囲が耐衝撃性、耐熱変形性、成形加工
性などの点から好ましく、単量体(B)および単量体
混合物(C)を合わせてα−メチルスチレン/アクリ
ロニトリルが重量比で90/10〜65/35の範囲が耐
衝撃性、耐熱変形性、重合転化率などの点から好
ましい。 単量体混合物(C)中のアクリロニトリル/マレイ
ミドおよび(または)そのN−アリール置換誘導
体の重量比にはとくに制限はない。 マレイミドのN−アリール置換誘導体として
は、たとえばフエニルマレイミド、モノメチルフ
エニルマレイミド、ジメチルフエニルマレイミ
ド、エチルフエニルマレイミド、クロルフエニル
マレイミドなどがあげられる。 単量体混合物(C)の添加量が18部未満になると、
えられる熱可塑性樹脂の耐衝撃性が低下し、83部
をこえると、耐熱変形性が低下する。 単量体混合物(C)には、アクリロニトリル、マレ
イミドおよび(または)そのN−アリール置換誘
導体の他に、α−メチルスチレン、スチレン、ク
ロルスチレン、メタクリロニトリル、メタクリル
酸メチル、メタクル酸などが含有されていてもよ
い。 単量体混合物(A)、単量体(B)および単量体混合物
(C)の添加方法にはとくに限定はないが、単量体混
合物(A)の60%以上が重合したのち単量体(B)を添加
し、次に単量体混合物(C)を少量づつ添加するのが
好ましい。単量体混合物(C)の添加方法としては連
続的に添加してもよく、数段階に分けて添加して
もよいが、系内に存在するα−メチルスチレンと
アクリロニトリルとの重量比が重合転化率40%ま
では80/20、望ましくは90/10、さらに好ましく
は95/5以上になるように添加すことが望まし
い。 本発明における重合法としては、好ましくは乳
化重合法であるが乳化重合法に限定さるものでは
ない。 乳化重合法を採用するばあい、通常の方法によ
つて実施しうる。たとえば前記単量体を水性分散
体中でジエン系ゴムの存在下にラジカル開始剤で
重合させればよい。 ラジカル開始剤としては過硫酸カリ、過硫酸ア
ンモニウム、キユメンハイドロパーオキサイドな
どの過酸化物を例示することができる。 その他の重合促進剤、重合度調節剤、乳化剤な
どもこれまで一般に乳化重合に際して使用されて
いるものを適宜選択して使用してもよい。 重合温度としては30〜80℃が好ましい。えられ
たラテツクスから樹脂をうる方法は公知の方法で
よい。また必要ならば通常の安定剤、可塑剤、滑
剤、顔料、帯電防止剤、紫外線吸収剤などを添加
してもよい。 このようにしてえられる熱可塑性樹脂を用いて
成形した成形品は耐熱変形性および耐衝撃性に優
れたものである。 以下に実施例にもとづき本発明の方法を具体的
に説明するが、これら実施例は本発明を限定する
ものではない。 実施例1〜6および比較例1〜5 水200部、アルキルベンゼンスルホン酸ソーダ
2.0部、ソジウムホルムアルデヒドスルホキシレ
ート0.4部、エチレンジアミンテトラ酢酸2ナト
リウム0.01部および硫酸第一鉄0.0025部を撹拌機
付反応器に仕込み、脱酸素後窒素気流中で60℃に
加熱撹拌し、ゴムラテツクスおよび第1表に示す
単量体混合物(A)、(B)および(C)を順次仕込んだ。す
なわち単量体混合物(A)を1時間かけ連続的に添加
し、添加終了後重合転化率が60%以上になつた時
点で単量体(B)を一括して添加し、充分乳化させた
のち単量体混合物(C)を6時間かて連続的に添加
し、そののち一時60℃で加熱撹拌をつづけ重合を
終了させた。なおアルキルベンゼンスルホン酸ソ
ーダおよびソジウムホルムアルデヒドスルホキシ
レートは最初にそれぞれ0.2部および0.2部仕込
み、のこりは重合の継続中に2回に分割して仕込
んだ。 えられたそれぞれの重合体ラテツクスに酸化防
止剤を加えて塩折したのち、水洗、濾過、乾燥し
てペレツト化し、下記方法により成形物の物理的
性質を測定した。 (熱変形温度) ASTM D−648に準じて18.6Kg/cm2荷重にて
測定。 (アイゾツト衝撃値) ASTM D−256に準じてノツチ付、23℃で測
定。 (抗張力) ASTM D−636に準じて23℃にて測定。 なお第1表中のゴムラテツクスは鐘淵化学工業
(株)製のポレブタジエン、ANはアクリロニトリ
ル、Stはスチレン、αMstはα−メチルスチレン、
PMIはフエニルマレイミド、MPMIはパラメー
タフエニルマレイミド、tDMはt−ドデシルメ
ルカプタン、CHPはキユメンハイドロパーオキ
サイドを示す。
[Industrial Application Field] The present invention relates to a method for producing a thermoplastic resin having excellent heat deformation resistance and impact resistance. [Prior Art] Conventionally, a method has been proposed in which monomers containing α-methylstyrene, acrylonitrile, and styrene as main components are polymerized in the presence of a diene rubber to obtain a thermoplastic resin. [Problems to be solved by the invention] However, when the content of α-methylstyrene is small, the copolymers obtained by these methods have sufficient heat deformation resistance when made into molded products. However, if the α-methylstyrene content is high, sufficient impact resistance cannot be obtained when molded products are formed. In addition, for the purpose of improving heat deformation resistance and impact resistance, copolymers of aromatic vinyl monomers, acrylonitrile monomers, etc. and maleimide or its N-aryl substituted derivatives, and diene rubbers containing aromatic vinyl A method has been proposed in which a monomer is mixed with a graft copolymer obtained by polymerizing acrylonitrile monomer, etc. (Japanese Patent Application Laid-open No. 167341/1983).
