JPH0476301B2 - - Google Patents

Info

Publication number
JPH0476301B2
JPH0476301B2 JP9750687A JP9750687A JPH0476301B2 JP H0476301 B2 JPH0476301 B2 JP H0476301B2 JP 9750687 A JP9750687 A JP 9750687A JP 9750687 A JP9750687 A JP 9750687A JP H0476301 B2 JPH0476301 B2 JP H0476301B2
Authority
JP
Japan
Prior art keywords
layer
resin
multilayer film
gas barrier
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9750687A
Other languages
Japanese (ja)
Other versions
JPS63264348A (en
Inventor
Masataka Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP9750687A priority Critical patent/JPS63264348A/en
Publication of JPS63264348A publication Critical patent/JPS63264348A/en
Publication of JPH0476301B2 publication Critical patent/JPH0476301B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は、食品包装甚の倚局フむルムに関し、
さらに詳しくはポリ゚ヌテル゚ステルアミド暹脂
を衚局ずしお有する光沢、透明性、ガスバリダヌ
性が優れおいるず共に柔軟性、耐熱性を有し、し
かも䜎枩床の耐ピンホヌル性やスキン圢成性、深
絞り性に優れ、たた含気包装の蓋材甚ずしおも優
れたフむルムに関する。 埓来の技術 埓来、食品包装甚、特に畜肉加工品等の包装甚
のフむルムずしおは、ナむロンNyポリ゚チレ
ンPE、Ny゚チレン酢酞ビニル共重合䜓ケン化
物EVOHPE、塩化ビニル暹脂PVC塩化ビニ
リデン系暹脂PVDC゚チレン酢酞ビニル共重合
䜓EVA等の倚局フむルムが䜿甚されおいる。こ
れらの倚くは、衚局䞭間局シヌル局ずいう局
構成からなるが、各々の局が求められる圹割は次
のずおりである。すなわち、衚局ずしおは、衚面
光沢、透明性、成圢時の耐熱性、シヌル局ずのア
ンチブロツキング性および耐寒性の圹割であり、
䞭間局ずしおは、優れたガスバリダヌ性および透
明性の圹割である。シヌル局の圹割は、ヒヌトシ
ヌル性の他に耐熱性および耐油性である。 これらの倚局フむルムにおいお芁求される耐熱
性ずは、通垞、130℃以䞊の成圢枩床に耐えられ
るこずであり、たた、耐寒性ずは、℃近くでの
流通に耐えるこずをいう。䞀般に、シヌル局ずし
お䜿甚する暹脂、䟋えばPEやEVA等の融点は90
℃から110℃の間にあるので、シヌルする堎合の
成圢枩床は、通垞、120〜135℃であり、安定した
シヌル性を埗るには130℃以䞊でシヌルするこず
が奜たしい。したが぀お、倚局フむルムは130℃
以䞊の成圢枩床に耐えるこずが必芁である。䞀
方、フむルム包装補品は流通過皋においお、䞀般
に小売店のシペヌケヌス等では℃から15℃の保
存枩床に保たれるが、季節や堎所によ぀おは℃
あるいはそれ以䞋になるこずもあり、最も問題ず
なるのは厳冬時の流通である。このような䜎枩の
環境においおも柔軟性を保持し、茞送や取扱い等
に耐え、砎袋やピンホヌル等が発生しないこずが
求められおいる。このように、倚局フむルムは、
成圢時における耐熱性ず流通時における耐寒性ず
いう䞡者の性質を満足するこずが求められおい
る。 ずころで、最近の傟向ずしお、柔軟性を有する
包装材が芁求されおいるが、倚局フむルムからな
る包装材においお、柔軟性を付䞎する䞊での最倧
の問題点は衚局の材質ずしお劂䜕なる暹脂を遞定
するかずいうこずである。䞀䟋ずしお、可塑化し
たPVCを衚局ずする軟質PVCPVDCの組合せ
があるが、可塑剀の添加による衚局暹脂の軟質化
には、可塑剀のブリヌドアりトによる衚面光沢の
䜎䞋や軟質PVCからPVDC局ぞ倚量の可塑剀の
移行によるガスバリダヌ性の䜎䞋等倚くの欠点が
ある。 䞀方、可塑化しおいない暹脂で光沢の優れたも
のずしおは、ポリスチレン、ポリカヌボネヌト、
ポリ゚チレンテレフタレヌト、PVC等の非晶性
ポリマヌがあるが、これらのポリマヌは、䞀般的
には、いずれもガラス転移枩床Tgが70〜150℃ず
高いため、柔軟性および耐寒性に欠ける。逆に
Tgの䜎いポリマヌは、ブロツキングしやすく、
耐熱性にも劣る。結晶性ポリマヌの堎合、結晶の
融点が成圢枩床以䞊であれば耐熱性のよいフむル
ムが埗られるものの、結晶の存圚は光沢や透明性
を䜎䞋させる。特にTgの䜎い結晶性ポリマヌに
は、この傟向が避けられない。䟋えば、ナむロン
は融点Tmが200〜250℃ず高く耐熱性に優れおお
り、たた透明性、光沢ずもに優れおいるが、Tg
も40℃ず高いため、䞀般に吞湿しお軟化するこず
によりTgが℃近くたで䞋がらないず耐寒性は
発珟しない。高密床ポリ゚チレンはTgが−120
℃、Tmが135℃であり、ポリプロピレンはTgが
−18℃、Tmは176℃であるが、いずれも急冷た
たは延䌞しないず光沢を埗るこずができない。ポ
リむ゜ブチレンやポリブタゞ゚ン等は、Tgが−
70〜−90℃ず䜎いので柔軟性はあるものの耐熱性
がなく、たたブロツキングしやすい。 したが぀お、埓来、柔軟性を有し、しかも光
沢、透明性、耐熱性、耐寒性、ガスバリダヌ性等
にも優れた包装材料を埗るこずは困難であ぀た。 発明が解決しようずする問題点 本発明者らは、前蚘問題点を解決すべく鋭意研
究を行な぀た結果、衚局、ガスバリダヌ性䞭間局
およびヒヌトシヌル性を有するシヌル局の少なく
ずも局からなる倚局フむルムにおいお衚局ずし
おポリ゚ヌテル゚ステルアミド暹脂を甚いるこず
により光沢、透明性、耐熱性、ガスバリダヌ性等
に優れおいるず共に、柔軟性ず耐寒性を有する倚
局フむルムの埗られるこずを芋い出し、その知芋
に基づいお本発明を完成するに至぀た。 問題点を解決するための手段 すなわち、本発明の芁旚は、ポリ゚ヌテル゚ス
テルアミド暹脂からなる衚局、ガスバリダヌ性暹
脂からなる䞭間局、ヒヌトシヌル性を有する暹脂
からなるシヌル局の少なくずも局からなるこず
を特城ずする倚局フむルム、にある。 本発明においおは、特に、衚局ずしお結晶融点
が高く、しかもTgの䜎いポリ゚ヌテル゚ステル
アミド暹脂を䜿甚し、これずガスバリダヌ性暹脂
䞭間局およびヒヌトシヌル性暹脂局ずを組合わせ
るこずにより、耐熱シヌル性はもずより、流通時
の耐寒性にも優れ、か぀光沢や透明性等の諞物性
の良奜な倚局フむルムを埗るこずができるのであ
る。 以䞋、本発明の構成芁玠に぀いお詳述する。 ポリ゚ヌテル゚ステルアミド暹脂 本発明で䜿甚するポリ゚ヌテル゚ステルアミド
暹脂ずは、ポリアミド圢成性成分ずポリアルキレ
ン゚ヌテルグリコヌルずが゚ステル結合を介しお
ブロツク的に結合したブロツク共重合䜓である。 本発明で䜿甚するポリ゚ヌテル゚ステルアミド
暹脂ずしお、炭玠原子数以䞊のアミノカルボン
酞たたはラクタムもしくはナむロン塩、数平均
分子量300〜6000のポリアルキレンオキシド
グリコヌルおよび炭玠原子数〜20のゞカルボ
ン酞から構成され、か぀成分の党共重合䜓䞭
に占める比率が〜85重量であり、結晶融点が
110〜230℃、奜たしくは130〜220℃のものを甚い
るこずができる。たた、これらのポリ゚ヌテル゚
ステルアミド暹脂のガラス転移枩床Tgは、通垞、
−60℃皋床であり、ポリ゚ヌテル成分の皮類によ
぀おは−70℃を瀺すものもあるが、本発明におい
おは−50℃以䞋のものであれば奜たしく䜿甚する
こずができる。 ポリ゚ヌテル゚ステルアミドの結晶融点および
ガラス転移枩床の枬定は、差動走査型熱量蚈以
䞋、「DSC」ず呌ぶによ぀お行な぀た。DSCに
よる枬定は、メトラヌ瀟TA3000システム
DSC30型を䜿甚し、詊料重量15mg、枩床スキダ
ン募配10℃分にお、冷华には液䜓窒玠を䜿甚
し、−100℃から昇枩させお行な぀た。 結晶融点Tmは、吞熱偎のピヌクのピヌク倀
を、たた、ガラス転移枩床Tgは吞熱偎ぞのシフ
トにおける倉曲点をも぀お倀ずした。 ポリアミド圢成性成分ずしおは、ω−アミノカ
ルボン酞あるいはカプロラクタム、ラりロラクタ
ム等のラクタムや、NH2CH2nNH2は〜
12ずHOOCCH2oCOOHは〜12から埗
られる塩等が甚いられる。 ポリアルキレン゚ヌテルグリコヌル成分ずしお
は、ポリ゚チレングリコヌル、ポリ−プ
ロピレンオキシドグリコヌル、ポリ−
プロピレンオキシドグリコヌル、ポリテトラ
メチレンオキシドグリコヌル、ポリヘキサメ
チレンオキシドグリコヌル、゚チレンオキシド
ずプロピレンオキシドのブロツク共重合䜓たたは
ランダム共重合䜓グリコヌル、゚チレンオキシド
ずテトラヒドロフランのブロツク共重合䜓たたは
ランダム共重合䜓グリコヌルなどが甚いられる。 ゚ステル結合を圢成させるために䜿甚されるゞ
カルボン酞ずしおは、テレフタル酞、む゜フタル
酞、−シクロヘキサンゞカルボン酞、セバ
シン酞、ドデカンゞ酞のようなゞカルボン酞が甚
いられる。 ガスバリダヌ性暹脂 本発明で䞭間局に䜿甚するガスバリダヌ性暹脂
ずしおは、゚チレン酢酞ビニル共重合䜓ケン化
物、塩化ビニリデン系共重合䜓、アクリロニトリ
ル系暹脂等が挙げられ、特に゚チレン酢酞ビニル
