JPH0476678B2 - - Google Patents

Info

Publication number
JPH0476678B2
JPH0476678B2 JP60221592A JP22159285A JPH0476678B2 JP H0476678 B2 JPH0476678 B2 JP H0476678B2 JP 60221592 A JP60221592 A JP 60221592A JP 22159285 A JP22159285 A JP 22159285A JP H0476678 B2 JPH0476678 B2 JP H0476678B2
Authority
JP
Japan
Prior art keywords
dna
gene
tryptophan
plasmid
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60221592A
Other languages
Japanese (ja)
Other versions
JPS6279775A (en
Inventor
Kazuhiko Matsui
Takanosuke Sano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP60221592A priority Critical patent/JPS6279775A/en
Publication of JPS6279775A publication Critical patent/JPS6279775A/en
Publication of JPH0476678B2 publication Critical patent/JPH0476678B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は、組換えDNAを有するコリネ型細
菌に関する。 従来の技術 L−トリプトフアンは、アントラニル酸がアン
トラニル酸ホスホリボシルトランスフエラーゼ、
N−(5′−ホスホリボシル)アントラニル酸イソ
メラーゼ、インドール3−グリセロールリン酸シ
ンターゼ、トリプトフアンシンターゼの順に各酵
素の作用を受け、生産される。 以下、N−(5′−ホスホリボシル)アントラニ
ル酸イソメラーゼをPRAI、インドール3−グリ
セロールリン酸シンターゼをInGPと記す。 一方、組換えDNA法を用いて、コリネ型細菌
におけるL−トリプトフアン生産菌を育種するこ
とは、特開昭59−156292で報告されているが、
PRAI−InGPをコードする遺伝子(以下、PRAI
−InGP遺伝子と記す)が組込まれたものではな
い。 発明が解決しようとする問題点 この発明は、L−トリプトフアンの生産性がよ
り高い微生物を得ること、及びそれによつてL−
トリプトフアンのより効率のよい製造法を見い出
すことにある。 問題点を解決するための手段 本発明者等は、叙上の問題点を解決するため研
究の結果、コリネ型細菌細胞内で発現し、PRAI
−InGPをコードする遺伝子がコリネ型細菌細胞
内で増殖しうるプラスミドベクターに接続されて
いる組換えDNAを有するコリネ型細菌を分離す
ることに成功し、得られたコリネ型細菌がL−ト
リプトフアンの高い生産性を有することを見い出
した。 即ち本願発明は、コリネホルム・グルタミン酸
生産菌に属するDNA供与菌より得られ、N−(5
−ホスホリボシル)アンスラニル酸イソメラーゼ
−インドール−3−グリセロールリン酸合成酵素
をコードするDNA断片が、コリネホルム・グル
タミン酸生産菌の菌体内で自律複製できるベクタ
ープラスミドに接続されて、コリネホルム・グル
タミン酸生産菌に属しm−フルオロフエニルアラ
ニン及び5−フルオロトリプトフアンに耐性を示
すDNA受容菌に導入されて得られるL−トリプ
トフアン生産能を有する微生物を培養し、培養液
中に蓄積されたL−トリプトフアンを採取するこ
とを特徴とするL−トリプトフアンの製造法であ
る。 本発明にいうコリネ型細菌(Coryneform
bactria)は、バージース・マニユアル・オブ・
デターミネイテイブ・バクテリオロジー
(Bargeys Manual of Determinative
Bacteriology)第8版599頁(1974)に定義され
ている一群の微生物であり、好気性、グラム陽
性、非抗酸性、胞子形成能を有しない桿菌であ
る。このようなコリネ型細菌のうち特に以下に述
べるようなコリネ型グルタミン酸生産性細菌が本
発明においては、最も好ましいものである。 コリネ型グルタミン酸生産性細菌の野性株の例
としては次のようなものがあげられる。
INDUSTRIAL APPLICATION FIELD This invention relates to coryneform bacteria having recombinant DNA. BACKGROUND ART L-tryptophan is anthranilic acid produced by anthranilic acid phosphoribosyltransferase,
It is produced by the action of N-(5'-phosphoribosyl)anthranilate isomerase, indole 3-glycerol phosphate synthase, and tryptophan synthase in this order. Hereinafter, N-(5'-phosphoribosyl)anthranilate isomerase will be referred to as PRAI, and indole 3-glycerol phosphate synthase will be referred to as InGP. On the other hand, the breeding of L-tryptophan-producing coryneform bacteria using recombinant DNA method was reported in JP-A-59-156292.
The gene encoding PRAI-InGP (hereinafter referred to as PRAI
−InGP gene) is not integrated therein. Problems to be Solved by the Invention The present invention aims to obtain microorganisms with higher productivity of L-tryptophan, and thereby to obtain L-tryptophan.
The goal is to find a more efficient method for producing tryptophan. Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors conducted research and found that PRAI is expressed in coryneform bacterial cells.
- We succeeded in isolating a coryneform bacterium with recombinant DNA in which the gene encoding InGP is connected to a plasmid vector capable of propagating within coryneform bacterial cells, and the resulting coryneform bacterium is It was found that this method has high productivity. That is, the present invention provides N-(5
- A DNA fragment encoding phosphoribosyl) anthranilate isomerase - indole-3-glycerol phosphate synthase is connected to a vector plasmid that can autonomously replicate within the body of a coryneform-glutamate-producing bacterium, and the DNA fragment is linked to a vector plasmid that can autonomously replicate within the body of a coryneform-glutamate-producing bacterium. - Cultivating a microorganism capable of producing L-tryptophan obtained by introducing it into a DNA recipient microorganism showing resistance to fluorophenylalanine and 5-fluorotryptophan, and collecting L-tryptophan accumulated in the culture solution. This is a method for producing L-tryptophan, which is characterized by the following. Coryneform bacteria (Coryneform) according to the present invention
bactria) is from the Burgesses Manual of
Bargeys Manual of Determinative
Bacteriology), 8th edition, p. 599 (1974), and are aerobic, Gram-positive, non-acid-fast, rod-shaped bacteria that do not have spore-forming ability. Among these coryneform bacteria, the following coryneform glutamate-producing bacteria are particularly preferred in the present invention. Examples of wild strains of coryneform glutamate-producing bacteria include the following.