Even with this method, it is not possible to obtain a resin composition that provides a molded article with sufficient heat deformation resistance and impact resistance. The present invention has been made in order to overcome these drawbacks and produce a thermoplastic resin that can provide molded products with excellent heat deformation resistance and impact resistance. [Means for solving the problem] The present invention involves polymerizing a monomer mixture consisting of acrylonitrile and styrene in the presence of a diene rubber, and then adding a monomer mainly composed of α-methylstyrene. Then, by adding a monomer mixture containing maleimide and/or its N-aryl substituted derivative and acrylonitrile little by little to substantially complete the polymerization, a thermal deformation resistance and impact resistance excellent. This method was developed based on the discovery that a plastic resin could be obtained by mixing 95 to 70 parts of the diene rubber and the monomer in the presence of 5 to 30 parts (parts by weight, the same shall apply hereinafter) of the diene rubber. When polymerizing so that the total amount of monomers is 100 parts, 2 to 40 parts of a monomer mixture (A) of acrylonitrile and styrene in which the weight ratio of acrylonitrile/styrene is 10/90 to 40/60. After polymerization, 10 to 80 parts of monomer (B) containing 80 to 100% (by weight, the same applies hereinafter) of α-methylstyrene is added, and then maleimide and/or its N
- Contains 1 to 20 parts of aryl substituted derivative, monomer
Add acrylonitrile-containing monomer mixture (C) to 18 to 83% of the monomer mixture (C) containing (B) so that the weight ratio of α-methylstyrene/acrylonitrile is 90/10 to 65/35.
The present invention relates to a method for producing a thermoplastic resin having excellent heat deformation resistance and impact resistance, which is characterized by partial polymerization. [Example] In the present invention, in the presence of 5 to 30 parts of diene rubber, preferably 7 to 25 parts, 95 to 70 parts, preferably 93 to 75 parts of monomers are added so that the total amount is 100 parts. are superimposed. Examples of the diene rubber include polybutadiene, SBR (styrene-butadiene rubber),
Examples include, but are not limited to, NBR (acrylonitrile-butadiene rubber) and butyl acrylate-butadiene rubber. If the proportion of the diene rubber is out of the range of 5 to 30 parts, the resulting molded article from the thermoplastic resin will have reduced impact resistance and poor heat deformation resistance. In the polymerization of 95 to 70 parts of monomer in the presence of 5 to 30 parts of diene rubber, the weight ratio of acrylonitrile/styrene is 10/90 to 40/60, preferably 15/85 to 35/65. After polymerizing 2 to 40 parts, preferably 2 to 20 parts, of a certain monomer mixture (A) of acrylonitrile and styrene, a monomer containing 80 to 100%, preferably 85 to 100% of α-methylstyrene is obtained. 10 to 80 parts, preferably 20 to 80 parts of compound (B) are added, and then 1 to 20 parts, preferably 3 to 20 parts of maleimide and/or its N-aryl substituted derivative are added, and the monomer ( B) together with α-methylstyrene/
18 to 83 parts, preferably 20 to 80 parts of a monomer mixture (C) containing acrylonitrile is polymerized so that the weight ratio of acrylonitrile is 90/10 to 65/35, preferably 85/15 to 65/35. It is done by letting Acrylonitrile constituting monomer mixture (A)/