共重合䜓ケン化物および塩化ビニリデン系共重合
䜓が奜たしい。たた、これらの暹脂にポリ゚ステ
ル゚ラストマヌやナむロンなどの各皮重合䜓をガ
スバリダヌ性を損なわない範囲でブレンドしたも
のも本発明のガスバリダヌ性暹脂ずしお䜿甚でき
る。本発明で䜿甚する゚チレン酢酞ビニル共重合
䜓ケン化物ずは、゚チレン20〜50モルず酢酞ビ
ニル80〜50モルの共重合䜓を90以䞊ケン化し
たものである。この共重合䜓ケン化物は公知の方
法によ぀お埗るこずができる。 塩化ビニリデン系共重合䜓は、塩化ビニリデン
ずこれず共重合可胜な単量䜓ずからなる共重合䜓
である。共重合可胜な単量䜓ずしおは、䟋えば、
塩化ビニル、アクリロニトリル、アクリル酞、メ
タクリル酞、アルキル基の炭玠数が〜18のアク
リル酞アルキル゚ステル、炭玠数が〜18のメタ
クリル酞アルキル゚ステル、無氎マレむン酞、マ
レむン酞、マレむン酞アルキル゚ステル、むタコ
ン酞、むタコン酞アルキル゚ステル、酢酞ビニ
ル、゚チレン、プロピレン、む゜ブチレン、ブタ
ゞ゚ン等が挙げられる。通垞、塩化ビニリデン60
〜95重量にこれらの共単量重合䜓の皮たたは
皮以䞊を〜40重量共重合させた共重合䜓、
あるいはこれら共重合䜓に通垞の無毒の可塑剀、
安定剀、着色剀等の助剀を10重量以䞋添加した
暹脂が甚いられる。なかでも、塩化ビニリデン−
塩化ビニル系共重合䜓が奜たしい。 ヒヌトシヌル性を有する暹脂 本発明で䜿甚するヒヌトシヌル性を有する暹脂
ずしおは、ポリオレフむン系暹脂が奜たしく甚い
るこずができる。䟋えば、゚チレン、プロピレン
等のα−オレフむンの単独重合䜓α−オレフむ
ンを䞻䜓ずする酢酞ビニル、アクリル酞゚ステル
あるいはメタクリル酞゚ステルなどずの共重合
䜓゚チレンずプロピレンの共重合䜓゚チレン
ずメタクリル酞、アクリル酞あるいはむタコン酞
などずの共重合䜓にNaむオンやZnむオン、Mg
むオン等を䜜甚させたアむオノマヌ暹脂あるい
はこれらの皮以䞊のブレンド物が挙げられる。 これらのポリオレフむン系暹脂の䞭でも特にポ
リ゚チレンや゚チレン−酢酞ビニル共重合䜓、ア
むオノマヌ暹脂が奜たしい。 フむルム局の厚さ 本発明における衚局のポリ゚ヌテル゚ステルア
ミド暹脂局は、倚局フむルムに耐寒性、柔軟性、
耐熱性を付䞎するもので、10〜100ÎŒm、奜たしく
は10〜40ÎŒmの厚さを有する。衚局が10ÎŒmより薄
いず耐寒性等の効果が十分埗られず、逆に100ÎŒm
より厚いずフむルムの成圢性が悪くなる。 䞭間局のガスバリダヌ性暹脂局は、倚局フむル
ムにガスバリダヌ性を付䞎せしめるもので、〜
50ÎŒm、奜たしくは〜30ÎŒmの厚さを有する。䞭
間局が5ÎŒmより薄いず倚局フむルムぞのガスバリ
ダヌ性付䞎効果が少なく、50ÎŒmより厚いず倚局
フむルムの腰が匷くなりフむルム成圢性の悪化を
もたらす。 シヌル局のヒヌトシヌル性を有する暹脂局は、
倚局フむルムにシヌル性や良奜な成圢性を付䞎
し、たた、ガスバリダヌ性暹脂局、特に゚チレン
−酢酞ビニル共重合䜓ケン化物を氎分から保護す
る䜜甚を有する。シヌル局は、このような圹割を
発揮させるために少なくずも20ÎŒm以䞊の厚さず
するこずが奜たしい。 倚局フむルムの合蚈厚さは、40〜200ÎŒmであ
り、この範囲であるこずが食品包装甚ずしお適し
おいる。 局の構成 本発明の倚局フむルムは、ポリ゚ヌテル゚ステ
ルアミド暹脂局、ガスバリダヌ性暹脂局およ
びヒヌトシヌル性暹脂局の少なくずも局から
構成され、局を衚局、局を䞭間局、局をヒ
ヌトシヌル性暹脂局ずする。したが぀お、本発明
における倚局フむルムの基本的な局構成は、
である。 倚局フむルムの衚局ずガスバリダヌ性局ずの間
あるいはガスバリダヌ性局ずシヌル局ずの間に、
䞡者の接着性を向䞊させるために接着性暹脂局を
介圚させおもよい。 接着性暹脂ずしおは、ポリ゚ヌテル゚ステルア
ミド局ずEVOH局の間およびEVOH局ずシヌル
局の間には、䟋えば、無氎マレむン酞倉性ポリオ
レフむンが䜿甚される。ポリ゚ヌテル゚ステルア
ミド局ずPVDC局ずは、接着性暹脂を甚いなくお
も良奜な接着性を瀺すが、その間に接着性暹脂ず
しお無氎マレむン酞倉性EVAを䜿甚しおもよく、
たた、PVDC局ずポリオレフむンからなるシヌル
局の間にはEVAや゚チレン−アクリル酞゚ステ
ル共重合䜓等が接着性暹脂ずお䜿甚される。接着
性暹脂は、通垞、〜20ÎŒmの厚さの局ずしお䜿
甚される。 倚局フむルムの成圢 本発明の倚局フむルムは、ダむ成圢やむンフ
レヌシペン成圢など通垞の成圢方法により成圢す
るこずができる。 実斜䟋 以䞋、実斜䟋および察照䟋により本発明をさら
に具䜓的に説明するが、本発明はこれら実斜䟋の
みに限定されるものではない。 実斜䟋  結晶融点168℃、ガラス転移枩床−60℃のポリ
゚ヌテル゚ステルアミド暹脂ATOCHEM瀟補
の商品名PEBAXを衚局ずし、塩化ビニリデン
含量が80重量の塩化ビニリデン−塩化ビニル共
重合䜓100重量郚に察しお゚ポキシ化倧豆油を
重量郚添加混合した暹脂組成物を䞭間局に、酢酞
ビニル含量10重量の゚チレン−酢酞ビニル共重
合䜓をシヌル局ずし、これらの暹脂を台の抌出
機を䜿甚しお円圢ダむ䞭に぀の流路より䌚合せ
しめた。 次いで、ダむ盎䞋にお溶融状態の筒状局パリ
゜ンに空気を吹きこむ、いわゆるむンフレヌシペ
ン成圢により各局の厚さが、衚局30ÎŒm、䞭間局
15ÎŒm、シヌル局40ÎŒmである局フむルムを䜜成
した。 このフむルムを䜿甚し、深絞り成圢法を甚い高
さcm、盎埄cmの゜ヌセヌゞを充填し、同じフ
むルムを蓋材ずしお甚いお真空シヌル包装した。
次ぎに、この真空包装品を10個甚いお耐寒テスト
を実斜した。耐寒テストの方法ずしおは、䞀蟺が
20cm、幅が30cmの角圢の回転箱の䞭に入れ、
℃、30RPMの条件䞋で回転し、分埌、分埌、
10分埌の回転衝撃による砎袋の数により真空戻り
品の発生率を枬定した。 その結果を衚に瀺す。 実斜䟋  結晶融点190℃、ガラス転移枩床−60℃のポリ
゚ヌテル゚ステルアミド暹脂ATOCHEM瀟補
の商品名PEBAXを衚局に、゚チレン含有量30
モル、ケン化床98の゚チレン酢酞ビニル共重
合䜓ケン化物を䞭間局に、䜎密床ポリ゚チレンを
シヌル局ずし、台の抌出機を䜿甚しお円圢ダむ
䞭に぀の流路より䌚合せしめた。 次いでダむ盎䞋にお溶融状態の筒状局パリ゜
ンに空気を吹きこむ、いわゆるむンフレヌシペン
成圢法により各局の厚さが、衚局25ÎŒm、䞭間局
20ÎŒm、シヌル局50ÎŒmである局フむルムを䜜補
した。 このフむルムを䜿甚しお、実斜䟋ず同様の方
法で深絞り成圢を行ない、同じ方法で耐寒テスト
を実斜した。その結果を衚に瀺す。 察照䟋  実斜䟋のポリ゚ヌテル゚ステルアミド暹脂の
代りに、12−ナむロンを衚局ずしお甚いたこず以
倖は実斜䟋ず同様にしお倚局フむルムを䜜成し
た。各局の厚さは、実斜䟋ず同じく衚局30ÎŒm、
äž­é–“å±€15ÎŒm、シヌル局40ÎŒmであ぀た。この倚局
フむルムに぀いおも実斜䟋ず同じ耐寒テストを
実斜した。その結果を衚に瀺す。 察照䟋  実斜䟋のポリ゚ヌテル゚ステルアミド暹脂の
代りに、可塑剀ずしおポリ゚ステル系可塑剀を36
重量含有する可塑化塩化ビニル暹脂を衚局ずし
お甚いたこず以倖は実斜䟋ず同様にしお倚局フ
むルムを䜜成した。各局の厚さは、衚局40ÎŒm、
äž­é–“å±€15ÎŒm、シヌル局35ÎŒmであ぀た。この倚局
フむルムに぀いおも実斜䟋ず同じ耐寒テストを
実斜した。その結果を衚に瀺す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a multilayer film for food packaging.
More specifically, it has polyether ester amide resin as a surface layer, which has excellent gloss, transparency, and gas barrier properties, as well as flexibility and heat resistance, as well as pinhole resistance, skin formation, and deep drawability at low temperatures. The present invention relates to a film that is excellent for use as a lid material for air-containing packaging. Conventional technology Conventionally, films for food packaging, especially for packaging processed meat products, have been made using nylon Ny/polyethylene PE, Ny/ethylene vinyl acetate saponified copolymer EVOH/PE, and vinyl chloride resin PVC/vinylidene chloride. Multilayer films such as resin PVDC/ethylene vinyl acetate copolymer EVA are used. Most of these have a layer structure of surface layer/intermediate layer/seal layer, and the required role of each layer is as follows. In other words, the surface layer plays the role of surface gloss, transparency, heat resistance during molding, anti-blocking properties with the sealing layer, and cold resistance.