【表】 本発明のコリネ型グルタミン酸生産性細菌には
上記のようなグルタミン酸生産性を有する野性株
のほかにグルタミン酸生産性を有するまたはグル
タミン酸生産性を失つた変異株も含まれる。 PRAI−InGP遺伝子を単離する方法は、コリ
ネ型細菌のPRAI−InGP遺伝子を有している株
より、まず染色体遺伝子を抽出し(例えばH.
Saito and K.Miura Biochem.Biphys.Acta72,
619,(1963)の方法が使用できる。)、これを適当
な制限酵素で切断する。ついで、コリネ型細菌細
胞内で増殖し得るプラスミドベクターに接続し、
得られた組換えDNAを用いてコリネ型細菌の
PRAI−InGP遺伝子の欠損変異株を形質転換せ
しめ、PRAI−InGP生成活性を保育するにいた
つた菌株を単離し、これよりPRAI−InGP各遺
伝子を分離できる。 染色体遺伝子を切断するために、切断反応時間
等を調節して切断の程度を調節すれば、巾広い種
類の制限酵素が使用できる。 本発明にて使用されるプラスミドベクターは、
コリネ型細菌細胞内において増殖し得るものであ
ればどのようなものでも良い。具体的に例示すれ
ば、以下のものがあげられる。 (1) pAM 330 特開昭58−67699参照 (2) pAM 1519 特開昭58−77895参照 (3) pAJ 655 特開昭58−192900参照 (4) pAJ 611 同上 (5) pAJ 1844 同上 (6) pCG 1 特開昭57−134500参照 (7) pCG 2 特開昭58−35197参照 (8) pCG 4 特開昭57−183799参照 (9) pCG 11 同上 プラスミドベクターDNAの開裂は、当該DNA
を一箇所で切断する制限酵素を用いて切断する
か、複数部位を切断する制限酵素を用いて部分的
に切断することにより行う。 ベクターDNAは染色体遺伝子を切断した際に、
用いられた制限酵素により切断され、または染色
体DNA切断フラグメント及び切断されたベクタ
ーDNAのそれぞれの両端に相補的な塩基配列を
有するオリゴヌクレオチドを接続せしめて、つい
でプラスミドベクターと染色体DNAフラグメン
トとのライゲーシヨン反応に付される。 このようにして得られた、染色体DNAとベク
タープラスミドとの組換えDNAをコリネ型細菌
に属する受容菌へ導入するには、エシエリヒア・
コリK−12について報告されている様な
(Mandel.M.and Higa.A.,J.Mol.,Biol.,53
159(1970))受容細菌胞を塩化カルシウムで処理
してDNAの透過性を増す方法、またはバチル
ス・ズブチリスについて報告されている様に
(Duncan,C.H.,Wilson,G.A.and Young,F.
E.,Gene.,153(1977))細胞がDNAを取り込
み得る様になる増殖段階(いわゆるコンピテント
セル)に導入する方法により可能である。あるい
は、バチルス・ズブチリス、放線菌類および酵母
について知られている様に(Chang,S,and
Choen,S,N.,Molec.Gen.,Genet.,168
111(1979);Bibb,M.j,Ward,J.M.and
Hopwood,O.A.,Nature,274,398(1978);
Hinnen,A.,Hicks,J.B.and Fink,G.R,
Proc.Natl.Acad.Sei.USA,75,1929(1978))、
DNA受容菌を、プラスミドDNAを容易に取り込
むプロトプラストまたはスフエロプラストにして
プラスミドをDNA受容菌に導入することも可能
である。 プロトプラスト法では上記のパチルス・ズブチ
リスにおいて使用されている方法でも充分高い頻
度を得ることができるし、特開昭57−183799に記
載されたコリネバクテリウム属またはブレビバク
テリウム属のプロトプラストにポリエチレングリ
コールまたはポリビニルアルコールと二価金属イ
オンとの存在下にDNAをとり込ませる方法も当
然利用できる。ポリエチレングリコールまたはポ
リビニルアルコールの代りに、カルボキシメチル
セルロース、デキストラン、フイコール、ブルロ
ニツクF68(セルバ社)などの添加によつてDNA
のとり込みを促進させる方法でも同等の結果が得
られる。 L−トリプトフアン生産菌として、PRAI−
InGP欠損株を宿主として形質転換した株を用い
ることができるが、以下に示すような宿主を用い
ればよりL−トリプトフアンの生産性が高い菌株
が得られることがある。 即ち、ブレビバクテリウム属のフエニルアラニ
ン、チロシンを要求し、5−メチルトリプトフア
ンに耐性を有する変異株(I.Shiio,H.Sato,M.
Nakagawa.,Agric.Biol.Ctem.36,2315
(1972))、ブレビバクテリウム属のフエニルアラ
ニンを要求し、m−フルオロフエニルアラニン、
5−フルオロトリプトフアンに耐性を有する変異
株(I.Shiio,S.Sugimoto,M.Nakagawa.,
Agrie.Biol.Chem.,39,627(1975))、ブレビバク
テリウム属のチロシンを要求し、5−フルオロト
リプトフアン、アザセリンに耐性を有する変異
株、コリネバクテリウム属のフエニルアラニン、
チロシンを要求し、5−メチルトリプトフアン、
4−メチルトリプトフアン、6−フルオロトリプ
トフアン、トリプトフアンヒドロキサメート、p
−フルオロフエニルアラニン、チロシンヒドロキ
サメート、フエニルアラニンヒドロキサメートに
耐性を有する変異株(H.Hagino,K.
Nakayama.,Agric.Biol.Chem.,39,345
(1975))等がある。最も好ましいものは、コリネ
ホルム・グルタミン酸生産菌に属しm−フルオロ
フエニルアラニン及び5−フルオロトリプトフア
ンに耐性を示す微生物である。 このようにして得られたL−トリプトフアン生
産能を有するコリネ型細菌を培養してL−トリプ
トフアンを生成蓄積せしめる方法は、従来コリネ
型細菌によるL−トリプトフアンの製造のために
使用されていた方法と特に大きく違う点はない。
即ち、培地としては、炭素源、窒素源、無機イオ
ン、更に必要に応じてアミノ酸、ビタミン等の有
機微量栄養素を含有する通常のものである。炭素
源としては、グルコース、シユクロース、ラクト
ース等及びこれらを含有する澱粉加水分解液、ホ
エイ、糖蜜等が用いられる。窒素源としては、ア
ンモニアガス、アンモニア水、アンモニウム塩そ
の他が使用できる。 培養は好気的条件下で培地のPH及び温度を適宜
調節しつつ、実質的にL−トリプトフアンの生産
蓄積が停止するまで行なわれる。 実施例 (1) PRAI−InGP遺伝子を含む染色体DNAの調
製 ブレビバクテリウム・ラクトフアーメンタム
AJ12036(FERM−P7559)を1のCMG培地
(ペプトン1g/dl、酵母エキス1g/dl、グル
コース0.5g/dl、及びNaCl0.5g/dlを含み、PH
7.2に調整したもの)に植菌し、30℃で約3時
間振盪培養を行ない、対数増殖期の菌体を集め
た。 この菌体をリゾチーム・SDSで溶菌させたの
ち、通常のフエノール処理法により、染色体
DNAを抽出精製し、最終的に3.5mgのDNAを
得た。 (2) ベクターDNAの調製 ベクターとしてpAJ1844(分子量5.4メガダル
トン)を用い、そのDNAを次の様にして調製
した。 まずpAJ1844をプラスミドとして保有するブ
レビバクテリウム・ラクトフアーメンタム
AJ12037(FERM−P7234)を100mlのCMG培
地に接種し、30℃で対数増殖期後期まで培養し
たのち、リゾチームSDS処理により溶菌させ、
30000×g、30分の超遠心により上清を得た。
フエノール処理ののち、2容のエタノールを加
えてDNAを沈澱回収した。これを少量のTEN
緩衝液(20mMトリス塩酸塩、20mM NaCl,
1mM EDTA(PH8.0)に溶解後、アガロースゲ
ル電気泳動にかけ分離後、切り出してpAJ1844
プラスミドDNA約15μgを得た。 (3) 染色体DNA断片のベクターへの挿入 (1)で得た染色体DNA10μgと(2)で得たプラ
スミドDNA5μgとを制限エンドヌクレアーゼ
PstIでそれぞれ37℃に1時間保持し、切断し
た。65℃に10分間加熱した後、両反応液を混合
し、ATP及びジチオスレイトール存在下、T4
フアージ由来のDNAリガーゼによつて10℃に
24時間保持しDNA鎖を連結せしめた。ついで
反応液を、65℃にて5分間加熱し、反応液に2
倍容のエタノールを加えて連結されたDNAの
沈澱を採取した。 (4) コロニーバンクの作成 アントラニル酸シンターゼが欠損したブレビ
バクテリウム・ラクトフアーメンタムAS60(ブ
レビバクテリウム・ラクトフアーメンタム
AJ12036を親株として、N−メチル−N−ニト
ロ−N−ニトロソグアニジンにより変異処理す
ることにより、アントラニル酸を生育に要求す
る変異株として選択した。)を受容菌として用
いた。 形質転換の方法としては、プロトプラストト
ランスフオーメーシヨン法を用いた。まず、菌
株を5mlのCMG液体培地で対数増殖期の初期
まで培養し、ペニシリンGを0.6ユニツト/ml
添加後、さらに1.5時間振盪培養し、遠心分離
により菌体を集め、菌体を0.5Mシユークロー
ス、20mMマレイン酸、20mM塩化マグネシウ
ム、3.5%ペナツセイブロス(Difco)からなる
SMMP培地(PH6.5)0.5mlで洗浄した。次いで
10mg/mlのリゾチームを含むSMMP培地に懸濁
し30℃で20時間プロトプラスト化を図つた。
6000×g、10分間遠心分離後、プロトプラスト
をSMMPで洗浄し0.5mlのSMMPに再度懸濁し
た。この様にして得られたプロトプラストと(3)
で調製したDNA10μgを5mMEDTA存在下で
混合し、ポリエチレングリコールを最終濃度が
30%になる様に添加した後、DNAをプロトプ
ラストに取り込ませるため室温に2分間放置し
た。このプロトプラストをSMMP培地1mlで
洗浄後、SMMP培地1mlに再懸濁し、形質発
現のため、30℃で2時間培養した。この培養液
をPH7.0のプロトプラスト再生培地上に塗布し
た。プロトプラスト再生培地は蒸留水1あた
りトリス(ヒドロキシメチル)アミノメタン12
g、KCl0.5g、グルコース10g、MgCl2
6H2O8.1g、CaCl2・2H2O2.2g、ペプトン4
g、粉末酵母エキス4g、カザミノ酸(Difco
社)1g、K2HPO40.2g、コハク酸ナトリウ
ム135g、寒天8g及びクロラムフエニコール
3μg/mlを含む。 30℃で2週間培養後、50000個のクロラムフ
エニコール耐性コロニーが出現してきたのでこ
れを全てかきあつめ、コロニーバンクを作成し
た。 (5) トリプトフアン生合成系遺伝子が増幅された
クローンの選択 コロニーバンクを適当に希釈したもの(約
103〜104/ml)とアンピシリン耐性のプラスミ
ドpUC8(Messing,J.,Gene19,259(1982))
を有する大腸菌の生育にトリプトフアンを要求
する変異株を最少培地(2%グルコース、1%
硫酸アンモニウム、0.3%尿素、0.1%リン酸二
水素カリウム、0.04%硫酸マグネシウム7水
塩、2ppm鉄イオン、2ppmマンガンイオン、
200μg/サイアミン塩酸塩、50μg/ビオ
チン、10μg/mlクロラムフエニコール、100μ
g/mlアンピシリン、3%カザミノ酸(Difco
社製)、100mg/アントラニル酸、PH7.0、寒
天1.8%)上に塗布した。 トリプトフアン生合成系遺伝子が増幅され、
トリプトフアンが蓄積するようになつた形質転
換株の周辺には、トリプトフアン要求性の大腸
菌が増殖する。すると大腸菌が保持しているプ
ラスミドpUC8にコードされるβ−ラクタマー
ゼにより培地中のアンピシリンが分解され、形
質転換株はさらに増殖し、コロニーを作る。一
方、トリプトフアンを蓄積しない形質転換株
は、その周辺に大腸菌を増殖させない。したが
つてアンピシリンが分解されないので、増殖で
きず、コロニーを形成しない。このような考え
をもとに大腸菌とコロニーバンクを適当に希釈
したものとを混合して最少培地に塗布し、30℃
にて40日間培養した。周囲に大腸菌が増殖して
いるコロニーを釣り上げ、単コロニー分離し、
(2)で用いた方法によりプラスミドを分離した。
本プラスミドをpAJ234と名付けた。pAJ234は
明らかにベクタープラスミドpAJ1844よりも大
きく、トリプトフアン生合成系遺伝子が挿入さ
れていると考えられた。 (6) pAJ234が有するトリプトフアン生合成系遺
伝子の同定 (6)−1 アンスラニル酸ホスホリボシルトラン
スフエラーゼ(PRT)遺伝子、及び及びトリ
プトフアン合成酵素(TS)遺伝子の同定 PRT遺伝子、TSAサブユニツト遺伝子(以
下TSA遺伝子と記す)、TSBサブユニツト遺伝
子(以下TSB遺伝子と記す)が欠損した各菌
株ブレビバクテリウム・ラクトフアーメンタム
T13(NRRLB−1534T)、ブレビバクテリウ
ム・ラクトフアーメンタムNo.21、ブレビバクテ
リウム・ラクトフアーメンタムB5、pAJ234を
(4)で述べた方法を用いて形質転換した。30℃に
て1週間再生培地にて培養後生じたクロラムフ
エニコール耐性コロニーのうちそれぞれ10個を
釣り上げトリプトフアン要求性をテストしたと
ころ、これらはいずれも要求性を消失してお
り、上記組換えプラスミド上にPRT遺伝子、
TSA遺伝子、TSB遺伝子が存在することが明
らかになつた。 (6)−2 PRAI−InGP遺伝子の同定 大腸菌trpC欠損株CGSCNo.5889(trpC60.pyrF
287,hisG1,IacZ53,rpsL8,λ-)に
pAJ234を導入した。DNA受容菌細胞を塩化カ
ルシウムで処理してDNAの透過性を増す方法
を用いてpAJ234を形質転換し、生じたクロラ
ムフエニルコール耐生コロニーのうちそれぞれ
10個を釣り上げトリプトフアン要求性を調べ
た。いずれもが要求性を消失しており、上記組
換えプラスミド上にPRAI−InGP遺伝子が存
在することが明らかとなつた。 (7) PRAI−InGP遺伝子のサブクローニング pAJ234を組換えに用いた制限酵素PstIで切
断すると2.1kb,2.0kb,1.75kb,1.2kb,
0.8kb,0.5kbの6種の挿入PstI断片が検出され
た。このうち2.0kbのPstI断片を分画し、
pAJ1844のPstIサイトに連結し、ブレビバクテ
リウムラクトフアーメンタムT13,B5,No.21
及びE.coliCGSCNo.5889(trpC)を形質転換し
た。その結果、2.0kbのPstI断片を有する組換
プラスミドはT13の要求性を消失させたが、No.
21,B5,及びE.coliCGSCNo.5889の要求性は消
失させなかつた。次にこの2.0kbのPst断片を
Bglで切断し1.6kbのPst−Bgl断片をPst
,BamHIで切断したpAJ224に連結し、T13
を形質転換したところ、その要求性は消失し
た。従つてPRT遺伝子は1.6kbのPst−Bgl
断片上に存在すると考えられる。 次に2.1kb.のPst断片をpAJ1844のPstサ
イトに連結しブレビバクテリウムラクトフアー
メンタムB5に形質転換したところクロラムフ
エニコールを含む再生培地上に生じたコロニー
はいずれもトリプトフアン要求性を消失してい
た。代表的なコロニーからプラスミドを調製
し、再度B5及びブレビバクテリウムラクトフ
アーメンタムT13,No.21,E.coliCGSCNo.5889
trpC)を形質転換した。その結果B5の要求性
は消失したが、T13,No.21及びE.coliの要求性
は消失しなかつた。 従つて2.1kb.のPst断片上にTSB遺伝子が
存在すると考えられる。さらに分画した2.0kb
と2.1kbのPst断片とPstで切断した
pAJ1844を(3)の方法により連結し、E.
coliCGSCNo.5889の要求性を消失させる組換え
プラスミドを得た。本プラスミドは2.0kbと
2.1kbのPst断片を有しており、T13,B5に
形質転換したところいずれの要求性をも消失さ
せた。 次にPRAI−InGP遺伝子のサブクローニン
グを行なうため、2.0kb,2.1kbのPst断片を
有する組換えプラスミドから第1図に示した約
2kb.のSst−EcoRI断片を分画しSstI,EcoRI
で切断したpUC19(Messing,J.,et al.,
Gene,33 103−119,1985)に連結し、lac
ロモーターからの転写が可能になるように配置
した。或いは第1図の約2.6kbのSst−Hind
断片を分画しSst,Hindで切断した
pUC18(Messing,J.,et Al.,Gene,33,103
−119(1985))に連結しlacプロモーターからの
転写が可能になるように配置し、E.coliCGSC
No.5889を形質転換した。その結果、Sst−
EcoRI断片、或いはSst−Hind断片を有す
る組換えプラスミドは、E.coliの要求性を消失
させた。 以上の結果からPRT遺伝子、PRAI−InGP
遺伝子、TSB遺伝子は2.0kb,2.1kbのPst断
片上に第1図に示す位置に存在していると考え
られる。 尚PRT遺伝子のサブクローニングの際用い
たプラスミドpAJ224は以下の様にして造成し
た。 pAJ224はトリメトプリム耐性を有するベク
タープラスミドpAJ228から造成した。pAJ228
の造成は以下の通りである。 ブレビバクテリウム・ラクトフアーメンタム
AJ12036より変異誘導されたトリメトプリム耐
性変異株AJ12146(FERM−P7672)から(1)で
述べた方法により染色体DNAを調製した。一
方、プラスミドベクターpAM330を保有するブ
レビバクテリウム・ラクトフアーメンタム
ATCC13869から(2)で述べた方法により
pAM330を調製した。 次に、染色体DNA20μgとpAM330 10μgと
を制限エンドヌクレアーゼMboでそれぞれ
を37℃、30分間処理し、部分切断した。65℃、
10分の熱処理後、両反応液を混合し、ATP及
びジチオスレイトール存在下、T4フアージ由
来のDNAリガーゼによつて10℃、24時間DNA
鎖の連結反応を行つた。65℃、5分の熱処理
後、反応液に2倍容のエタノールを加えて連結
反応終了後のDNAを沈澱採取した。 DNAの沈澱を適当量TENバツフアーに溶解
後、トリメトプリム感受性のAJ12036を受容菌
として、形質転換に用いた。 形質転換の方法としては、(4)で述べた方法を
用いた。トリメトプリム(Sigma社)25μg/
mlを含む再生培地にて、30℃で1週間培養後、
約100個のコロニーが出現してきたので、これ
をトリメトプリム50μg/mlを含む最小培地に
