JPH0476456B2 - - Google Patents

Info

Publication number
JPH0476456B2
JPH0476456B2 JP63201491A JP20149188A JPH0476456B2 JP H0476456 B2 JPH0476456 B2 JP H0476456B2 JP 63201491 A JP63201491 A JP 63201491A JP 20149188 A JP20149188 A JP 20149188A JP H0476456 B2 JPH0476456 B2 JP H0476456B2
Authority
JP
Japan
Prior art keywords
buffer layer
optical waveguide
substrate
electrode
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63201491A
Other languages
Japanese (ja)
Other versions
JPH0251123A (en
Inventor
Kenji Kono
Tsutomu Kito
Toshinori Nozawa
Mitsuaki Yanagibashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP20149188A priority Critical patent/JPH0251123A/en
Publication of JPH0251123A publication Critical patent/JPH0251123A/en
Publication of JPH0476456B2 publication Critical patent/JPH0476456B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • G02F1/0356Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure controlled by a high-frequency electromagnetic wave component in an electric waveguide structure

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高速・広帯域光変調器に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-speed, broadband optical modulator.

〔従来の技術〕 第5図aおよびbに従来形の光位相変調器の平
面図およびAA′断面の一部拡大断面図を示す。こ
の図では電気光学効果を有するZ−cut LiNbO3
基板1にTi熱拡散により直線光導波路2が形成
されている。その基板1の上には厚さDのSiO2
バツフア層3(一般にはDは2000〜3000Å)が形
成され、さらにその上に中心電極4およびアース
電極5から構成されるコプレーナウエーブガイド
(co−planar waveguide、CPW)が形成されて
いる。これらの寸法としては中心電極4の幅2W
は25μmであり、中心電極4とアース電極5との
ギヤツプ2Gは6μmである。これらの電極4,5
はCPW電極と総称されており、このCPW電極の
特性インピーダンスは21Ωであるので、終端抵抗
6の値としては42Ωが選ばれる。変調用マイクロ
波信号給電線7から駆動電力が供給されている。
[Prior Art] FIGS. 5a and 5b show a plan view and a partially enlarged sectional view of the AA' section of a conventional optical phase modulator. In this figure, Z-cut LiNbO 3 with electro-optic effect is shown.
A straight optical waveguide 2 is formed on a substrate 1 by thermal diffusion of Ti. On top of the substrate 1 is SiO 2 of thickness D.
A buffer layer 3 (generally D is 2000 to 3000 Å) is formed, and a coplanar waveguide (CPW) consisting of a center electrode 4 and a ground electrode 5 is further formed thereon. These dimensions include the width of the center electrode 4, which is 2W.
is 25 μm, and the gap 2G between the center electrode 4 and the ground electrode 5 is 6 μm. These electrodes 4, 5
is collectively called a CPW electrode, and since the characteristic impedance of this CPW electrode is 21Ω, 42Ω is selected as the value of the terminating resistor 6. Drive power is supplied from a modulation microwave signal feed line 7.

この光変調器の場合、CPW電極4,5は進行
波電極として構成されているので、理想的には電
気回路的な帯域幅の制限はない。また、CPW電
極4,5の間を伝搬する変調用マイクロ波信号波
と光導波路2を伝搬する光との伝搬速度が一致す
る限りは、変調帯域の制限もないため、高速の光
変調器として動作可能である。
In the case of this optical modulator, since the CPW electrodes 4 and 5 are configured as traveling wave electrodes, ideally there is no restriction on the bandwidth due to the electric circuit. In addition, as long as the propagation speed of the modulating microwave signal wave propagating between the CPW electrodes 4 and 5 and the light propagating in the optical waveguide 2 match, there is no restriction on the modulation band, so it can be used as a high-speed optical modulator. Operable.