As an intermediate layer, it plays a role of excellent gas barrier properties and transparency. The role of the sealing layer is not only heat sealability but also heat resistance and oil resistance. The heat resistance required for these multilayer films usually means that they can withstand molding temperatures of 130°C or higher, and the cold resistance that they require means that they can withstand distribution at temperatures near 0°C. Generally, the melting point of resins used as sealing layers, such as PE and EVA, is 90.
Since the temperature is between 110°C and 110°C, the molding temperature for sealing is usually 120 to 135°C, and it is preferable to seal at 130°C or higher to obtain stable sealing properties. Therefore, the temperature of the multilayer film is 130℃.
It is necessary to withstand the above molding temperature. On the other hand, film-packaged products are generally kept at a storage temperature of 5°C to 15°C during the distribution process, such as in retail store cases, but depending on the season and location, the storage temperature may be 0°C.
Or even less, and the biggest problem is distribution during the depths of winter. It is required to maintain flexibility even in such a low-temperature environment, withstand transportation and handling, and not cause bag breakage or pinholes. In this way, the multilayer film
It is required to satisfy both properties of heat resistance during molding and cold resistance during distribution. Incidentally, as a recent trend, packaging materials with flexibility are required, but the biggest problem in imparting flexibility to packaging materials made of multilayer films is what kind of resin to select as the material for the surface layer. That is to say. An example is a combination of soft PVC/PVDC with plasticized PVC as the surface layer, but softening of the surface layer resin by adding a plasticizer can reduce the surface gloss due to plasticizer bleed-out or change the layer from soft PVC to PVDC. There are many drawbacks such as a decrease in gas barrier properties due to the migration of a large amount of plasticizer to the resin. On the other hand, non-plasticized resins with excellent gloss include polystyrene, polycarbonate,
There are amorphous polymers such as polyethylene terephthalate and PVC, but these polymers generally all have a high glass transition temperature Tg of 70 to 150°C and therefore lack flexibility and cold resistance. vice versa
Polymers with low Tg are prone to blocking,
It also has poor heat resistance. In the case of crystalline polymers, if the melting point of the crystals is higher than the molding temperature, a film with good heat resistance can be obtained, but the presence of crystals reduces gloss and transparency. This tendency is unavoidable, especially for crystalline polymers with low Tg. For example, nylon has a high melting point Tm of 200 to 250°C, and has excellent heat resistance, as well as excellent transparency and gloss.
Since the temperature is as high as 40℃, cold resistance generally does not develop unless the Tg drops to near 0℃ by absorbing moisture and softening. High density polyethylene has a Tg of -120
℃, Tm is 135°C, and polypropylene has a Tg of -18°C and a Tm of 176°C, but in both cases, gloss cannot be obtained unless quenched or stretched. Polyisobutylene, polybutadiene, etc. have a Tg of -
The temperature is as low as 70 to -90°C, so although it is flexible, it lacks heat resistance and is prone to blocking. Therefore, it has conventionally been difficult to obtain packaging materials that are flexible and also have excellent gloss, transparency, heat resistance, cold resistance, gas barrier properties, and the like. Problems to be Solved by the Invention As a result of intensive research aimed at solving the above problems, the present inventors found that the invention consists of at least three layers: a surface layer, an intermediate layer with gas barrier properties, and a sealing layer with heat sealability. Discovered that by