レプリカし、トリメトプリム耐性1株を得た。 この株の有するプラスミドDNAを検出した
ところ、ベクターのpAM330よりも明らかに大
きなプラスミドが検出された。 このプラスミドをpAJ228と名付け、再度
AJ12036を形質転換した。 生じたトリメトプリム耐性を有するコロニー
のうちそれぞれ10個を釣り上げアガロース・ゲ
ル電気泳動法によりプラスミドDNAを検出し
たところ、これらのいずれにもpAJ228と同じ
大きさのプラスミドが存在していた。上記組換
えプラスミド上にトリメトプリム耐性を表現す
る遺伝子が存在することが明らかとなつた。 pAJ228からpAJ224の造成は第2図に示した
通りである。 pAJ211より制限酵素PstIによる部分切断で
切り出した2.9kbのDNA断片の両端にBamHI,
SalI,PstIの切断部位をもつた第1図に示した
ような合成オリゴヌクレオチドリンカーをT4
フアージ由来のDNAリガーゼを用いて連結さ
せた後、制限酵素BamHIで切断した。得られ
たDNA混合物をアガロース・ゲル電気泳動に
かけ、約2.9kbのDNA断片を分離抽出し、エタ
ノール沈澱によりDNA断片を回収した。こう
して得られたDNA断片は2.9kbのHK遺伝子を
含むDNAの両端にPatI,SalI,BamHIの切断
部位が並んだ構造になつている。 pAJ211はpAJ1844のPatIサイトに2.9kbの
HK(ホモセリンキナーゼ)遺伝子を有する
PatI断片が挿入されたものでAJ12079(FERM
−P7237)として寄託されている。 一方、pAJ228は制限酵素MboIで部分切断し
た後65℃、10分の熱処理をした。この反応液に
前述の方法で得たHK遺伝子を含むDNA断片
を加え、T4DNAリガーゼでDNA鎖の連結反
応を行つた。反応後、65℃、5分の熱処理を
し、2倍容のエタノールの添加により沈澱採取
されるDNAを、(4)と同様の方法によりトリメ
トプリム感受性で、かつ、HK遺伝子が欠損し
たブレビバクテリウム・ラクトフアーメンタム
AJ12078を受容菌としてプロトプラストランフ
オーメーシヨンを行つた後、トリメトプリム
100μg/mlを含むプロトプラスト再生培地で
培養した結果約200個の再生コロニーが出現し
てきた。 これをトリメトプリムを200μg/mlを含み
受容菌の要求物質であるスレオニンを含まない
最少培地にレプリカし、トリメトプリム耐性
で、かつスレオニン要求性が消失した菌株4株
を得た。これらの株より(2)に示した方法により
溶菌液を調製し、アガロース・ゲル電気泳動に
よりプラスミドDNAを検出したところ14.9kb,
12.2kb,9.6kb,6.5kbのプラスミドが検出され
た。このうち最も分子量の小さい6.5kbのプラ
スミドをpAJ212と名付けた。pAJ212を保持す
る株を12078−HK株と名付けた。 pAJ212は、PstIで切断することによりHK遺
伝子を除いて、pAJ224として、ブレビバクテ
リウム・ラクトフアーメンタムAJ12196
(FERM−P8015)として寄託されている。 (8) PRAI−InGP遺伝子のブレビバクテリウム
内で複製可能なベクターへの移し変え (8)−1 pAJ82の造成 pAJ43(特開昭58−192900)5μgに0.25ユニ
ツトの制限酵素HPaを37℃、5分間反応さ
せた。一方pUB110(Gryczan,T.J.etal J.
Bacteriol.,134,318(1978))5μgに5ユニツ
トのHpaを37℃、120分間反応させた。両者
を混合後、(3)の方法により連結し、AJ12036に
(4)の方法を用いて形質転換した。 クロラムフエニコール3μg/ml、カナマイ
シン100μg/mlを含む再生培地上に生じたコ
ロニーを分離した。代表株からプラスミドを分
離し、再度AJ12036を形質転換したところ、再
生培地上に生じたコロニーはいずれもがカナマ
イシン耐性でかつクロラムフエニコール耐性を
示した。本プラスミドをpAJ82と名付けた。そ
の制限酵素切断地図を第3図に示した。 (8)−2 PRAI−InGP遺伝子のpAJ82への移し
変えPRAI−InGP遺伝子を有するSstI−EcoR
断片とpUC19から成る組換えプラスミドを
EcoRで切断し、pAJ82のクロムフエコール
耐性遺伝子内に位置するEcoRサイトに連結
した後、m−フルオロフエニルアラニン及び5
−フルオロトリプトフアン耐性株ブレビバクテ
リウムラクトフアーメンタムM247へ(4)で述べ
た方法により形質転換した。この菌株を
AJ12258(FERM、P−8470)とした。 カナマイシン100μg/mlを含む再生培地上
に生じたコロニーの中からクロラムフエニコー
ル感受性となつた株を分離し、プラスミドを抽
出した。このプラスミドをpAJ235と名付けた
(第4図)。pAJ235を制限酵素EcoR,Hind
,PstI,Bgl等で切断し約2.0kbのPRAI−
InGP遺伝子を有するDNA断片が挿入されてい
ることを確認した。 (9) 形質転換株のトリプトフアン生産能 (8)−2で得た形質転換株AJ12258(FERM P
−8470のトリプトフアン生産能を調べたところ
第1表に示す結果を得た。 培養はトリプトフアン生産培地(グルコース
130g、(NH42SO425g、フマル酸12g、酢酸
3ml、KH2PO41g、MnSO4・4H2O10mg、
MgSO4・7H2O1g、d−ビチオン50μg、サイ
アミン塩酸塩200μg、メチオニン400mg、チロ
シン650mg、大豆蛋白酸加水分解液「味液」50
ml、CaCO350gを水1に含む、PH6.5。)20ml
を500mlの坂口フラスコに入れたものに被検菌
株を植えつけ、30℃にて72時間、振盪下に行な
つた。培養後、遠心上清中のL−トリプトフア
ンをロイコノストツク・メセントロイデス
(Leuconostoc mesenteroides)ATCC8042を
定量菌株として用いるバイオアツセイ法によつ
て求めた。
[Table] The coryneform glutamate-producing bacteria of the present invention include, in addition to the wild strains having glutamate productivity as described above, mutant strains having glutamate productivity or having lost glutamate productivity. The method for isolating the PRAI-InGP gene is to first extract the chromosomal gene from a strain of coryneform bacteria that has the PRAI-InGP gene (for example, H.
Saito and K.Miura Biochem.Biphys.Acta72,
619, (1963) can be used. ), which is then cut with an appropriate restriction enzyme. It is then connected to a plasmid vector capable of propagating within coryneform bacterial cells,
The obtained recombinant DNA was used to develop coryneform bacteria.
A mutant strain lacking the PRAI-InGP gene is transformed and a strain that maintains PRAI-InGP production activity is isolated, from which each PRAI-InGP gene can be isolated. In order to cleave chromosomal genes, a wide variety of restriction enzymes can be used by adjusting the degree of cleavage by adjusting the cleavage reaction time and the like. The plasmid vector used in the present invention is
Any substance that can grow within coryneform bacterial cells may be used. Specific examples include the following. (1) pAM 330 See JP-A-58-67699 (2) pAM 1519 See JP-A-58-77895 (3) pAJ 655 See JP-A-58-192900 (4) pAJ 611 Same as above (5) pAJ 1844 Same as above (6) ) pCG 1 See JP-A-57-134500 (7) pCG 2 See JP-A-58-35197 (8) pCG 4 See JP-A 57-183799 (9) pCG 11 Same as above Cleavage of plasmid vector DNA
This is done by cutting using a restriction enzyme that cuts at one site or partially cutting using a restriction enzyme that cuts at multiple sites. When the vector DNA cuts the chromosomal gene,
A ligation reaction between the plasmid vector and the chromosomal DNA fragment is performed by connecting oligonucleotides having complementary base sequences to both ends of the chromosomal DNA cleavage fragment and the cleaved vector DNA, which are cleaved by the restriction enzyme used, and then ligation reaction between the plasmid vector and the chromosomal DNA fragment. attached to. In order to introduce the thus obtained recombinant DNA of chromosomal DNA and vector plasmid into a recipient bacterium belonging to coryneform bacteria, E.
As reported for coli K-12 (Mandel.M. and Higa.A., J.Mol., Biol., 53 ,
159 (1970)) to increase DNA permeability by treating recipient bacterial vacuoles with calcium chloride, or as reported for Bacillus subtilis (Duncan, CH, Wilson, GA and Young, F.
E., Gene. 1 , 153 (1977)) This is possible by introducing cells into a proliferation stage (so-called competent cells) at which they can take up DNA. Alternatively, as is known for Bacillus subtilis, actinomycetes and yeasts (Chang, S. and
Choen, S. N., Molec. Gen., Genet., 168 ,
111 (1979); Bibb, Mj, Ward, JMand
Hopwood, OA, Nature, 274 , 398 (1978);
Hinnen, A., Hicks, JBand Fink, G.R.
Proc.Natl.Acad.Sei.USA, 75 , 1929 (1978)),
It is also possible to transform the DNA recipient bacteria into protoplasts or spheroplasts, which readily take up plasmid DNA, and to introduce the plasmid into the DNA recipient bacteria. In the protoplast method, a sufficiently high frequency can be obtained using the method used for Patillus subtilis, and polyethylene glycol or polyethylene glycol or Of course, a method of incorporating DNA in the presence of polyvinyl alcohol and divalent metal ions can also be used. By adding carboxymethyl cellulose, dextran, Ficoll, Brulonik F68 (Selva), etc. instead of polyethylene glycol or polyvinyl alcohol, DNA
Equivalent results can also be obtained by methods that promote the uptake of As an L-tryptophan-producing bacterium, PRAI-
A strain transformed with an InGP-deficient strain as a host can be used, but a strain with higher L-tryptophan productivity may be obtained by using the following hosts. Specifically, a mutant strain of Brevibacterium that requires phenylalanine and tyrosine and is resistant to 5-methyltryptophan (I. Shiio, H. Sato, M.
Nakagawa., Agric.Biol.Ctem. 36 , 2315
(1972)), require phenylalanine from Brevibacterium, m-fluorophenylalanine,
Mutant strain resistant to 5-fluorotryptophan (I.Shiio, S.Sugimoto, M.Nakagawa.
Agrie.Biol.Chem., 39 , 627 (1975)), a mutant strain of Brevibacterium that requires tyrosine and is resistant to 5-fluorotryptophan and azaserine, phenylalanine of Corynebacterium,
requires tyrosine, 5-methyltryptophan,
4-methyltryptophan, 6-fluorotryptophan, tryptophan hydroxamate, p
- Mutant strains resistant to fluorophenylalanine, tyrosine hydroxamate, and phenylalanine hydroxamate (H. Hagino, K.
Nakayama., Agric.Biol.Chem., 39 , 345
(1975)) etc. Most preferred are microorganisms that belong to coryneform glutamic acid producing bacteria and are resistant to m-fluorophenylalanine and 5-fluorotryptophan. The method of culturing the thus obtained coryneform bacteria capable of producing L-tryptophan to produce and accumulate L-tryptophan is different from the method conventionally used for producing L-tryptophan using coryneform bacteria. There are no major differences.
That is, the medium is a conventional medium containing a carbon source, a nitrogen source, inorganic ions, and, if necessary, organic micronutrients such as amino acids and vitamins. As the carbon source, glucose, sucrose, lactose, etc., and starch hydrolyzate containing these, whey, molasses, etc. are used. As the nitrogen source, ammonia gas, aqueous ammonia, ammonium salt, etc. can be used. Cultivation is carried out under aerobic conditions while adjusting the pH and temperature of the medium as appropriate until the production and accumulation of L-tryptophan substantially ceases. Example (1) Preparation of chromosomal DNA containing PRAI-InGP gene Brevibacterium lactofamentum