しかし、実際には信号波の速度と光の速度には
差があり、これによつて変調帯域が制限される。
信号波に対する基板のマイクロ波実効屈折率を
nn、光に対する光導波路の実効屈折率をnp、光導
波路と相互作用する部分のCPW電極4,5の長
さをl、光速をcとすると、この速度差によつて
生じる帯域幅BWは、 BW=1.9c/(πl|nn−np|) (1) となる(参考文献:電子通信学会論文誌(C)、J64
−C、4、p.264−271、1981)。上記マイクロ波
実効屈折率nnは基板の実効誘電率εeffに対して nn=√eff (2) で与えられる。
However, in reality, there is a difference between the speed of a signal wave and the speed of light, and this limits the modulation band.
The microwave effective refractive index of the substrate for the signal wave is
Assuming that n n is the effective refractive index of the optical waveguide for light, n p is the length of the CPW electrodes 4 and 5 in the part that interacts with the optical waveguide, and c is the speed of light, the bandwidth BW generated by this speed difference is is BW=1.9c/(πl|n n −n p |) (1) (References: Journal of the Institute of Electronics and Communication Engineers (C), J64
-C, 4, p.264-271, 1981). The microwave effective refractive index n n is given by n n =√ eff (2) with respect to the effective permittivity ε eff of the substrate.

電気光学効果を持つ基板材料では、信号波に対
するマイクロ波実効屈折率nnは、通常光に対す
る実効屈折率npより大きな値になる。基板1の実
効誘電率εeffは、主に基板材料の誘電率εr2および
厚さ、CPW電極4,5のギヤツプ2G、動作周
波数等によつて決まる。基板の厚さは、通常、光
変調器製作時における基板の取扱い易さの点か
ら、0.5〜数mmの厚さである。通常は、基板の厚
さが電極間隔2Gよりも充分に大きいため、 εeff≒(εr2+1)/2 (3) になる。
In a substrate material having an electro-optic effect, the microwave effective refractive index n n for signal waves is larger than the effective refractive index n p for normal light. The effective dielectric constant ε eff of the substrate 1 is mainly determined by the dielectric constant ε r2 and thickness of the substrate material, the gap 2G of the CPW electrodes 4 and 5, the operating frequency, etc. The thickness of the substrate is usually 0.5 to several mm from the viewpoint of ease of handling the substrate when manufacturing the optical modulator. Usually, since the thickness of the substrate is sufficiently larger than the electrode spacing 2G, ε eff ≈(ε r2 +1)/2 (3).

LiNbO3基板1の誘電率εr2≒35であり、(2)、(3)
式よりマイクロ波実効屈折率nn≒4.2となる。np
=2.1であるから、マイクロ波実効屈折率nnは実
効屈折率npの約2倍の大きさになつている。
The dielectric constant ε r2 of LiNbO 3 substrate 1 is ≒35, (2), (3)
From the formula, the microwave effective refractive index n n ≒4.2. n p
= 2.1, the microwave effective refractive index n n is approximately twice as large as the effective refractive index n p .

したがつて、5GHz動作の時、光導波路と相互
作用をする部分のCPW電極4,5の長さlとし
ては、(1)式より10mm前後が選ばれる。
Therefore, during 5 GHz operation, the length l of the CPW electrodes 4 and 5 that interact with the optical waveguide is selected to be approximately 10 mm based on equation (1).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第5図に示した従来の光変調器を高速動作化す
るには、(1)式から分かるように、動作周波数に応
じて、CPW電極4,5の長さlを短くする必要
がある。しかし、電極長lを短くすると、光変調
器の駆動電圧が大きくなるため、変調効率が低下
する欠点がある。
In order to operate the conventional optical modulator shown in FIG. 5 at high speed, it is necessary to shorten the length l of the CPW electrodes 4 and 5 according to the operating frequency, as can be seen from equation (1). However, if the electrode length l is shortened, the drive voltage of the optical modulator increases, which has the disadvantage of decreasing modulation efficiency.

また従来の設計ではSiO2バツフア層3の影響
を無視し、基板1の実効誘電率εeffのみを用いて、
(3)式および(2)式により、マイクロ波実効屈折率
nnを与えていた。しかし、発明者が後述のスペ
クトル領域法を適用して解析したところ、SiO2
バツフア層3が厚くなると、マイクロ波実効屈折
率nnは低くなることが明らかとなつた。それら
の値を第6図に破線および一点鎖線で示す。した
がつて実際にはバツフア層の厚さDを厚くして
nnをnpに近づけることにより、(1)式で表されるよ
うに広帯域化が図れることがわかる。
In addition, in the conventional design, the influence of the SiO 2 buffer layer 3 is ignored and only the effective dielectric constant ε eff of the substrate 1 is used.
From equations (3) and (2), the microwave effective refractive index is
I was giving n n . However, when the inventor analyzed it by applying the spectral domain method described below, it was found that SiO 2
It has become clear that as the buffer layer 3 becomes thicker, the microwave effective refractive index n n becomes lower. Those values are shown in FIG. 6 by dashed lines and dash-dotted lines. Therefore, in reality, the thickness D of the buffer layer is increased.
It can be seen that by bringing n n closer to n p , a wider band can be achieved as expressed by equation (1).