using polyether ester amide resin as the surface layer of a multilayer film, a multilayer film with excellent gloss, transparency, heat resistance, gas barrier properties, etc., as well as flexibility and cold resistance, could be obtained. Based on this, the present invention was completed. Means for Solving the Problems That is, the gist of the present invention is that the present invention consists of at least three layers: a surface layer made of a polyether ester amide resin, an intermediate layer made of a gas barrier resin, and a sealing layer made of a resin having heat sealability. A multilayer film characterized by: In the present invention, in particular, a polyether ester amide resin with a high crystal melting point and low Tg is used as the surface layer, and by combining this with a gas barrier resin intermediate layer and a heat sealable resin layer, heat-resistant sealing is achieved. It is possible to obtain a multilayer film that not only has excellent properties but also cold resistance during distribution and has good physical properties such as gloss and transparency. Hereinafter, the constituent elements of the present invention will be explained in detail. (Polyetheresteramide resin) The polyetheresteramide resin used in the present invention is a block copolymer in which a polyamide-forming component and polyalkylene ether glycol are bonded in a block manner through ester bonds. As the polyether ester amide resin used in the present invention, aminocarboxylic acid or lactam or nylon salt a having 6 or more carbon atoms, poly(alkylene oxide) having a number average molecular weight of 300 to 6000
It is composed of glycol b and dicarboxylic acid c having 4 to 20 carbon atoms, and the proportion of component b in the total copolymer is 5 to 85% by weight, and the crystal melting point is
A temperature of 110 to 230°C, preferably 130 to 220°C can be used. In addition, the glass transition temperature Tg of these polyether ester amide resins is usually
The temperature is about -60°C, and some polyether components show -70°C depending on the type of polyether component, but in the present invention, any temperature below -50°C can be preferably used. The crystal melting point and glass transition temperature of the polyether ester amide were measured using a differential scanning calorimeter (hereinafter referred to as "DSC"). Measurement by DSC is performed using Mettler's TA3000 system.
Using a DSC30 model, the sample weight was 15 mg, the temperature scan gradient was 10°C/min, liquid nitrogen was used for cooling, and the temperature was raised from -100°C. The crystal melting point Tm was defined as the peak value on the endothermic side, and the glass transition temperature Tg was defined as the inflection point in the shift to the endothermic side. Examples of polyamide-forming components include ω-aminocarboxylic acids or lactams such as caprolactam and laurolactam, and NH 2 (CH 2 ) n NH 2 (m is 6 to
12) and HOOC(CH 2 ) o COOH (n is 6 to 12). Polyalkylene ether glycol components include polyethylene glycol, poly(1,2-propylene oxide) glycol, poly(1,3-
(propylene oxide) glycol, poly(tetramethylene oxide) glycol, poly(hexamethylene oxide) glycol, block copolymer or random copolymer of ethylene oxide and propylene oxide glycol, block copolymer or random copolymer of ethylene oxide and tetrahydrofuran Glycol etc. are used. As the dicarboxylic acid used to form the ester bond, dicarboxylic acids such as terephthalic acid, isophthalic acid, 1,4-cyclohexanedicarboxylic acid, sebacic acid, and dodecanedioic acid are used. Gas Barrier Resin Gas barrier resins used in the intermediate layer in the present invention include saponified ethylene vinyl acetate copolymers, vinylidene chloride copolymers, acrylonitrile resins, and especially ethylene vinyl acetate copolymers. Saponified products and vinylidene chloride copolymers are preferred. Further, blends of various polymers such as polyester elastomer and nylon with these resins within a range that does not impair the gas barrier properties can also be used as the gas barrier resin of the present invention. The saponified ethylene-vinyl acetate copolymer used in the present invention is a copolymer of 20 to 50 mol% ethylene and 80 to 50 mol% vinyl acetate that has been saponified to 90% or more. This saponified copolymer can be obtained by a known method. A vinylidene chloride-based copolymer is a copolymer consisting of vinylidene chloride and a monomer copolymerizable with vinylidene chloride. Examples of copolymerizable monomers include:
Vinyl chloride, acrylonitrile, acrylic acid, methacrylic acid, acrylic acid alkyl esters in which the alkyl group has 1 to 18 carbon atoms, methacrylic acid alkyl esters in which the alkyl group has 1 to 18 carbon atoms, maleic anhydride, maleic acid, maleic acid alkyl esters, Examples include itaconic acid, itaconic acid alkyl ester, vinyl acetate, ethylene, propylene, isobutylene, and butadiene. Usually vinylidene chloride 60
A copolymer obtained by copolymerizing ~95% by weight with 5~40% by weight of one or more of these comonomer polymers,
Alternatively, these copolymers can be added with a common non-toxic plasticizer.
A resin to which 10% by weight or less of auxiliary agents such as stabilizers and colorants are added is used. Among them, vinylidene chloride
Vinyl chloride copolymers are preferred. (Resin having heat-sealing properties) As the resin having heat-sealing properties used in the present invention, polyolefin resins can be preferably used. For example, homopolymers of α-olefins such as ethylene and propylene; copolymers of α-olefins with vinyl acetate, acrylic esters, or methacrylic esters; copolymers of ethylene and propylene; ethylene and methacrylic Na ion, Zn ion, Mg in copolymer with acid, acrylic acid or itaconic acid, etc.
Examples include ionomer resins treated with ions and the like; or blends of two or more of these. Among these polyolefin resins, polyethylene, ethylene-vinyl acetate copolymer, and ionomer resin are particularly preferred. (Thickness of film layer) The surface polyether ester amide resin layer in the present invention has cold resistance, flexibility,
It imparts heat resistance and has a thickness of 10 to 100 ÎŒm, preferably 10 to 40 ÎŒm. If the surface layer is thinner than 10ÎŒm, sufficient effects such as cold resistance cannot be obtained;
If it is thicker, the formability of the film will deteriorate. The gas barrier resin layer of the intermediate layer imparts gas barrier properties to the multilayer film, and has a layer of 5 to 5.
It has a thickness of 50 ÎŒm, preferably 5 to 30 ÎŒm. If the intermediate layer is thinner than 5 ÎŒm, the effect of imparting gas barrier properties to the multilayer film will be small, and if it is thicker than 50 ÎŒm, the multilayer film will become stiff, leading to deterioration in film formability. The resin layer with heat sealing properties of the sealing layer is
It imparts sealing properties and good moldability to the multilayer film, and also has the effect of protecting the gas barrier resin layer, particularly the saponified ethylene-vinyl acetate copolymer, from moisture. The seal layer preferably has a thickness of at least 20 ÎŒm or more in order to fulfill this role. The total thickness of the multilayer film is 40 to 200 ÎŒm, and this range is suitable for food packaging. (Layer composition) The multilayer film of the present invention is composed of at least three layers: a polyether ester amide resin layer A, a gas barrier resin layer B, and a heat-sealable resin layer C, with layer A being a surface layer and layer B being an intermediate layer. Layer C is a heat-sealable resin layer. Therefore, the basic layer structure of the multilayer film in the present invention is A/
It is B/C. Between the surface layer of the multilayer film and the gas barrier layer or between the gas barrier layer and the sealing layer,
An adhesive resin layer may be interposed to improve the adhesion between the two. As the adhesive resin, for example, maleic anhydride-modified polyolefin is used between the polyether ester amide layer and the EVOH layer and between the EVOH layer and the sealing layer. The polyether ester amide layer and the PVDC layer exhibit good adhesion without using an adhesive resin, but maleic anhydride-modified EVA may be used as the adhesive resin between them.