AJ12036 (FERM-P7559) was mixed with 1 CMG medium (containing peptone 1g/dl, yeast extract 1g/dl, glucose 0.5g/dl, and NaCl 0.5g/dl, PH
7.2), cultured with shaking at 30°C for about 3 hours, and the cells in the logarithmic growth phase were collected. After lysing the bacterial cells with lysozyme/SDS, the chromosomes were treated with normal phenol.
The DNA was extracted and purified, and 3.5 mg of DNA was finally obtained. (2) Preparation of vector DNA Using pAJ1844 (molecular weight 5.4 megadaltons) as a vector, its DNA was prepared as follows. First, Brevibacterium lactofamentum carrying pAJ1844 as a plasmid.
AJ12037 (FERM-P7234) was inoculated into 100 ml of CMG medium, cultured at 30°C until the late logarithmic growth phase, and then lysed by lysozyme SDS treatment.
A supernatant was obtained by ultracentrifugation at 30,000×g for 30 minutes.
After the phenol treatment, 2 volumes of ethanol were added to precipitate and collect the DNA. Add a small amount of this to TEN
Buffer (20mM Tris Hydrochloride, 20mM NaCl,
Dissolved in 1mM EDTA (PH8.0), separated by agarose gel electrophoresis, and excised to create pAJ1844.
Approximately 15 μg of plasmid DNA was obtained. (3) Insertion of chromosomal DNA fragment into vector 10μg of chromosomal DNA obtained in (1) and 5μg of plasmid DNA obtained in (2) were combined with restriction endonuclease.
Each was held at 37°C for 1 hour and cut with PstI. After heating to 65 °C for 10 min, both reactions were mixed and treated with T4 in the presence of ATP and dithiothreitol.
10℃ using Phage-derived DNA ligase
The DNA strands were allowed to connect for 24 hours. Then, the reaction solution was heated at 65°C for 5 minutes, and 2
Double the volume of ethanol was added to collect the ligated DNA precipitate. (4) Creation of colony bank Brevibacterium lactofamentum AS60 lacking anthranilate synthase (Brevibacterium lactofamentum
AJ12036 was used as the parent strain and was mutated with N-methyl-N-nitro-N-nitrosoguanidine to select a mutant strain that requires anthranilic acid for growth. ) was used as the recipient bacterium. The protoplast transformation method was used as the transformation method. First, the strain was cultured in 5 ml of CMG liquid medium until the early logarithmic growth phase, and penicillin G was added at 0.6 units/ml.
After the addition, the cells were cultured with shaking for another 1.5 hours, and the cells were collected by centrifugation.
Washed with 0.5 ml of SMMP medium (PH6.5). then
The cells were suspended in SMMP medium containing 10 mg/ml of lysozyme and cultured into protoplasts at 30°C for 20 hours.
After centrifugation at 6000×g for 10 minutes, the protoplasts were washed with SMMP and resuspended in 0.5 ml of SMMP. Protoplasts obtained in this way and (3)
Mix 10 μg of the DNA prepared in 5mMEDTA in the presence of
After adding the DNA to a concentration of 30%, it was left at room temperature for 2 minutes to incorporate the DNA into protoplasts. The protoplasts were washed with 1 ml of SMMP medium, resuspended in 1 ml of SMMP medium, and cultured at 30° C. for 2 hours for expression. This culture solution was spread on a protoplast regeneration medium at pH 7.0. Protoplast regeneration medium contains 12 parts of tris(hydroxymethyl)aminomethane per 1 part of distilled water.
g, KCl 0.5 g, glucose 10 g, MgCl 2 .
6H2O8.1g , CaCl22H2O2.2g , peptone 4
g, powdered yeast extract 4g, casamino acids (Difco
) 1g, K 2 HPO 4 0.2g, sodium succinate 135g, agar 8g and chloramphenicol
Contains 3μg/ml. After culturing at 30°C for two weeks, 50,000 chloramphenicol-resistant colonies appeared, which were all collected to create a colony bank. (5) Selection of clones in which tryptophan biosynthesis system genes have been amplified Appropriately diluted colony bank (approximately
10 3 -10 4 /ml) and ampicillin-resistant plasmid pUC8 (Messing, J., Gene 19 , 259 (1982)).
A mutant strain of E. coli that requires tryptophan for growth was grown on minimal medium (2% glucose, 1%
Ammonium sulfate, 0.3% urea, 0.1% potassium dihydrogen phosphate, 0.04% magnesium sulfate heptahydrate, 2ppm iron ion, 2ppm manganese ion,
200μg/thiamine hydrochloride, 50μg/biotin, 10μg/ml chloramphenicol, 100μ
g/ml ampicillin, 3% casamino acids (Difco
Co., Ltd.), 100mg/anthranilic acid, PH7.0, agar 1.8%). The tryptophan biosynthesis system gene is amplified,
Escherichia coli auxotrophic for tryptophan proliferates around the transformed strain that has accumulated tryptophan. Ampicillin in the medium is then degraded by β-lactamase encoded by plasmid pUC8 carried by E. coli, and the transformed strain further proliferates to form colonies. On the other hand, a transformed strain that does not accumulate tryptophan does not allow E. coli to proliferate around it. Therefore, since ampicillin is not degraded, they cannot proliferate and do not form colonies. Based on this idea, E. coli and an appropriately diluted colony bank were mixed, applied to a minimal medium, and incubated at 30°C.
The cells were cultured for 40 days. Pick up a colony with E. coli growing around it, isolate a single colony,
The plasmid was isolated by the method used in (2).
This plasmid was named pAJ234. pAJ234 was clearly larger than vector plasmid pAJ1844, and it was thought that a tryptophan biosynthesis system gene had been inserted therein. (6) Identification of tryptophan biosynthesis system genes possessed by pAJ234 (6)-1 Identification of anthranilate phosphoribosyltransferase (PRT) gene and tryptophan synthase (TS) gene PRT gene, TSA subunit gene (hereinafter referred to as TSA Brevibacterium lactofamentum strains lacking the TSB subunit gene (hereinafter referred to as TSB gene)
T13 (NRRLB-1534T), Brevibacterium lactofamentum No. 21, Brevibacterium lactofamentum B5, pAJ234.
Transformation was performed using the method described in (4). When 10 of the chloramphenicol-resistant colonies that emerged after culturing in regeneration medium at 30°C for one week were tested for tryptophan auxotrophy, all of them had lost their tryptophan auxotrophy. PRT gene on plasmid,
The existence of TSA and TSB genes has been revealed. (6)-2 Identification of PRAI-InGP gene Escherichia coli trpC- deficient strain CGSC No.5889 ( trpC 60. pyrF
287, hisG 1, Iac Z53, rpsL 8, λ - )
pAJ234 was introduced. pAJ234 was transformed by treating DNA recipient bacterial cells with calcium chloride to increase DNA permeability, and each of the resulting chloramphenylcol-resistant colonies
We caught 10 fish and examined their tryptophan requirements. In both cases, the requirement was lost, and it became clear that the PRAI-InGP gene was present on the above recombinant plasmid. (7) Subcloning of PRAI-InGP gene When pAJ234 was cut with the restriction enzyme PstI used for recombination, 2.1kb, 2.0kb, 1.75kb, 1.2kb,
Six types of inserted PstI fragments of 0.8 kb and 0.5 kb were detected. Of these, a 2.0 kb PstI fragment was fractionated,
Linked to the PstI site of pAJ1844, Brevibacterium lactofamentum T13, B5, No. 21
and E. coli CGSC No. 5889 ( trpC ). As a result, the recombinant plasmid containing the 2.0 kb PstI fragment abolished the requirement for T13, but no.
21, B5, and E. coli CGSC No. 5889 were not eliminated. Next, add this 2.0kb Pst fragment to
Pst was cut with Bgl and the 1.6kb Pst-Bgl fragment was
, ligated to pAJ224 cut with BamHI and T13
When transformed, this requirement disappeared. Therefore, the PRT gene is a 1.6kb Pst-Bgl
It is thought that it exists on fragments. Next, the 2.1 kb. Pst fragment was ligated to the Pst site of pAJ1844 and transformed into Brevibacterium lactofamentum B5. All of the colonies that formed on the regeneration medium containing chloramphenicol lost their tryptophan auxotrophy. was. Plasmids were prepared from representative colonies and again B5 and Brevibacterium lactofamentum T13, No. 21, E. coli CGSC No. 5889
( trpC ) was transformed. As a result, the requirement for B5 disappeared, but the requirement for T13, No. 21, and E. coli did not disappear. Therefore, it is considered that the TSB gene exists on the 2.1 kb. Pst fragment. Further fractionated 2.0kb
