JPH0475767A - Detection of slag outflow used commonly for nitriding of molten steel - Google Patents

Detection of slag outflow used commonly for nitriding of molten steel

Info

Publication number
JPH0475767A
JPH0475767A JP18539490A JP18539490A JPH0475767A JP H0475767 A JPH0475767 A JP H0475767A JP 18539490 A JP18539490 A JP 18539490A JP 18539490 A JP18539490 A JP 18539490A JP H0475767 A JPH0475767 A JP H0475767A
Authority
JP
Japan
Prior art keywords
molten steel
nozzle
slag
gas
outflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18539490A
Other languages
Japanese (ja)
Inventor
Makoto Araya
誠 荒谷
Saburo Moriwaki
森脇 三郎
Ryuichi Asaho
朝穂 隆一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP18539490A priority Critical patent/JPH0475767A/en
Publication of JPH0475767A publication Critical patent/JPH0475767A/en
Pending legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To exactly decide the outflow of slag by blowing a nitrogen-contg. gas from an aperture on the lower side of a nozzle to nitride the molten steel and supplying the inert gas sucked by the pouring flow of the molten steel from the aperture on the upper side of the nozzle, then detecting a change in the flow rate and back pressure thereof. CONSTITUTION:Suction force is generated in the gas supply hole part 2a in the nozzle 2 and the degree thereof depends largely on the kinetic energy of the pouring flow of the molten steel. The suction force in the gas supply hole 2a part is charged by the difference in the kinetic energy generated from a density difference if the pouring flow changes form the molten steel 4 to slag 5 in such a state. The presence or absence of the outflow of the slag is decided by recognizing the change in the flow rate and/or back pressure of the inert gas. Since the gas supply hole 3a for supplying gaseous nitrogen for nitriding is provided below the supply hole 2a of the inert gas, the detection of the slag outflow is not affected at all even if the flow rate of the gaseous nitrogen is increased. The molten steel is thus nitrided while the presence or absence of the flag outflow is detected.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、取鍋内の溶鋼をその底部に設けたノズルを
介してタンデイシュなどの中間容器内へ注入する際、該
溶鋼に窒素含有ガスを吹き込んで加窒するとともに、中
間容器内へのスラグの流出を極力回避しようとするもの
である。
Detailed Description of the Invention (Field of Industrial Application) This invention provides a method for injecting molten steel in a ladle into an intermediate container such as a tundish through a nozzle provided at the bottom of the ladle, injecting nitrogen-containing gas into the molten steel. This is to perform nitrification by blowing slag into the intermediate container, and to prevent the slag from flowing into the intermediate container as much as possible.

(従来の技術) 溶鋼の加窒に関する技術しては、例えば特公昭62−0
0964号公報に開示のように、上部容器から下部容器
内へ溶鋼を流出させる間に、鋳込み流れの内部に窒素含
有流体を送り込むことによって鋼中の窒素含有量を増大
させる方法が知られている。
(Prior art) As for the technology related to nitriding of molten steel, for example, Japanese Patent Publication No. 62-0
As disclosed in Japanese Patent No. 0964, it is known to increase the nitrogen content in the steel by feeding a nitrogen-containing fluid into the pouring stream while the molten steel flows from the upper vessel into the lower vessel. .

また、転炉等の精錬炉から出鋼孔を通して取鍋へ溶鋼を
供給する際の出鋼末期、あるいは取鍋からノズルを通し
て該取鍋内の溶鋼をタンデイシュなどの中間容器へ注出
する際の注出末期においては、溶鋼と共にスラグが流出
するため、このスラグが溶鋼中の添加合金鉄と反応し、
合金鉄の歩留りの低下や溶鋼の再酸化による品質劣化な
どの弊害があり、このような弊害の回避を試みたものと
しては、特開平2−70372号公報に開示の如きスラ
グ流出検知技術が知られている。
Also, during the final stage of tapping when molten steel is supplied from a refining furnace such as a converter to a ladle through a tapping hole, or when pouring molten steel from the ladle through a nozzle into an intermediate container such as a tundish. At the end of pouring, slag flows out together with the molten steel, and this slag reacts with the ferroalloy added in the molten steel.
There are disadvantages such as a decrease in the yield of ferroalloy and quality deterioration due to reoxidation of molten steel, and a slag outflow detection technology disclosed in Japanese Patent Application Laid-Open No. 2-70372 is known as an attempt to avoid such disadvantages. It is being

