JPH0476425A - Ferromagnetic temperature sensor - Google Patents

Ferromagnetic temperature sensor

Info

Publication number
JPH0476425A
JPH0476425A JP19106490A JP19106490A JPH0476425A JP H0476425 A JPH0476425 A JP H0476425A JP 19106490 A JP19106490 A JP 19106490A JP 19106490 A JP19106490 A JP 19106490A JP H0476425 A JPH0476425 A JP H0476425A
Authority
JP
Japan
Prior art keywords
temperature
temperature sensor
magnetic field
superconducting
external magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19106490A
Other languages
Japanese (ja)
Inventor
Kazuhide Okazaki
一英 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okazaki Manufacturing Co Ltd
Original Assignee
Okazaki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okazaki Manufacturing Co Ltd filed Critical Okazaki Manufacturing Co Ltd
Priority to JP19106490A priority Critical patent/JPH0476425A/en
Publication of JPH0476425A publication Critical patent/JPH0476425A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To use an superconductive wire or ribbon material as a magnetic seal for temperature sensors having different shapes by winding the material around the temperature sensor in part or in its entirety. CONSTITUTION:A Pt-Co temperature measuring resistor 10 is fixed in a SUS cap 14 in which He gas 13 for ensuring thermal transmission at an extremely low temperature, by means of an epoxy resin seal 12. The epoxy resin seal 12 is of a four conductor type through which four Ni conductors 11 pierce. An Nb-Ti alloy superconductor wire material 15 is wound on the SUS cap 14 by one layer, and is coated thereover with epoxy 16. When the temperature sensor 17 is cooled down to a temperature near the liquid helium temperature, the superconductive wire material 15 comes in superconductive state so that an external magnetic field H is shielded due to a Meissner effect, and accordingly, the temperature measuring resistor 10 can measure a temperature with no error without being subjected to an affection by the external magnetic field H.

Description

【発明の詳細な説明】 「産業上の利用分野J 本発明は、超電導発電機、リニアモータカー、素粒子加
速器などのような、強磁界を用いる環境下での温度計測
に用いられる強磁界温度センサに関するものである。
Detailed Description of the Invention "Industrial Application Field J The present invention relates to a strong magnetic field temperature sensor used for temperature measurement in environments using strong magnetic fields, such as superconducting generators, linear motor cars, particle accelerators, etc. It is related to.

「従来の技術」 通常、工業的に使用される温度センサとしては、金・鉄
/クロメルなどの熱電対、Pt−Coなどの測温抵抗体
、サーミスタ、容量型温度センサなどがあげられるが、
いずれも電気的に温度を計測するため、強磁界環境下で
は誤差を生じる。その欠点を除くため、特に極低温を測
る温度センサ素子および/又は導線部の周囲の一部もし
くは全部を、超電導材(Nb−Tiなどの合金、酸化物
超電導体など)で覆う磁気シールド付温度センサが従来
用いられている。この温度センサで超電導材の臨界温度
以下を計測すると、超電導材が超電導状態となり、マイ
スナー効果によって外部の磁場を排除するため温度セン
サ素子もしくは導線部に、磁界が印加されず誤差を生じ
ないで温度を計測できる。
"Prior Art" Temperature sensors normally used industrially include thermocouples made of gold/iron/chromel, resistance temperature detectors such as Pt-Co, thermistors, capacitive temperature sensors, etc.
Since both measure temperature electrically, errors occur in environments with strong magnetic fields. In order to eliminate this drawback, a magnetic shield is provided to cover part or all of the periphery of the temperature sensor element and/or the conductor part that measures extremely low temperatures with a superconducting material (alloy such as Nb-Ti, oxide superconductor, etc.). Sensors are conventionally used. When this temperature sensor measures a temperature below the critical temperature of the superconducting material, the superconducting material enters a superconducting state, and the Meissner effect eliminates external magnetic fields. can be measured.