第7図a,b,cは、第5図に示した、2W=
35μm、2G=6μmの従来形の電極構造を有する位
相変調器において、SiO2バツフア層3の影響を
検証するため、その厚みDを1000Å、5000Å、
10000Åと変えた場合の基板の深さ方向の電界Ey
の強度分布を厳密に計算した結果である。図では
バツフア層とLiNbO3との境界面から深さ方向に
0、1、2、3μmの深さにおける電界Eyの強度
を示している。なおここで深さのパラメータの図
示は省略しているが、深さが深くなる程、電界強
度の絶対値は小さくなつている。第7図a,b,
cを比較するとわかるように、バツフア層3の厚
みDを厚くすると中心電極4のエツジ付近の電界
強度が著しく弱くなつている。そのため中心電極
4のエツジ付近に導波路2を位置させた従来の構
造においては、nnを小さくするためにバツフア
層3の厚みDを厚くすると、駆動電圧を著しく上
昇させなければ、同じ電界強度が得られないとい
う欠点があつた。したがつて従来の構造では広帯
域・高速化と変調効率の向上とは相容れないとい
う問題点があつた。
Figure 7 a, b, c are shown in Figure 5, 2W=
In order to verify the influence of the SiO 2 buffer layer 3 in a phase modulator with a conventional electrode structure of 35 μm and 2G = 6 μm, the thickness D was set to 1000 Å, 5000 Å,
Electric field in the depth direction of the substrate E y when changed to 10000Å
This is the result of a rigorous calculation of the intensity distribution. The figure shows the intensity of the electric field E y at depths of 0, 1, 2, and 3 μm in the depth direction from the interface between the buffer layer and LiNbO 3 . Although the depth parameter is not illustrated here, the deeper the depth, the smaller the absolute value of the electric field strength. Figure 7 a, b,
As can be seen from the comparison of c, as the thickness D of the buffer layer 3 is increased, the electric field strength near the edge of the center electrode 4 becomes significantly weaker. Therefore, in the conventional structure in which the waveguide 2 is located near the edge of the center electrode 4, if the thickness D of the buffer layer 3 is increased in order to reduce n , the electric field strength remains the same unless the driving voltage is significantly increased. The disadvantage was that it was not possible to obtain Therefore, with the conventional structure, there was a problem in that a wide band/high speed and an improvement in modulation efficiency were not compatible with each other.

本発明はこのような背景の下になされたもので
あり、その目的は変調効率の低下を最小限に抑え
つつ高速動作を行うことのできる光変調器を提供
することにある。
The present invention has been made against this background, and its object is to provide an optical modulator that can operate at high speed while minimizing a decrease in modulation efficiency.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、少なくとも1本の光導波路を備えた
電気光学効果を有する基板と、該基板の上に形成
されたバツフア層と、該バツフア層の上に形成さ
れた中心電極とアース電極とからなるコプレーナ
ウエーブガイド電極とから構成される光変調器に
おいて、前記コプレーナウエーブガイド電極に印
加される変調用マイクロ波信号に対する前記基板
のマイクロ波実効屈折率が前記光導波路を伝搬す
る光の実効屈折率に近くなるように前記バツフア
層の厚さを設定するとともに、前記中心電極の幅
が前記光導波路の幅にほぼ等しくかつ前記中心電
極の下に前記光導波路が配されていることを特徴
としている。
The present invention comprises a substrate having an electro-optic effect and having at least one optical waveguide, a buffer layer formed on the substrate, and a center electrode and a ground electrode formed on the buffer layer. In an optical modulator configured with a coplanar wave guide electrode, the effective microwave refractive index of the substrate for a modulating microwave signal applied to the coplanar wave guide electrode is equal to the effective refractive index of light propagating through the optical waveguide. The thickness of the buffer layer is set to be close to that of the optical waveguide, the width of the center electrode is approximately equal to the width of the optical waveguide, and the optical waveguide is arranged below the center electrode.