and a 2.1kb Pst fragment and cut with Pst
pAJ1844 was ligated by method (3), and E.
We obtained a recombinant plasmid that eliminates the auxotrophy of coliCGSC No.5889. This plasmid is 2.0kb.
It has a 2.1 kb Pst fragment, and when transformed into T13 and B5, both requirements were abolished. Next, in order to subclon the PRAI-InGP gene, we used a recombinant plasmid containing 2.0 kb and 2.1 kb Pst fragments to
The 2 kb. Sst-EcoRI fragment was fractionated and treated with SstI and EcoRI.
pUC19 (Messing, J., et al.,
Gene, 33 103-119, 1985) and arranged to enable transcription from the lac promoter. Or about 2.6kb Sst-Hind in Figure 1
The fragments were fractionated and cut with Sst and Hind.
pUC18 (Messing, J., et Al., Gene, 33 , 103
−119 (1985)) and positioned to enable transcription from the lac promoter.
No.5889 was transformed. As a result, Sst−
Recombinant plasmids containing the EcoRI fragment or the Sst-Hind fragment abolished the auxotrophy of E. coli. From the above results, the PRT gene, PRAI-InGP
It is thought that the TSB gene is present on the 2.0 kb and 2.1 kb Pst fragments at the positions shown in FIG. The plasmid pAJ224 used for subcloning the PRT gene was constructed as follows. pAJ224 was constructed from vector plasmid pAJ228 having trimethoprim resistance. pAJ228
The construction process is as follows. Brevibacterium lactofamentum
Chromosomal DNA was prepared from the trimethoprim-resistant mutant strain AJ12146 (FERM-P7672) mutagenized from AJ12036 by the method described in (1). On the other hand, Brevibacterium lactofamentum carrying plasmid vector pAM330
By the method described in (2) from ATCC13869
pAM330 was prepared. Next, 20 μg of chromosomal DNA and 10 μg of pAM330 were each treated with restriction endonuclease Mbo at 37° C. for 30 minutes to partially cleave them. 65℃,
After heat treatment for 10 minutes, both reaction solutions were mixed, and the DNA was ligated with T4 phage-derived DNA ligase at 10°C for 24 hours in the presence of ATP and dithiothreitol.
A chain ligation reaction was performed. After heat treatment at 65° C. for 5 minutes, twice the volume of ethanol was added to the reaction solution, and the DNA after the completion of the ligation reaction was precipitated and collected. After dissolving an appropriate amount of the DNA precipitate in TEN buffer, trimethoprim-sensitive AJ12036 was used as a recipient strain for transformation. The method described in (4) was used as the transformation method. Trimethoprim (Sigma) 25μg/
After culturing for one week at 30°C in regeneration medium containing ml,
Approximately 100 colonies appeared, and these were replicated onto a minimal medium containing 50 μg/ml of trimethoprim to obtain one strain resistant to trimethoprim. When the plasmid DNA of this strain was detected, a plasmid clearly larger than the vector pAM330 was detected. This plasmid was named pAJ228 and again
AJ12036 was transformed. When 10 of the resulting trimethoprim-resistant colonies were picked and plasmid DNA was detected by agarose gel electrophoresis, a plasmid of the same size as pAJ228 was present in all of them. It was revealed that a gene expressing trimethoprim resistance was present on the above recombinant plasmid. The construction of pAJ224 from pAJ228 is as shown in FIG. BamHI,
A synthetic oligonucleotide linker as shown in Figure 1 with SalI and PstI cleavage sites was added to T 4
After ligation using Phage-derived DNA ligase, the DNA was cleaved with the restriction enzyme BamHI. The resulting DNA mixture was subjected to agarose gel electrophoresis to separate and extract a DNA fragment of approximately 2.9 kb, and the DNA fragment was recovered by ethanol precipitation. The DNA fragment thus obtained has a structure in which PatI, SalI, and BamHI cleavage sites are lined up at both ends of the 2.9 kb DNA containing the HK gene. pAJ211 is 2.9kb in the PatI site of pAJ1844.
Contains the HK (homoserine kinase) gene
AJ12079 (FERM
−P7237). On the other hand, pAJ228 was partially digested with the restriction enzyme MboI and then heat-treated at 65°C for 10 minutes. The DNA fragment containing the HK gene obtained by the method described above was added to this reaction solution, and the DNA strands were ligated using T 4 DNA ligase. After the reaction, heat treatment was performed at 65°C for 5 minutes, and the precipitated DNA was collected by adding 2 times the volume of ethanol. Brevibacterium sensitive to trimethoprim and lacking the HK gene was collected using the same method as in (4).・Lactofamentum
After protoplast transformation using AJ12078 as recipient bacteria, trimethoprim
As a result of culturing in a protoplast regeneration medium containing 100 μg/ml, approximately 200 regenerated colonies appeared. This was replicated to a minimal medium containing 200 μg/ml of trimethoprim and free of threonine, which is a substance required by the recipient bacteria, to obtain four strains that were resistant to trimethoprim and had lost their threonine requirement. A lysate was prepared from these strains by the method shown in (2), and plasmid DNA was detected by agarose gel electrophoresis.
Plasmids of 12.2kb, 9.6kb, and 6.5kb were detected. Among these, the plasmid with the smallest molecular weight of 6.5 kb was named pAJ212. The strain harboring pAJ212 was named 12078-HK strain. pAJ212 was extracted from Brevibacterium lactofamentum AJ12196 as pAJ224 by removing the HK gene by cutting with PstI.
(FERM-P8015). (8) Transfer of PRAI-InGP gene to a vector capable of replicating in Brevibacterium (8)-1 Construction of pAJ82 Add 0.25 units of restriction enzyme HPa to 5 μg of pAJ43 (JP-A-192900) at 37°C. The reaction was allowed to proceed for 5 minutes. On the other hand, pUB110 (Gryczan, TJetal J.
Bacteriol., 134 , 318 (1978)) was reacted with 5 units of Hpa at 37°C for 120 minutes. After mixing both, connect them using method (3) to form AJ12036.
Transformation was performed using the method described in (4). Colonies produced on regeneration medium containing 3 μg/ml of chloramphenicol and 100 μg/ml of kanamycin were isolated. When a plasmid was isolated from the representative strain and transformed into AJ12036 again, all colonies that appeared on the regeneration medium were resistant to kanamycin and chloramphenicol. This plasmid was named pAJ82. The restriction enzyme cleavage map is shown in FIG. (8)-2 Transfer of PRAI-InGP gene to pAJ82 SstI-EcoR carrying PRAI-InGP gene
A recombinant plasmid consisting of the fragment and pUC19
After cutting with EcoR and ligating to the EcoR site located within the chromium fecol resistance gene of pAJ82, m-fluorophenylalanine and 5
- The fluorotryptophan-resistant strain Brevibacterium lactofamentum M247 was transformed by the method described in (4). This strain
AJ12258 (FERM, P-8470). Strains that had become susceptible to chloramphenicol were isolated from the colonies that had grown on a regeneration medium containing 100 μg/ml of kanamycin, and the plasmids were extracted. This plasmid was named pAJ235 (Figure 4). pAJ235 with restriction enzyme EcoR, Hind
, PstI, Bgl, etc., resulting in approximately 2.0kb of PRAI−
It was confirmed that a DNA fragment containing the InGP gene had been inserted. (9) Tryptophan production ability of transformed strain AJ12258 (FERM P) obtained in (8)-2
When the tryptophan production ability of -8470 was investigated, the results shown in Table 1 were obtained. Culture is performed using tryptophan production medium (glucose
130g, (NH 4 ) 2 SO 4 25g, fumaric acid 12g, acetic acid 3ml, KH 2 PO 4 1g, MnSO 4・4H 2 O 10mg,
MgSO 4 7H 2 O 1g, d-bithione 50μg, thiamine hydrochloride 200μg, methionine 400mg, tyrosine 650mg, soybean protein acid hydrolyzate "Ajiri" 50
ml, 50g of CaCO 3 in 1 part of water, PH6.5. )20ml
The test bacterial strain was inoculated into a 500 ml Sakaguchi flask and incubated at 30°C for 72 hours with shaking. After culturing, L-tryptophan in the centrifuged supernatant was determined by a bioassay method using Leuconostoc mesenteroides ATCC8042 as a quantitative bacterial strain.