Furthermore, EVA, ethylene-acrylic acid ester copolymer, or the like is used as an adhesive resin between the PVDC layer and the sealing layer made of polyolefin. Adhesive resins are usually used in layers with a thickness of 1 to 20 Όm. (Molding of multilayer film) The multilayer film of the present invention can be molded by a conventional molding method such as T-die molding or inflation molding. EXAMPLES The present invention will be explained in more detail below using Examples and Comparative Examples, but the present invention is not limited to these Examples. Example 1 Vinylidene chloride-vinyl chloride copolymer 100 with a polyether ester amide resin (product name PEBAX manufactured by ATOCHEM) having a crystal melting point of 168°C and a glass transition temperature of -60°C as a surface layer and a vinylidene chloride content of 80% by weight. 2 parts by weight of epoxidized soybean oil
The resin composition added and mixed in parts by weight was used as an intermediate layer, and the ethylene-vinyl acetate copolymer with a vinyl acetate content of 10% by weight was used as a sealing layer, and these resins were extruded into three circular dies using three extruders. They were made to meet from two channels. Next, air is blown into the molten cylindrical three-layer parison directly under the die, using so-called inflation molding to reduce the thickness of each layer to 30 ÎŒm for the surface layer and 30 ÎŒm for the middle layer.
A three-layer film with a thickness of 15 ÎŒm and a seal layer of 40 ÎŒm was prepared. This film was used to fill sausages with a height of 4 cm and a diameter of 9 cm using a deep drawing method, and the same film was used as a lid material to vacuum seal packaging.
Next, a cold resistance test was conducted using 10 of these vacuum packaged products. As a method of cold resistance test, one side is
Place it in a hexagonal rotating box with a width of 20 cm and a width of 30 cm.
Rotate under the conditions of ℃ and 30 RPM, after 2 minutes, after 5 minutes,
The incidence of vacuum-returned products was measured by the number of broken bags due to rotational impact after 10 minutes. The results are shown in Table 1. Example 2 A polyether ester amide resin (trade name: PEBAX manufactured by ATOCHEM) with a crystal melting point of 190°C and a glass transition temperature of -60°C was used as the surface layer, and an ethylene content of 30°C was used.
A saponified ethylene-vinyl acetate copolymer with a mole% saponification degree of 98% is used as the intermediate layer, and low-density polyethylene is used as the sealing layer, and they are assembled through three channels in a circular die using three extruders. Ta. Next, air is blown into the molten cylindrical three-layer parison directly under the die, using the so-called inflation molding method, to reduce the thickness of each layer to 25 ÎŒm for the surface layer and 25 ÎŒm for the middle layer.
A three-layer film with a thickness of 20 ÎŒm and a seal layer of 50 ÎŒm was prepared. Using this film, deep drawing was performed in the same manner as in Example 1, and a cold resistance test was conducted in the same manner. The results are shown in Table 1. Comparative Example 1 A multilayer film was prepared in the same manner as in Example 1 except that 12-nylon was used as the surface layer instead of the polyetheresteramide resin in Example 1. The thickness of each layer is the same as in Example 1, 30 ÎŒm for the surface layer,
The intermediate layer was 15 ÎŒm thick, and the seal layer was 40 ÎŒm thick. This multilayer film was also subjected to the same cold resistance test as in Example 1. The results are shown in Table 1. Control example 2 In place of the polyether ester amide resin in Example 1, a polyester plasticizer was used as a plasticizer.
A multilayer film was prepared in the same manner as in Example 1 except that a plasticized vinyl chloride resin containing % by weight was used as the surface layer. The thickness of each layer is 40 ÎŒm for the surface layer,
The intermediate layer was 15 ÎŒm thick, and the seal layer was 35 ÎŒm thick. This multilayer film was also subjected to the same cold resistance test as in Example 1. The results are shown in Table 1.