このように本発明は、従来技術に比較して、特
にバツフア層の厚みが厚い点および中心電極の幅
が狭い点が異なつている。
As described above, the present invention differs from the prior art in that the buffer layer is thicker and the center electrode is narrower.

〔作用〕[Effect]

本発明ではバツフア層の厚さDを厚くすること
により変調用マイクロ波信号に対する基板のマイ
クロ波実効屈折率nnを小さくすることができ、
したがつて(1)式で表わされる帯域幅を大きくでき
る。また本発明では中心電極の幅2Wを光導波路
の幅とほぼ等しくしているため、バツフア層の厚
さを厚くしても電界強度の劣化を小さく抑えられ
るという特徴がある。したがつて、変調用マイク
ロ波信号の駆動電力の増加を小さく抑えつつ高速
光変調が可能となる。
In the present invention, by increasing the thickness D of the buffer layer, the effective microwave refractive index n n of the substrate for the modulating microwave signal can be reduced,
Therefore, the bandwidth expressed by equation (1) can be increased. Furthermore, in the present invention, since the width 2W of the center electrode is made approximately equal to the width of the optical waveguide, a feature is that deterioration in electric field strength can be suppressed to a small level even if the thickness of the buffer layer is increased. Therefore, high-speed optical modulation is possible while suppressing an increase in the drive power of the modulation microwave signal.

〔実施例〕〔Example〕

第1図は、本発明の第1の実施例の光位相変調
器を説明する図であり、同図aおよびbは平面図
およびAA′断面の一部拡大断面図である。従来例
と異なつている部分は、中心電極4の幅2Wが狭
くなつており、光導波路2の幅とほぼ等しい程度
である。またギヤツプの幅2Gは2Wよりも大きな
値である。さらにバツフア層の厚みは極めて厚く
なつている。すなわち本実施例では、中心電極4
の幅2Wを8μm、ギヤツプの幅2Gを34μm、電極
長lを10mmとし、また光導波路2の幅を6μmと
している。さらにバツフア層の厚みを5000Åとし
ている。
FIG. 1 is a diagram illustrating an optical phase modulator according to a first embodiment of the present invention, and FIGS. 1A and 1B are a plan view and a partially enlarged sectional view of the AA' section. The difference from the conventional example is that the width 2W of the center electrode 4 is narrower, and is approximately equal to the width of the optical waveguide 2. Also, the gap width 2G is a larger value than 2W. Furthermore, the thickness of the buffer layer has become extremely thick. That is, in this embodiment, the center electrode 4
The width 2W of the gap is 8 μm, the width 2G of the gap is 34 μm, the electrode length l is 10 mm, and the width of the optical waveguide 2 is 6 μm. Furthermore, the thickness of the buffer layer is set to 5000 Å.

第1図に示す実施例において、変調用信号波に
対する基板のマイクロ波実効屈折率nnとバツフ
ア層3の厚さDとの関係の解析結果を第6図に実
線で示している。本解析では誘電体多層構造を厳
密に取り扱うことのできるスペクトル領域法
(Kawano:“Hybrid−mode analysis of a
broadside−coupled microstrip line”、IEE
Proc.Pt.H、vol.131、pp.21〜24、1984)を用い、
バツフア層3の影響を精度良く算出している。本
図からわかるように従来例と同様にバツフア層の
厚みDが大きくなると、nnが下がり、光導波路
の実効屈折率npに近づくようになる。その結果、
マイクロ波と光との位相速度の差が改善され高
速・広帯域動作が可能となる。
In the embodiment shown in FIG. 1, the analysis result of the relationship between the microwave effective refractive index n n of the substrate and the thickness D of the buffer layer 3 with respect to the modulating signal wave is shown by a solid line in FIG. This analysis uses the spectral domain method (Kawano: “Hybrid-mode analysis of a
broadside−coupled microstrip line”, IEE
Proc.Pt.H, vol.131, pp.21-24, 1984),
The influence of buffer layer 3 is calculated with high accuracy. As can be seen from this figure, as in the conventional example, as the thickness D of the buffer layer increases, n n decreases and approaches the effective refractive index n p of the optical waveguide. the result,
The difference in phase velocity between microwaves and light is improved, enabling high-speed, broadband operation.