(発明が解決しよ61する課題) 1掲特開平2−70372号公報に開示の技術は、精錬
炉の出納孔あるいは取鍋のノズルの内壁部に設けたガス
供給孔より不活性ガスを供給しつつノズル内の静圧(負
圧)を測定し2、その変化(注出瀦が溶鋼からスラグに
代わる際のノズル内の圧力変化)状況を把握すること乙
、二よりスラブの流出を検知するものであって、注湯作
業における生産性の向−ヒや作業効率の改善を図るべく
、スラグの流出を検知しなから加窒を行う場合において
は、かかる検知技術と加窒技術を組合(4゛ることが試
みられた。
(61 Problems to be Solved by the Invention) The technology disclosed in Japanese Unexamined Patent Publication No. 1 Hei 2-70372 supplies inert gas from a gas supply hole provided in the outlet hole of a refining furnace or the inner wall of a nozzle of a ladle. At the same time, measure the static pressure (negative pressure) inside the nozzle, and understand the change (pressure change inside the nozzle when the pouring water changes from molten steel to slag).Secondly, detect the outflow of the slab. In order to improve productivity and work efficiency in pouring work, when nitriding is performed without detecting slag outflow, such detection technology and nitriding technology should be combined. (An attempt was made to do 4.

しかしながら、上記の如き従来技術の栄なる組合せでは
、該検知技術がノズル内の圧力変化をとらえるものであ
るから、溶鋼の加窒を行うためにノズルの内壁部より窒
素ガスを吹き込む際に、例えばノズル内へ吹き込む加窒
用の窒素ガスの流量を溶鋼のスルーブッ) 6 t /
1llinにおいて、3ON/+in以上とする場合に
、該窒素ガスがノズル内へ強制的に送り込まれることに
なるため、ノズル内の圧力が負圧から大気圧以上となり
、スラグ流出時の圧力変化が検知できない不利があった
(第5図参照)。
However, in the above-mentioned combination of conventional technologies, since the detection technology detects pressure changes within the nozzle, when blowing nitrogen gas from the inner wall of the nozzle to nitridize molten steel, for example, The flow rate of nitrogen gas blown into the nozzle for nitriding is determined by the throughput of the molten steel) 6 t/
When 1 llin is set to 3ON/+in or more, the nitrogen gas is forced into the nozzle, so the pressure inside the nozzle goes from negative pressure to above atmospheric pressure, and the pressure change when slag flows out is detected. There was a disadvantage in not being able to do so (see Figure 5).

取鍋内の溶鋼をタンデイシュなどの中間容器+、、:供
給する際に、溶鋼中の窒素含有量を増大させる効果的な
加窒を行うとともに中間容器へのスラグ流出を極力回避
可能とUまた方法を掃案することがこの発明の目的であ
る。
When feeding the molten steel in the ladle to an intermediate container such as a tundish, effective nitriding is performed to increase the nitrogen content in the molten steel, and the flow of slag into the intermediate container can be avoided as much as possible. It is an object of this invention to improve the method.

(課題を解決するための手段) この発明は、取鍋の底部に設けたノズルを介(7て該取
鍋内tこ収容した溶鋼を中間容器内へ注出するに当たり
、上記ノズルの長手方向に沿って少なくとも2つの開孔
を設けて、ノズル内を通過する溶鋼の注出流に、該ノズ
ルの下側の開孔より窒素含有ガスを吹き込んで加窒する
とともに、該ノズルの上側の開孔より溶鋼の注出流によ
って吸い込まれる不活性ガスを供給し、該不活性ガスの
流量または/および背圧の変化を検出することにより中
間容器内へのスラグの流出を判定することを特徴とする
溶鋼の加窒を伴うスラグ流出検知方法である。
(Means for Solving the Problems) The present invention provides a method for pouring molten steel stored in the ladle into an intermediate container through a nozzle provided at the bottom of the ladle, in the longitudinal direction of the nozzle. At least two openings are provided along the nozzle, and a nitrogen-containing gas is blown into the pouring stream of molten steel passing through the nozzle through the opening at the bottom of the nozzle to nitrify it. It is characterized by supplying an inert gas sucked in by the pouring flow of molten steel through the hole, and determining the outflow of slag into the intermediate container by detecting changes in the flow rate and/or back pressure of the inert gas. This is a slag outflow detection method that involves nitriding of molten steel.