【衚】 たた、実斜䟋〜および察照䟋〜で埗ら
れた各フむルムの物性倀を衚に瀺す。
Table 2 also shows the physical property values of the films obtained in Examples 1 and 2 and Control Examples 1 and 2.

【衚】【table】

【衚】 発明の効果 本発明は、倚局フむルムの衚局ずしおポリ゚ヌ
テル゚ステルアミド暹脂を䜿甚し、これずガスバ
リダヌ性暹脂局およびヒヌトシヌル性を有する暹
脂局ずを組合せお倚局フむルムずしたこずにより
光沢、透明性、ガスバリダヌ性が優れおいるず共
に柔軟性、耐熱性を有し、しかも䜎枩時の耐ピン
ホヌル性、スキン圢成性および深絞り性に優れた
フむルムを埗るこずができたのである。特に、本
発明においおは、結晶融点が110〜230℃ず高く、
しかもガラス転移枩床が−50℃以䞋ず䜎いポリ゚
ヌテル゚ステルアミド暹脂を倚局フむルムの衚局
ずしお䜿甚するこずにより、耐熱シヌル性に優れ
おいるず共に、流通過皋における耐寒性にも優れ
おいるずいう顕著な効果を奏し埗たのである。た
た、衚局暹脂に可塑剀を䜿甚する必芁がないた
め、可塑剀のブリヌドアりトによる汚染や各フむ
ルムの材質の倉化等の問題が発生しない。そし
お、本発明の倚局フむルムは、各皮食品の包装甚
フむルムずしお真空包装や含気包装など広範な甚
途に䜿甚可胜である。
[Table] Effects of the Invention The present invention uses a polyether ester amide resin as the surface layer of a multilayer film, and combines this with a gas barrier resin layer and a heat-sealing resin layer to form a multilayer film. It was possible to obtain a film that has excellent transparency and gas barrier properties, as well as flexibility and heat resistance, as well as excellent pinhole resistance at low temperatures, skin formation properties, and deep drawability. In particular, in the present invention, the crystal melting point is as high as 110 to 230°C,
Moreover, by using polyether ester amide resin with a low glass transition temperature of -50°C or less as the surface layer of the multilayer film, it has the remarkable effect of not only excellent heat-resistant sealing properties but also excellent cold resistance during the distribution process. I was able to play it. Furthermore, since there is no need to use a plasticizer in the surface layer resin, problems such as contamination due to bleed-out of the plasticizer and changes in the material of each film do not occur. The multilayer film of the present invention can be used in a wide range of applications such as vacuum packaging and air-containing packaging as a packaging film for various foods.