一方、第2図には本実施例について駆動電力を
支配する基板の深さ方向の電界Eyの強度を第7
図と同様に、バツフア層3とLiNbO3基板1との
境界面から基板深さ方向に0、1、2、3μmの
位置における基板深さ方向の電界Eyの強度を示
している。なお、図のスケールは縦軸・横軸とも
第7図と同じにしている。図からわかるように、
本実施例のCPW電極においても、中心電極4の
エツジ付近の電界Eyの強度はバツフア層3の厚
みDが厚くなると弱くなることがわかるが、バツ
フア層の厚みDの増加に伴う電界強度の劣化は従
来例と比較して著しく小さい。
On the other hand, FIG .
Similarly to the figure, the intensity of the electric field E y in the substrate depth direction at positions 0, 1, 2, and 3 μm in the substrate depth direction from the interface between the buffer layer 3 and the LiNbO 3 substrate 1 is shown. Note that the scale of the figure is the same as that of FIG. 7 for both the vertical and horizontal axes. As you can see from the figure,
In the CPW electrode of this example as well, it can be seen that the intensity of the electric field E y near the edge of the center electrode 4 becomes weaker as the thickness D of the buffer layer 3 increases, but the electric field intensity decreases as the thickness D of the buffer layer increases. Deterioration is significantly smaller than in the conventional example.

したがつて、バツフア層の厚みDは、第6図に
示すように厚くする方が好ましく、一方、第2図
に示すように厚くすると電界強度が小さくなるた
め好ましくない。したがつて両者のバランスから
Dの値を決定することになる。
Therefore, it is preferable for the thickness D of the buffer layer to be thick as shown in FIG. 6, but on the other hand, it is not preferable to make it thick as shown in FIG. 2 because the electric field strength becomes small. Therefore, the value of D is determined from the balance between the two.

本実施例では光導波路2の中心を中心電極4の
中心の真下に位置させているため、バツフア層3
の厚さDを厚くしても駆動電力の増加を充分小さ
く抑えることができる。つまり本発明の構成をと
ることにより、駆動電力の増加を小さく抑えつ
つ、高速・広帯域動作が可能となる。
In this embodiment, since the center of the optical waveguide 2 is located directly below the center of the center electrode 4, the buffer layer 3
Even if the thickness D is increased, the increase in driving power can be kept sufficiently small. In other words, by adopting the configuration of the present invention, high-speed, wide-band operation is possible while suppressing an increase in drive power.

なお、本構成と一見類似の構成が水落、井筒、
末田等の文献(信学技報OQE87−163、pp.29〜
36、1988年2月に報告されているが、本文献では
バツフア層は単に共振器電極による光の損失を抑
えるために用いられており、マイクロ波と光との
位相速度の不整合の改善は考えられていない。そ
のため駆動電圧低減のみを目的としてバツフア層
の厚みも1100Åと薄く構成されている。このよう
な構成となつたのは、電極が形成する電界の解析
法としてバツフア層の影響を取り扱えない等角写
像法を用いたためであり、又、バツフア層3の厚
さDと電界Eyの強度とが相互に関係していると
いう認識がなかつたためであると推定される。
又、更にこの共振電極形光変調器は、高速ではあ
るが、ある共振周波数のみにおける動作を目的と
した狭帯域光変調器であつて、本発明が目的とし
ている広帯域を有するベースバンド動作とは異な
るため、上記位相速度不整合については改善が図
られていない。
In addition, configurations that are seemingly similar to this configuration are Mizuochi, Izutsu,
Literature by Sueda et al. (IEICE Technical Report OQE87-163, pp.29~
36, February 1988, but in this paper, the buffer layer is simply used to suppress the loss of light due to the resonator electrode, and the improvement of the phase velocity mismatch between microwave and light is Not thought about. Therefore, the thickness of the buffer layer is made as thin as 1100 Å for the sole purpose of reducing the driving voltage. This configuration was created because the conformal mapping method, which cannot handle the influence of the buffer layer, was used as the analysis method for the electric field formed by the electrodes, and also because the thickness D of the buffer layer 3 and the electric field E y were It is presumed that this was because there was no recognition that strength and strength were interrelated.
Furthermore, although this resonant electrode type optical modulator is a high-speed, narrow-band optical modulator that is intended to operate only at a certain resonant frequency, it is different from the baseband operation having a wide band that is the object of the present invention. Therefore, no improvement has been made to the above-mentioned phase velocity mismatch.