さて、第1図にこの発明を実施する際に用いて好適な設
備の模式を鋼の連続鋳造における取鍋−タンデイシュに
適用した例で示し、同図における番号1ば取鍋、2はノ
ズル内壁面にガス供給孔2aを有する鍋ノズルであり、
このガス供給孔2aからスラグの流出を検知するのに役
立・つ不活性ガスを供給する。3は鍋ノズル2の下部で
接合したロングノズルであって、このノズル3はその内
壁面に加窒のための窒素を供給するガス供給孔3aを有
する。また、4は取鍋1内に収容されている溶鋼、5は
溶鋼4の上面のスラグ、6は取鍋1内の溶鋼を注出する
際に使用するタンデイシュ、7は鍋ノズル2のガス供給
孔2aに接続するガス供給管、8はガス供給管7に設置
された流量計、9は同しくガス供給管7に設置された背
圧計、10は流量計8および背圧計9からの測定信号を
入力してスラグ流出の有無を検知するスラグ検知器、そ
して11はロングノズル3のガス供給孔3aに接続する
ガス供給管である6 (作 用) 取鍋1内の溶鋼4を、鍋ノズル2及びロングノズル3(
以下単にノズルI、で記す)を介してタンデイシュ6に
注入する際(加窒のだめのガス吹き込みは行わない)、
ノズルL内のとく髪ガス供給孔2a部では吸引力が発生
し、その程度は溶鋼注出流の運動エネルギーに大きく依
存する。このような状態において、例えば注出流が溶鋼
4からスラグ5に変化した場合には、密度差から生じる
運動エネルギーの差によってガス供給孔2a部における
吸引力が変化する。スラブ流出検知技術はこのような原
理に基づくものであって、実際にはガス供給孔2aより
不活性ガスを供給し、溶鋼注出流によって吸い込まれる
この不活性ガスの流量または/および背圧の変化を把握
することによりスラグの流出の有無を判定する。
Now, Fig. 1 shows a schematic diagram of equipment suitable for carrying out the present invention, as an example applied to a ladle-tundish in continuous steel casting. It is a pot nozzle having a gas supply hole 2a on the wall surface,
An inert gas useful for detecting the outflow of slag is supplied from the gas supply hole 2a. 3 is a long nozzle connected at the lower part of the pan nozzle 2, and this nozzle 3 has a gas supply hole 3a on its inner wall surface for supplying nitrogen for nitriding. Further, 4 is the molten steel stored in the ladle 1, 5 is the slag on the top surface of the molten steel 4, 6 is a tundish used when pouring out the molten steel in the ladle 1, and 7 is the gas supply to the ladle nozzle 2. A gas supply pipe connected to the hole 2a, 8 a flow meter installed in the gas supply pipe 7, 9 a back pressure gauge also installed in the gas supply pipe 7, 10 measurement signals from the flow meter 8 and the back pressure gauge 9 A slag detector is input to detect the presence or absence of slag outflow, and 11 is a gas supply pipe connected to the gas supply hole 3a of the long nozzle 3. 2 and long nozzle 3 (
When injecting into the tundish 6 through the nozzle I (hereinafter simply referred to as nozzle I) (no gas blowing into the nitriding reservoir is performed),
A suction force is generated at the part of the hair gas supply hole 2a in the nozzle L, and the degree of the suction force largely depends on the kinetic energy of the molten steel pouring flow. In such a state, for example, when the pouring flow changes from molten steel 4 to slag 5, the suction force at the gas supply hole 2a changes due to the difference in kinetic energy resulting from the density difference. Slab outflow detection technology is based on this principle, and in reality, inert gas is supplied from the gas supply hole 2a, and the flow rate and/or back pressure of this inert gas sucked in by the molten steel pouring flow is controlled. By understanding the changes, it is determined whether slag is flowing out or not.

ここで、上記の吸引力によって吸い込まれる不活性ガス
の量を超えて加窒用の窒素ガスを吹き込むよ・うな場合
には吸引力の変動によるスラグ流出検知が不可能となる
ことは先にも述べたが、この発明v、=おいては加窒用
の窒素ガスを供給1−るガス供給孔3aを、不活性ガス
の供給孔2aよりも下方に設けるようにしたので、窒素
ガスの流量を人きく12.でもスラグ流出の検知すこ何
ら影響がなく、したがってスラグ流出の有無を検知しな
がら加窒することができる。
As previously mentioned, if nitrogen gas is injected in an amount exceeding the amount of inert gas sucked in by the above suction force, it will be impossible to detect slag outflow due to fluctuations in the suction force. As mentioned above, in this invention, the gas supply hole 3a for supplying nitrogen gas for nitriding is provided below the inert gas supply hole 2a, so that the flow rate of nitrogen gas is reduced. Listen to people 12. However, there is no effect on the detection of slag outflow, and therefore it is possible to carry out nitriding while detecting the presence or absence of slag outflow.