【表】 尚、M247を得るためには寄託されたAJ12258
(FERM P−8470)より宿主細胞を損うことな
く宿主細胞中の複合プラスミドを除去することが
可能である。即ち、プラスミドは宿主より自然に
失なわれることもあるし、「除去」操作によつて
除くこともできる(Bact.Rev.,36,p361−405
(1972))。他の除去操作の例は以下の通りである。
AJ12258(FERM−P8470)をCMG液体培地に接
種し、37℃で一晩培養(高温処理)後、培養液を
適当に希釈し、カナマイシンを含有し又は含有し
ないCMG寒天培地に塗布し、30℃で1〜3日間
培養する。かくして感受性株として分譲される株
がM247である。
[Table] In order to obtain M247, deposited AJ12258 is required.
(FERM P-8470), it is possible to remove complex plasmids in host cells without damaging the host cells. That is, the plasmid may be lost naturally from the host, or it may be removed by a "removal" operation (Bact.Rev., 36 , p. 361-405).
(1972)). Examples of other removal operations are as follows.
AJ12258 (FERM-P8470) was inoculated into a CMG liquid medium, cultured overnight at 37°C (high temperature treatment), the culture solution was diluted appropriately, applied to a CMG agar medium containing or not containing kanamycin, and incubated at 37°C. Culture for 1 to 3 days. The strain that will be distributed as a susceptible strain is M247.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、PRT遺伝子、PRAI−InGP遺伝子、
TSB遺伝子が存在するDNA断片の制限酵素、地
図、及び各遺伝子の位置を示す図である。第2図
は、PAJ224の造成手順。第3図はPAJ82の制限
酵素地図。第4図は、PRAI−InGP遺伝子の
PAJ82への移し替えの手順。
Figure 1 shows the PRT gene, PRAI-InGP gene,
FIG. 2 is a diagram showing restriction enzymes, a map, and the position of each gene of a DNA fragment in which the TSB gene is present. Figure 2 shows the construction procedure of PAJ224. Figure 3 shows the restriction enzyme map of PAJ82. Figure 4 shows the PRAI-InGP gene.
Procedure for transferring to PAJ82.