以上の実施例では光導波路2が直線光導波路で
ある場合、つまり位相変調器の場合について説明
をしたが、光導波路としてマツハツエンダ形光導
波路を用いればマツハツエンダ強度光変調器を構
成できる。その第2の実施例を第3図に示す。同
図aは平面図、bはaのAA′断面の一部拡大断面
図である。本構成と第1図との差は、もう一方の
光導波路2が電極5のエツジの下に配置されてい
るということである。
In the above embodiment, the case where the optical waveguide 2 is a straight optical waveguide, that is, the case of a phase modulator has been explained, but if a Matsuhatsu Enda type optical waveguide is used as the optical waveguide, a Matsuhatsu Enda intensity optical modulator can be constructed. A second embodiment thereof is shown in FIG. In the figure, a is a plan view, and b is a partially enlarged cross-sectional view of the AA' cross section of a. The difference between this configuration and FIG. 1 is that the other optical waveguide 2 is placed below the edge of the electrode 5.

第4図aは、本発明の第1の実施例における効
果を示す変調特性である。本実施例は、波長1.5μ
m帯用位相変調器の変調特性の測定結果であり、
変調帯域(オプテイカル3dB帯域、つまり受光光
パワー3dB劣化帯域)は12GHz、半波長電圧は
9V、単位帯域当たりの駆動電力は15mW/GHz
である。このように高速・広帯域であるにもかか
わらず、半波長電圧は低く、又CPW電極4,5
の特性インピーダンス50Ωに近く設計しているの
で駆動電力も低い結果を得た。
FIG. 4a is a modulation characteristic showing the effect of the first embodiment of the present invention. In this example, the wavelength is 1.5μ.
These are the measurement results of the modulation characteristics of the m-band phase modulator,
The modulation band (optical 3 dB band, that is, the 3 dB degradation band of received optical power) is 12 GHz, and the half-wave voltage is
9V, driving power per unit band is 15mW/GHz
It is. Despite this high speed and wide band, the half wavelength voltage is low, and the CPW electrodes 4 and 5
Since the characteristic impedance is designed to be close to 50Ω, the drive power is also low.

第4図bは、本発明の第2の実施例における効
果を示す変調特性である。本実施例は、波長1.5μ
m帯用マツハツエンダ強度光変調器の測定結果で
あり、変調帯域は12GHz、半波長電圧は8.2V、単
位帯域当たりの駆動電力は13mW/GHzと、位相
変調器と同様に優れた変調特性を得ることができ
た。
FIG. 4b is a modulation characteristic showing the effect of the second embodiment of the present invention. In this example, the wavelength is 1.5μ.
These are the measurement results of the M-band Matsuha Tsuender intensity optical modulator.The modulation band is 12GHz, the half-wave voltage is 8.2V, and the driving power per unit band is 13mW/GHz, which provides excellent modulation characteristics similar to phase modulators. I was able to do that.

次に、さらに低駆動電力化を目指した、波長
1.5μm帯用マツハツエンダ強度光変調器の別の実
施例を示す。CPW電極の構造については、中心
電極の幅2Wおよびギヤツプの幅2Gをそれぞれ8μ
mおよび15μmとし、光導光路と相互作用する部
分のCPW電極の長さlを27mmとした。またバツ
フア層の厚さDを12000Å、導波路の幅を6μmと
した。この構造を有するマツハツエンダ強度光変
調器の特性は、変調帯域9GHz、半波長電圧5V、
駆動電力63mW(単位帯域当たりの駆動電力7m
W/GHz)であつた。
Next, we will develop wavelength
Another example of the Matsuhatsu Enda intensity optical modulator for the 1.5 μm band is shown. Regarding the structure of the CPW electrode, the center electrode width 2W and the gap width 2G are each 8μ.
m and 15 μm, and the length l of the CPW electrode in the portion that interacts with the light guide path was 27 mm. Further, the thickness D of the buffer layer was 12000 Å, and the width of the waveguide was 6 μm. The characteristics of the Matsuhatsu Enda intensity optical modulator with this structure are a modulation band of 9 GHz, a half-wave voltage of 5 V,
Drive power 63mW (drive power per unit band 7m
W/GHz).