この従来技術の一例を第3図に示すと、超電導材(Nb
−Ti合金)のキャップ1の中にHeガス4を封入して
、極低温での熱伝達を維持しつつ、ptCo測温抵抗体
6を挿入して、キャップ1の開口をエポキシ封止2する
。PL−Co測温抵抗体6の2本の導線に、各々もう1
本の導線を接続した4本のNi導線3が、エポキシ封止
2を貫通している。この温度センサ7で外部磁界H中に
てNb−Ti合金の臨界温度以下を計測すると、マイス
ナー効果により、キャップ1は外部磁界Hを排除して、
磁界Hをキャップ1内に侵入させないため、Pt−Co
測温抵抗体6および導線3のキャップ1内には外部磁界
Hが印加されず温度測定誤差を生じない。
An example of this conventional technology is shown in FIG. 3, where superconducting material (Nb
- He gas 4 is sealed in a cap 1 made of (Ti alloy), and while maintaining heat transfer at extremely low temperatures, a ptCo resistance temperature detector 6 is inserted, and the opening of the cap 1 is sealed with epoxy 2. . Connect another wire to each of the two conductors of the PL-Co resistance temperature detector 6.
Four Ni conductive wires 3 to which two conductive wires are connected pass through the epoxy seal 2. When this temperature sensor 7 measures a temperature below the critical temperature of the Nb-Ti alloy in an external magnetic field H, the cap 1 eliminates the external magnetic field H due to the Meissner effect.
In order to prevent the magnetic field H from entering the cap 1, Pt-Co
No external magnetic field H is applied to the cap 1 of the resistance temperature detector 6 and the conducting wire 3, and no temperature measurement error occurs.

「実施例」 従来技術では、寸法形状の異なる各種温度センサごとに
、その寸法に適合した超電導材のキャップやシース、カ
バーなどを作らねばならず、量産ができないため、コス
ト的に高価となり、製作日数も長くなる。
``Example'' With conventional technology, caps, sheaths, covers, etc. made of superconducting material that match the dimensions must be made for each temperature sensor with different dimensions and shapes, which cannot be mass-produced, resulting in high costs and production costs. The days will also be longer.

本発明では、その欠点を除くために、フレキシブルで適
当な太さの超電導線材、もしくは超電導リボン材を用い
て、各種温度センサの素子部、導線部などの一部もしく
は全部に巻きつけることにより、同一の太さの超電導線
材、リボン材を用いて、さまざまに異なる寸法形状を有
する温度センサに、磁気シールドを安価に短納期で施す
ことのできるようにする。
In order to eliminate this drawback, the present invention uses a flexible superconducting wire or superconducting ribbon material of an appropriate thickness and wraps it around part or all of the element part, conducting wire part, etc. of various temperature sensors. To provide magnetic shielding to temperature sensors having various sizes and shapes at low cost and in a short delivery time using superconducting wires and ribbon materials of the same thickness.

この超電導線材は、Nb−Ti合金にCu被覆を施した
線材もしくは酸化物超電導線材をAg被覆で覆ったリボ
ン材のような、通常、電流を流すために用いられる超電
導線材でもかまわないし、超電導のみで構成される線材
やリボン材でもかまわない。
This superconducting wire may be a superconducting wire that is normally used to conduct current, such as a wire made of Nb-Ti alloy coated with Cu or a ribbon material made of oxide superconducting wire covered with Ag, or it may be a superconducting wire that is only used for superconducting. A wire or ribbon material composed of may also be used.

温度センサへの超電導線材、リボン材の巻きつけは一層
であっても多層であってもよい。
The superconducting wire or ribbon material may be wound around the temperature sensor in a single layer or in multiple layers.

第1図および第2図に示す具体的な一実施例により本発
明の詳細な説明する。
The present invention will be explained in detail with reference to a specific embodiment shown in FIGS. 1 and 2.

Pt  Co測温抵抗体10は、極低温での熱伝達を確
保する)Ieガス13の充填したSOSキャンプ14に
、エポキシ封止12で固定される。エポキシ封止12を
4本のNi導線11が貫通している4導線式となってい
る。SUSキャップ14を、Nb−Ti合金の超電導線
材15を一層に巻きつけて覆い、エポキシ16を塗布し
て、5LISキヤツプ14に超電導線材15を固定する
The Pt Co resistance temperature detector 10 is fixed with an epoxy seal 12 in an SOS camp 14 filled with Ie gas 13 (which ensures heat transfer at cryogenic temperatures). It is a four-conductor type in which four Ni conductors 11 pass through the epoxy seal 12. The SUS cap 14 is covered with a layer of Nb-Ti alloy superconducting wire 15, and epoxy 16 is applied to fix the superconducting wire 15 to the 5LIS cap 14.