If the weight ratio of styrene is out of the range of 10/90 to 40/60, the molding processability of the resulting thermoplastic resin will decrease, and the impact resistance of the molded product will decrease.
Up to 30% of the acrylonitrile and styrene may be replaced with other vinyl monomers. Specific examples of the other vinyl monomers include α
- Examples include methylstyrene, chlorstyrene, methyl methacrylate, and methacrylonitrile. Furthermore, if the polymerized amount of the monomer mixture (A) is less than 2 parts, the impact resistance of the molded product molded from the obtained thermoplastic resin will decrease, and if it exceeds 40 parts, the heat deformation resistance will decrease. If the proportion of α-methylstyrene in the monomer (B) is less than 80%, the resulting thermoplastic resin will have poor heat deformation resistance. Components that can be contained in the monomer (B) at a rate of 20% or less include vinyl monomers other than α-methylstyrene, such as styrene, chlorostyrene,
Examples include acrylonitrile, methacrylonitrile, methyl methacrylate, acrylic acid, and methacrylic acid. If the amount of monomer (B) added is less than 10 parts, the heat deformation resistance of the resulting thermoplastic resin molded product will decrease, and if it exceeds 80 parts, the polymerization conversion rate will decrease. impact resistance decreases. The amount of maleimide and/or its N-aryl substituted derivative contained in the monomer mixture (C) is 1
A range of ~20 parts is preferable from the viewpoint of impact resistance, heat deformation resistance, moldability, etc., and the weight ratio of α-methylstyrene/acrylonitrile in the monomer (B) and monomer mixture (C) is A range of 90/10 to 65/35 is preferable from the viewpoint of impact resistance, heat deformation resistance, polymerization conversion rate, etc. There is no particular restriction on the weight ratio of acrylonitrile/maleimide and/or its N-aryl substituted derivative in the monomer mixture (C). Examples of N-aryl substituted derivatives of maleimide include phenylmaleimide, monomethylphenylmaleimide, dimethylphenylmaleimide, ethylphenylmaleimide, chlorphenylmaleimide, and the like. When the amount of monomer mixture (C) added is less than 18 parts,
The impact resistance of the resulting thermoplastic resin decreases, and if it exceeds 83 parts, the heat deformation resistance decreases. The monomer mixture (C) contains α-methylstyrene, styrene, chlorstyrene, methacrylonitrile, methyl methacrylate, methacrylic acid, etc. in addition to acrylonitrile, maleimide and/or its N-aryl substituted derivative. may have been done. Monomer mixture (A), monomer (B) and monomer mixture
There are no particular limitations on the method of adding (C), but after 60% or more of the monomer mixture (A) has polymerized, monomer (B) is added, and then a small amount of the monomer mixture (C) is added. It is preferable to add them one by one. The monomer mixture (C) may be added continuously or in several steps, but the weight ratio of α-methylstyrene and acrylonitrile present in the system may be It is desirable to add so that the ratio is 80/20, preferably 90/10, and more preferably 95/5 