Claims (1)

【特蚱請求の範囲】  ポリ゚ヌテル゚ステルアミド暹脂からなる衚
局、ガスバリダヌ性暹脂からなる䞭間局、ヒヌト
シヌル性を有する暹脂からなるシヌル局の少なく
ずも局からなるこずを特城ずする倚局フむル
ム。  ガスバリダヌ性暹脂が゚チレン酢酞ビニル共
重合䜓ケン化物たたは塩化ビニリデン系共重合䜓
である特蚱請求の範囲第項蚘茉の倚局フむル
ム。  前蚘ポリ゚ヌテル゚ステルアミド暹脂が、結
晶融点が110〜230℃、奜たしくは130〜220℃で、
か぀ガラス転移枩床が−50℃以䞋の暹脂である特
蚱請求の範囲第項蚘茉の倚局フむルム。  前蚘倚局フむルムの合蚈厚さが40〜200ÎŒmで
あり、衚局が10〜100ÎŒm、奜たしくは10〜40ÎŒm、
䞭間局が〜50ÎŒm、奜たしくは〜30ÎŒm、シヌ
ル局が少なくずも20ÎŒmのそれぞれの厚さを有す
るものである特蚱請求の範囲第項蚘茉の倚局フ
むルム。
[Scope of Claims] 1. A multilayer film comprising at least three layers: a surface layer made of a polyether ester amide resin, an intermediate layer made of a gas barrier resin, and a sealing layer made of a resin having heat-sealing properties. 2. The multilayer film according to claim 1, wherein the gas barrier resin is a saponified ethylene vinyl acetate copolymer or a vinylidene chloride copolymer. 3. The polyether ester amide resin has a crystal melting point of 110 to 230°C, preferably 130 to 220°C,
The multilayer film according to claim 1, which is a resin having a glass transition temperature of -50°C or lower. 4. The total thickness of the multilayer film is 40 to 200 Όm, and the surface layer is 10 to 100 Όm, preferably 10 to 40 Όm,
A multilayer film according to claim 1, wherein the intermediate layer has a respective thickness of 5 to 50 .mu.m, preferably 5 to 30 .mu.m, and the sealing layer has a respective thickness of at least 20 .mu.m.
JP9750687A 1987-04-22 1987-04-22 Freeze resistant multilayer film Granted JPS63264348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9750687A JPS63264348A (en) 1987-04-22 1987-04-22 Freeze resistant multilayer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9750687A JPS63264348A (en) 1987-04-22 1987-04-22 Freeze resistant multilayer film

Publications (2)

Publication Number Publication Date
JPS63264348A JPS63264348A (en) 1988-11-01
JPH0476301B2 true JPH0476301B2 (en) 1992-12-03

Family

ID=14194143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9750687A Granted JPS63264348A (en) 1987-04-22 1987-04-22 Freeze resistant multilayer film

Country Status (1)

Country Link
JP (1) JPS63264348A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4957379A (en) * 1989-01-11 1990-09-18 Monarch Marking Systems, Inc. Printing apparatus
JPH0395230U (en) * 1990-01-22 1991-09-27
JP2555063Y2 (en) * 1991-09-13 1997-11-19 凞版印刷株匏䌚瀟 Gas barrier multilayer cap
CA2282675A1 (en) * 1997-12-24 1999-07-08 Elf Atochem S.A. Multilayer structure comprising a material coated with block polyamide and block hydrophilic copolymers
CA2959423A1 (en) * 2016-03-10 2017-09-10 Flexopack S.A. Liner film
EP3501822A1 (en) * 2017-12-22 2019-06-26 Flexopack S.A. Fibc liner film

Also Published As

Publication number Publication date
JPS63264348A (en) 1988-11-01

Similar Documents

Publication Publication Date Title
US4210686A (en) Multi-layered plastic sheeting having high clarity, strength, and resistance to water vapor transmission
EP0948433B1 (en) Packaging film or sheet
JPH0588674B2 (en)
JP2009051212A (en) Packaging laminate and goods manufactured from packaging laminate
EP0115163B1 (en) Barrier films
JP3643449B2 (en) Multilayer film, packaging container and packaging product comprising the same
AU705748B2 (en) Film/substrate composite material
JPH03192140A (en) Resin composition and multilayer structure
JPH0476301B2 (en)
US20020015811A1 (en) Film/substrate composite material
JPH028051A (en) Laminate packaging material
AU2018282358A1 (en) Fibc liner film
JP3815634B2 (en) Manufacturing method of packaging materials with excellent high-speed heat sealability
JP5855005B2 (en) Easy peelable laminated film and its use
JP3087919B2 (en) Laminate
EP0483695A2 (en) Resin composition and use thereof
JP3737547B2 (en) Thermoplastic resin composition and use thereof
US5037703A (en) Multilayered structure
JP2721395B2 (en) Multilayer film for skin pack
JPH024425B2 (en)
JPH02293141A (en) Multilayer film for deep drawing
JPH042621B2 (en)
EP2737999A1 (en) High abuse heat shrinkable film
JPS62138228A (en) Preparation of double-layered hollow molded container
JPS6160769B2 (en)