Claims (1)

【特許請求の範囲】[Claims] 1 コリネホルム・グルタミン酸生産菌に属する
DNA供与菌より得られ、N−(5−ホスホリボシ
ル)アンスラニル酸イソメラーゼ−インドール−
3−グリセロールリン酸合成酵素をコードする
DNA断片が、コリネホルム・グルタミン酸生産
菌の菌体内で自律複製できるベクタープラスミド
に接続されて、コリネホルム・グルタミン酸生産
菌に属しm−フルオロフエニルアラニン及び5−
フルオロトリプトフアンに耐性を示すDNA受容
菌に導入されて得られるL−トリプトフアン生産
能を有する微生物を培養し、培養液中に蓄積され
たL−トリプトフアンを採取することを特徴とす
るL−トリプトフアンの製造法。
1 Belongs to coryneform-glutamic acid producing bacteria
N-(5-phosphoribosyl)anthranilate isomerase-indole-obtained from DNA donor bacteria
Encodes 3-glycerol phosphate synthase
The DNA fragment is connected to a vector plasmid that can autonomously replicate within the body of a coryneform glutamate producing bacterium, and m-fluorophenylalanine and 5-
L-tryptophan, which is characterized by culturing a microorganism capable of producing L-tryptophan obtained by introducing it into a DNA recipient bacterium that is resistant to fluorotryptophan, and collecting L-tryptophan accumulated in the culture solution. manufacturing method.
JP60221592A 1985-10-04 1985-10-04 Coryneform bacterium containing recombinant dna Granted JPS6279775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60221592A JPS6279775A (en) 1985-10-04 1985-10-04 Coryneform bacterium containing recombinant dna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60221592A JPS6279775A (en) 1985-10-04 1985-10-04 Coryneform bacterium containing recombinant dna