or more until the conversion rate is 40%. The polymerization method used in the present invention is preferably an emulsion polymerization method, but is not limited to the emulsion polymerization method. When emulsion polymerization is employed, it can be carried out by conventional methods. For example, the monomer may be polymerized in an aqueous dispersion in the presence of a diene rubber using a radical initiator. Examples of radical initiators include peroxides such as potassium persulfate, ammonium persulfate, and kyumene hydroperoxide. Other polymerization accelerators, polymerization degree regulators, emulsifiers, etc. that have been generally used in emulsion polymerization may be appropriately selected and used. The polymerization temperature is preferably 30 to 80°C. A known method may be used to obtain the resin from the obtained latex. Further, if necessary, conventional stabilizers, plasticizers, lubricants, pigments, antistatic agents, ultraviolet absorbers, etc. may be added. A molded article formed using the thermoplastic resin thus obtained has excellent heat deformation resistance and impact resistance. The method of the present invention will be specifically explained below based on Examples, but these Examples are not intended to limit the present invention. Examples 1 to 6 and Comparative Examples 1 to 5 200 parts of water, sodium alkylbenzenesulfonate
2.0 parts of sodium formaldehyde sulfoxylate, 0.4 parts of sodium formaldehyde sulfoxylate, 0.01 part of disodium ethylenediaminetetraacetate, and 0.0025 parts of ferrous sulfate were charged into a reactor equipped with a stirrer, and after deoxidizing, heated and stirred at 60°C in a nitrogen stream to form a rubber latex. Then, monomer mixtures (A), (B) and (C) shown in Table 1 were sequentially charged. That is, the monomer mixture (A) was added continuously over a period of 1 hour, and when the polymerization conversion rate reached 60% or more after the addition was completed, the monomer (B) was added all at once to thoroughly emulsify it. Thereafter, the monomer mixture (C) was continuously added over a period of 6 hours, and then heating and stirring were continued at 60° C. to complete the polymerization. Note that sodium alkylbenzene sulfonate and sodium formaldehyde sulfoxylate were initially charged in an amount of 0.2 parts and 0.2 parts, respectively, and the remainder was added in two portions during the continuation of the polymerization. After adding an antioxidant to each of the obtained polymer latexes and salting them, they were washed with water, filtered, and dried to form pellets, and the physical properties of the molded products were measured by the following method. (Heat distortion temperature) Measured at a load of 18.6 kg/cm 2 according to ASTM D-648. (Izot impact value) Notched according to ASTM D-256, measured at 23°C. (Tensile strength) Measured at 23°C according to ASTM D-636. The rubber latex in Table 1 is manufactured by Kanebuchi Chemical Industry Co., Ltd.
Polybutadiene manufactured by Co., Ltd., AN is acrylonitrile, St is styrene, αMst is α-methylstyrene,
PMI stands for phenylmaleimide, MPMI stands for parameter phenylmaleimide, tDM stands for t-dodecyl mercaptan, and CHP stands for kyumene hydroperoxide.