本実施例の構造は、第1図に示した実施例に比
べて、バツフア層の厚さDをさらに厚くして、マ
イクロ波信号波と光波との位相速度不整合をさら
に低減させ、広帯域化を図るとともに、バツフア
層を厚くしたことによる駆動電圧の上昇を電極長
lを長くすることにより避けた設計としている。
In the structure of this embodiment, the thickness D of the buffer layer is further increased compared to the embodiment shown in FIG. In addition, the design is such that the increase in drive voltage caused by thickening the buffer layer is avoided by increasing the electrode length l.

上記の実施例では基板としてLiNbO3を用いた
が、それ以外の電気光学効果を有する基板例えば
LiTaO3等を用いても良い。
In the above example, LiNbO 3 was used as the substrate, but other substrates having electro-optic effects such as
LiTaO 3 or the like may also be used.

また上記の実施例では中心電極4の幅2W(8μ
m)は光導波路2の幅(6μm)とほぼ等しいと
して説明したが、この2Wの範囲は光導波路2を
伝搬する光のスポツトサイズσに対して2σ〜4σ
の範囲が好適であるということである。上記実施
例(光導波路の幅6μm)ではスポツトサイズσ
はほぼ3μmであり、よつて中心電極の幅2Wの範
囲は6〜12μm(2σ〜4σ)が好適である。すなわ
ちこのことは第2図に示されるように中心電極4
が形成する電界の領域内に光導波路2内を伝搬す
る光の主要パワー成分がおさまつている必要があ
り、かつ電界の領域が光の主要パワー成分よりも
大きく広がつてはいけないということである。
Furthermore, in the above embodiment, the width of the center electrode 4 is 2W (8μ
m) is approximately equal to the width (6 μm) of the optical waveguide 2, but the range of 2W is 2σ to 4σ relative to the spot size σ of the light propagating through the optical waveguide 2.
This means that the range is suitable. In the above example (width of optical waveguide 6 μm), the spot size σ
is approximately 3 μm, and therefore the range of the width 2W of the center electrode is preferably 6 to 12 μm (2σ to 4σ). That is, as shown in FIG.
The main power component of the light propagating in the optical waveguide 2 must be contained within the electric field region formed by the electric field, and the electric field region must not be wider than the main power component of the light. be.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明では中心電極4の幅
がほぼ光導波路の幅に等しい程度のCPW電極を
用いるとともにバツフア層の厚みを従来と較べて
極めて厚くしているため、駆動電力の著しい増加
を招くことなく、高速・広帯域光変調が可能とな
る利点がある。
As explained above, in the present invention, a CPW electrode is used in which the width of the center electrode 4 is approximately equal to the width of the optical waveguide, and the thickness of the buffer layer is extremely thick compared to the conventional one, so that a significant increase in driving power is avoided. This has the advantage that high-speed, broadband optical modulation can be performed without any interference.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の光位相変調器
であり、第1図aは平面図、第1図bはAA′断面
の一部拡大断面図である。第2図は第1の実施例
において基板深さ方向の電界強度分布である。第
3図は本発明の第2の実施例のマツハツエンダ強
度光変調器である。第4図は本発明の第1、第2
の実施例の効果を示す変調指数特性である。第5
図は光位相変調器の従来例である。第6図はバフ
ツア層の厚さによる基板のマイクロ波実効屈折率
nnの変化を示す。第7図は第5図に示す従来例
において基板深さ方向の電界強度分布である。 1……LiNbO3基板、2……光導波路、3……
SiO2バツフア層、4……中心電極、5……アー
ス電極、6……終端抵抗、7……変調用マイクロ
波信号給電線。
FIG. 1 shows an optical phase modulator according to a first embodiment of the present invention, in which FIG. 1a is a plan view and FIG. 1b is a partially enlarged sectional view of the AA' section. FIG. 2 shows the electric field strength distribution in the depth direction of the substrate in the first embodiment. FIG. 3 shows a Matsuhatsu Enda intensity optical modulator according to a second embodiment of the present invention. Figure 4 shows the first and second embodiments of the present invention.
2 is a modulation index characteristic showing the effect of the embodiment. Fifth
The figure shows a conventional example of an optical phase modulator. Figure 6 shows the microwave effective refractive index of the substrate depending on the thickness of the buffing layer.
n Shows the change in n . FIG. 7 shows the electric field strength distribution in the depth direction of the substrate in the conventional example shown in FIG. 1... LiNbO 3 substrate, 2... Optical waveguide, 3...
SiO 2 buffer layer, 4... Center electrode, 5... Earth electrode, 6... Termination resistor, 7... Microwave signal feed line for modulation.