Publications (2)

Publication Number Publication Date
JPS6279775A JPS6279775A (en) 1987-04-13
JPH0476678B2 true JPH0476678B2 (en) 1992-12-04

Family

ID=16769169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60221592A Granted JPS6279775A (en) 1985-10-04 1985-10-04 Coryneform bacterium containing recombinant dna

Country Status (1)

Country Link
JP (1) JPS6279775A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2656300B2 (en) * 1988-04-18 1997-09-24 協和醗酵工業株式会社 Method for producing L-tryptophan
JP2967996B2 (en) 1989-06-06 1999-10-25 協和醗酵工業株式会社 Method for producing L-tryptophan

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59156292A (en) * 1983-02-17 1984-09-05 Kyowa Hakko Kogyo Co Ltd Preparation of tryptophan

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59156292A (en) * 1983-02-17 1984-09-05 Kyowa Hakko Kogyo Co Ltd Preparation of tryptophan

Also Published As

Publication number Publication date
JPS6279775A (en) 1987-04-13

Similar Documents

Publication Publication Date Title
US4757009A (en) Recombinant DNA having a phosphoenol pyruvate carboxylase gene inserted therein, bacteria carrying said recombinant DNA and a process for producing amino acids using said bacteria
JPH06102024B2 (en) Novel promoter and gene expression method using the promoter
JPS6279788A (en) Production of amino acid
US4946781A (en) Recombinant DNA, bacteria carrying said recombinant DNA and a process for producing L-threonine or L-isoleucine using said bacteria
JP2656300B2 (en) Method for producing L-tryptophan
US4968609A (en) Coryneform bacteria carrying recombinant DNA and a process for producing aromatic amino acids using said bacteria
JPH037591A (en) Production of l-tryptophan
US5034318A (en) Method for producing L-tryptophan by fermentation
JPH07112431B2 (en) Gene expression regulation method
JPS63240794A (en) Production of l-tryptophan
CA1283070C (en) Process for production of l-phenylalanine by fermentation
JPH06125779A (en) Production of aromatic amino acid using coryneform bacterium having recombinant dna
JPS62186795A (en) Production of amino acid
US5017481A (en) Coryneform bacteria carrying recombinant DNA and process for producing an aromatic amino acid by using the same
JPH0476678B2 (en)
US4885245A (en) Process for producing L-tryptophan
JPH055479B2 (en)
JPH0559710B2 (en)
JPH05184371A (en) Gene dna coding dihydrodipicolinic acid synthetase and its use
JPH01160487A (en) Shuttle vector-pz1, recombinant plasmid, transforming method for microbe, method for preparation of ricin and microbe transformed to ricin-productive one
JPH055480B2 (en)
JPH06102031B2 (en) Fermentation method for producing L-phenylalanine
JPH0672B2 (en) Fermentation method for producing L-phenylalanine or L-tyrosine
JPH0526467B2 (en)
JPS61289887A (en) Novel recombinant plasmid

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term