この温度センサ17を液体ヘリウム温度近辺まで冷却す
ると、超電導線材15が超電導状態となり、マイスナー
効果により、外部磁界■1をシールドするため、測温抵
抗体10は外部磁界Hの影響を受けず、誤差なしに温度
計測できる。
When this temperature sensor 17 is cooled to around the temperature of liquid helium, the superconducting wire 15 becomes superconducting, and the Meissner effect shields the external magnetic field (1), so the resistance temperature detector 10 is not affected by the external magnetic field H, and the error Temperature can be measured without

「発明の効果」 本発明は、上述のように、温度センサの周囲の一部また
は全部を超電導材質の線材もしくはりボン材で巻いてな
る強磁界温度センサであり、フレキシブルな超電導材質
の線材をもしくはリボン材を用いるので、さまざまに異
なる寸法形状を有する温度センサの磁気シールドとして
用いることができ、安価に短納期で強磁界温度センサの
提供ができる。
"Effects of the Invention" As described above, the present invention is a strong magnetic field temperature sensor in which a part or all of the periphery of the temperature sensor is wrapped with a wire made of a superconducting material or a carbon material. Alternatively, since a ribbon material is used, it can be used as a magnetic shield for temperature sensors having various sizes and shapes, and a strong magnetic field temperature sensor can be provided at low cost and in a short delivery time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の具体的な一実施例の縦断面図、第2図
は第1図の左側面図、第3図は従来例の縦断面図である
。 10・・・測温抵抗体(温度センサの例)15・・・超
電導線材
FIG. 1 is a vertical sectional view of a specific embodiment of the present invention, FIG. 2 is a left side view of FIG. 1, and FIG. 3 is a vertical sectional view of a conventional example. 10...Resistance temperature sensor (example of temperature sensor) 15...Superconducting wire

Claims (1)

【特許請求の範囲】[Claims] (1)温度センサの周囲の一部または全部を、超電導材
質の線材もしくはリボン材で巻いてなる強磁界温度セン
サ。
(1) A strong magnetic field temperature sensor in which a part or all of the periphery of the temperature sensor is wrapped with a wire or ribbon made of a superconducting material.
JP19106490A 1990-07-18 1990-07-18 Ferromagnetic temperature sensor Pending JPH0476425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19106490A JPH0476425A (en) 1990-07-18 1990-07-18 Ferromagnetic temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19106490A JPH0476425A (en) 1990-07-18 1990-07-18 Ferromagnetic temperature sensor

Publications (1)

Publication Number Publication Date
JPH0476425A true JPH0476425A (en) 1992-03-11

Family

ID=16268281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19106490A Pending JPH0476425A (en) 1990-07-18 1990-07-18 Ferromagnetic temperature sensor

Country Status (1)

Country Link
JP (1) JPH0476425A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018091642A (en) * 2016-11-30 2018-06-14 株式会社チノー Sheath type temperature measuring resistor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219527A (en) * 1988-02-29 1989-09-01 Toshiba Corp Resistance thermometer
JPH0239105A (en) * 1988-07-29 1990-02-08 Nissha Printing Co Ltd Production of color filter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219527A (en) * 1988-02-29 1989-09-01 Toshiba Corp Resistance thermometer
JPH0239105A (en) * 1988-07-29 1990-02-08 Nissha Printing Co Ltd Production of color filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018091642A (en) * 2016-11-30 2018-06-14 株式会社チノー Sheath type temperature measuring resistor

Similar Documents

Publication Publication Date Title
US5030614A (en) Superconductor sensors
CA2017299C (en) Integrated-type squid magnetometer and system for biomagnetic measurements using the same
JPH05500738A (en) Mounting SQUID device with integral shielding layer
JP4825605B2 (en) High temperature superconducting coil device
US4365229A (en) High temperature sensor
JPH0476425A (en) Ferromagnetic temperature sensor
JPH01152260A (en) Room temperature superconductor
JP2513892B2 (en) Temperature sensor for strong magnetic field
US4506996A (en) Cryogenic thermometer
US20030177826A1 (en) Liquid nitrogen level sensor-monitor device using high Tc superconductors and method of manufacture thereof
JPH08222426A (en) Coil structure of superconducting magnet
US3262026A (en) Superconductive solenoids having a field probe mounted therein
US3462318A (en) High temperature zirconia coated thermocouple
JPH075050A (en) Temperature sensor
JPH041307B2 (en)
JP3770026B2 (en) Magnetic measuring device
JPS5537978A (en) Superconductive magnetism measuring element
JP2658140B2 (en) Liquid level measurement method and apparatus
JPH04350979A (en) Lead wire for measurement of cryostat
JP4081834B2 (en) Chip carrier for superconducting circuit chip and measuring apparatus using the same
JPS6350845B2 (en)
JPH06331717A (en) Magnetism measuring equipment
JPH0621520A (en) Cryostat
JPH0129247B2 (en)
JPH0217475A (en) Device for measuring magnetism