Claims (1)

【特許請求の範囲】 1 少なくとも1本の光導波路を備えた電気光学
効果を有する基板と、該基板の上に形成されたバ
ツフア層と、該バツフア層の上に形成された中心
電極とアース電極とからなるコプレーナウエーブ
ガイド電極とから構成される光変調器において、 前記コプレーナウエーブガイド電極に印加され
る変調用マイクロ波信号に対する前記基板のマイ
クロ波実効屈折率が前記光導波路を伝搬する光の
実効屈折率に近くなるように前記バツフア層の厚
さを設定するとともに、前記中心電極の幅が前記
光導波路の幅にほぼ等しくかつ前記中心電極の下
に前記光導波路が配されていることを特徴とする
光変調器。
[Claims] 1. A substrate having an electro-optic effect and having at least one optical waveguide, a buffer layer formed on the substrate, and a center electrode and a ground electrode formed on the buffer layer. and a coplanar wave guide electrode, wherein the effective microwave refractive index of the substrate with respect to the modulating microwave signal applied to the coplanar wave guide electrode is the effective refractive index of the light propagating through the optical waveguide. The thickness of the buffer layer is set to be close to the refractive index, the width of the center electrode is approximately equal to the width of the optical waveguide, and the optical waveguide is arranged below the center electrode. optical modulator.
JP20149188A 1988-08-12 1988-08-12 Optical modulator Granted JPH0251123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20149188A JPH0251123A (en) 1988-08-12 1988-08-12 Optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20149188A JPH0251123A (en) 1988-08-12 1988-08-12 Optical modulator

Publications (2)

Publication Number Publication Date
JPH0251123A JPH0251123A (en) 1990-02-21
JPH0476456B2 true JPH0476456B2 (en) 1992-12-03

Family

ID=16441940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20149188A Granted JPH0251123A (en) 1988-08-12 1988-08-12 Optical modulator

Country Status (1)

Country Link
JP (1) JPH0251123A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02289821A (en) * 1989-02-17 1990-11-29 Nippon Telegr & Teleph Corp <Ntt> Optical control element
EP0813092B1 (en) * 1996-06-14 2007-03-07 Sumitomo Osaka Cement Co., Ltd. Optical waveguide modulator with travelling-wave type electrodes
US8204344B2 (en) 2008-05-27 2012-06-19 Anritsu Corporation Optical modulator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797282B2 (en) * 1987-06-29 1995-10-18 横河電機株式会社 Process control equipment

Also Published As

Publication number Publication date
JPH0251123A (en) 1990-02-21

Similar Documents

Publication Publication Date Title
US5129017A (en) Electrically controlled optical device
US5455876A (en) High-speed external integrated optical modulator
US5138480A (en) Traveling wave optical modulator
Howerton et al. Fully packaged, broad-band LiNbO 3 modulator with low drive voltage
US5790719A (en) Optical control device
JP4234117B2 (en) Light modulator
US5339369A (en) High-speed external modulator
US10228605B2 (en) Waveguide optical element
JP2003233044A (en) Optical modulator with element changing optical phase by electrooptic effect mounted thereon
US6304685B1 (en) Low drive voltage LiNbO3 intensity modulator with reduced electrode loss
JP2728150B2 (en) Light modulation element
Sueta et al. High speed guided-wave optical modulators
Gheorma et al. Thin layer design of X-cut LiNbO 3 modulators
US20100158428A1 (en) Optical modulator
US6646776B1 (en) Suppression of high frequency resonance in an electro-optical modulator
US11719964B2 (en) Optical device and optical communication device
JPH03229214A (en) Optical modulation element
JPH0476456B2 (en)
JP3559170B2 (en) Waveguide type optical device
JP4926423B2 (en) Light modulator
US7218819B2 (en) Electrode systems for optical modulation and optical modulators
JPH0713711B2 (en) High speed optical modulator
JP2007072369A (en) Optical modulator
JP5075055B2 (en) Light modulator
JP4754608B2 (en) Light modulator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 16