【表】【table】

【表】 * 転化率低いため測定せず
第1表の結果から、本発明の熱可塑性樹脂は耐
熱変形性、耐衝撃性に優れていることがわかる。 〔発明の効果〕 本発明の方法により熱可塑性樹脂を製造する
と、成形品の耐熱変形性および耐衝撃性に優れた
樹脂がえられる。
[Table] * Not measured due to low conversion rate From the results in Table 1, it can be seen that the thermoplastic resin of the present invention has excellent heat deformation resistance and impact resistance. [Effects of the Invention] When a thermoplastic resin is produced by the method of the present invention, a resin having excellent heat deformation resistance and impact resistance of a molded article can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 ジエン系ゴム5〜30重量部の存在下に95〜70
重量部の単量体を合計量が100重量部になるよう
に重合させる際に、アクリロニトリル/スチレン
が重量比で10/90〜40/60であるアクリロニトリ
ルとスチレンとの単量体混合物(A)を2〜40重量部
重合させたのち、α−メチルスチレンを80〜100
重量%含有する単量体(B)を10〜80重量部添加し、
ついでマレイミドおよび(または)そのN−アリ
ール置換誘導体1〜20重量部を含有し、単量体(B)
と合わせてα−メチルスチレン/アクリロニトリ
ルが重量比で90/10〜65/35になるようにアクリ
ロニトリルを含有する単量体混合物(C)を18〜83重
量部重合させることを特徴とする耐熱変形性、耐
衝撃性に優れた熱可塑性樹脂の製法。
1 95-70 in the presence of 5-30 parts by weight of diene rubber
A monomer mixture of acrylonitrile and styrene in which the weight ratio of acrylonitrile/styrene is 10/90 to 40/60 when polymerizing the monomers in a total amount of 100 parts by weight (A) After polymerizing 2 to 40 parts by weight of α-methylstyrene, 80 to 100 parts by weight of
Adding 10 to 80 parts by weight of monomer (B) containing % by weight,
The monomer (B) contains 1 to 20 parts by weight of maleimide and/or its N-aryl substituted derivative.
Heat-resistant deformation characterized by polymerizing 18 to 83 parts by weight of a monomer mixture (C) containing acrylonitrile so that the weight ratio of α-methylstyrene/acrylonitrile is 90/10 to 65/35. A method for producing thermoplastic resin with excellent durability and impact resistance.
JP8827085A 1985-04-24 1985-04-24 Production of thermoplastic resin excellent in heat distortion resistance and impact resistance Granted JPS61246217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8827085A JPS61246217A (en) 1985-04-24 1985-04-24 Production of thermoplastic resin excellent in heat distortion resistance and impact resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8827085A JPS61246217A (en) 1985-04-24 1985-04-24 Production of thermoplastic resin excellent in heat distortion resistance and impact resistance

Publications (2)

Publication Number Publication Date
JPS61246217A JPS61246217A (en) 1986-11-01
JPH0477008B2 true JPH0477008B2 (en) 1992-12-07

Family

ID=13938200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8827085A Granted JPS61246217A (en) 1985-04-24 1985-04-24 Production of thermoplastic resin excellent in heat distortion resistance and impact resistance

Country Status (1)

Country Link
JP (1) JPS61246217A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5412036A (en) * 1993-09-27 1995-05-02 The Dow Chemical Company Maleimide-modified high heat abs resins

Also Published As

Publication number Publication date
JPS61246217A (en) 1986-11-01

Similar Documents

Publication Publication Date Title
US4608414A (en) Thermoplastic resin composition containing an imide polymer and graft copolymer
KR100585942B1 (en) Thermoplastic resin composition with good heat resistance and elongation property
US4594387A (en) Thermoplastic resin composition having toughness and high thermal deformation resistance
US4448580A (en) Process for producing α-methyl styrene-methyl methacrylate-acrylonitrile thermoplastic resin
JPH0791341B2 (en) Maleimide-based copolymer and method for producing the same
US4442264A (en) Graft rubbers for modifying thermoplastic moulding compositions
JPH0477008B2 (en)
JP2508192B2 (en) Process for producing N-arylmaleimide copolymer
US5171814A (en) Alpha-methylstyrene high-content copolymers, a process for their production and thermoplastic resin compositions containing alpha-methylstyrene high-content copolymers
JPS6247208B2 (en)
JPS63243156A (en) Thermoplastic resin composition
JPS61272259A (en) Heat-resistant thermoplastic resin composition
JPS58120623A (en) Preparation of thermoplastic resin
JP2565378B2 (en) Method for producing copolymer
JPS59155410A (en) Thermoplastic resin and its production
JPS6328461B2 (en)
JPS5861108A (en) Thermoplastic resin and its preparation
JPS6236442A (en) Heat-resistant resin composition
KR100364234B1 (en) Preparation method of thermoplastic resin with excellent impact strength
JPH0533249B2 (en)
JPS61223006A (en) Production of thermoplastic resin
KR960006627B1 (en) Thermoplastic resin composition of improved heat-resistance and impact-resistance
JPS61162510A (en) Production of heat-resistant polymer
JPH0376712A (en) Thermoplastic resin excellent in resistance to heat and its impact, preparation, and thermoplastic resin composition excellent in resistance to heat and impact prepared therefrom
KR890003009B1 (en) Themoplastic resin composition