窒素ガスを供給するだめのガス供給孔3aは、上記のよ
うに不活性ガスの吸引力の変動を検知するためのガス供
給孔2aよりも下方に設けることが重要(ガス供給孔2
a、3aの設置場所は鍋ノズル2のみでもよいしロング
ノズル3のみでもよいし、それらのそれぞれに個別に設
置するようにしてもよい)であって、このガス供給孔3
aはその条件を満足する範囲で複数個設けることができ
る。また不活性ガスを供給するガス供給孔2aについて
も必要に応じてその数を増やすことができる。
It is important that the gas supply hole 3a for supplying nitrogen gas is provided below the gas supply hole 2a for detecting fluctuations in the suction force of the inert gas as described above.
a, 3a may be installed only on the pot nozzle 2, only on the long nozzle 3, or may be installed on each of them individually), and this gas supply hole 3
A can be provided in plural numbers as long as the condition is satisfied. Further, the number of gas supply holes 2a for supplying inert gas can be increased as necessary.

スラグの流出を検知づる場合の不活性ガスの流量は、ノ
ズル内の溶鋼流速によるが一般にIN(2/ll1in
 =50 NI2 /gin程度が好適であり、また窒
素ガスの流量に−〕いては必要な加窒量によって定まる
景の窒素ガスを供給するが40 H1/sin以下が一
般的である。なお、この発明においてはガス供給孔2a
から供給される不活性ガスを窒素ガスと1、で吹き込む
こともでき、この場合にはガス供給孔3aより吹き込む
窒素ガスの流量は、加窒必要量からガス供給孔2aにて
供給する1を滅し7だものとすればよい。
The flow rate of inert gas when detecting the outflow of slag depends on the flow rate of molten steel in the nozzle, but is generally IN (2/1 inch).
A flow rate of approximately 50 NI2/gin is preferable, and the flow rate of nitrogen gas is determined by the amount of nitrogen gas required, but is generally 40 H1/sin or less. In addition, in this invention, the gas supply hole 2a
It is also possible to blow the inert gas supplied from the gas supply hole 3a with the nitrogen gas at 1. In this case, the flow rate of the nitrogen gas blown from the gas supply hole 3a is equal to the amount of nitrogen gas supplied from the gas supply hole 2a from the required amount of nitrogen gas. Let's just assume it's 7.

(実施例) 上掲第1図に示した構成になる設備を適用して取鍋(容
量230 t、鍋ノズルのサイズ:内径80腰。
(Example) A ladle (capacity 230 t, size of ladle nozzle: inner diameter 80 mm) was prepared by applying the equipment configured as shown in Fig. 1 above.

ロングノズル内径115m)内に収容j〜た溶鍛を、ロ
ングノズルにおけるスルーブッ) 6 t /sin及
び3 t /sinと1゜2て第2図に示すような各条
件で窒素ガスを吹き込みながら注出して該溶鋼の加窒を
行い、その際、併せてノズル内へ流1:14?Jj!/
win、背圧: −0,3kgf/cm!の条件下でA
rガスを供給してスラグ流出状況を調査した。その結果
、第3〜4図に示すように加窒をおこないながらスラグ
の流出を検知しても窒素ガスを吹き込むことによる影響
なく、目視判定するより4秒程度前GこArガスの流量
低重および背圧のト昇が認められ迅速にスラグ流出の有
無を検知できることが確かめられた。
The molten forging housed in the long nozzle (with an inner diameter of 115 m) was poured through the long nozzle while blowing nitrogen gas under the conditions shown in Figure 2 at 6 t/sin, 3 t/sin, and 1°2. The molten steel is then nitrided, and at the same time, a flow of 1:14? Jj! /
win, back pressure: -0.3kgf/cm! A under the conditions of
R gas was supplied and the slag outflow situation was investigated. As a result, as shown in Figures 3 and 4, even if the outflow of slag is detected during carnitrification, there is no effect from blowing in nitrogen gas, and the flow rate of G and Ar gas is low, about 4 seconds before visual judgment. An increase in back pressure was observed, and it was confirmed that the presence or absence of slag outflow could be quickly detected.

なおこの実施例では、加窒用の窒素ガス供給孔(サイズ
5駒)をスラグ流出検知用不活性ガス供給孔(サイズ3
m)の50削下方に設けたロングノズル(以下第10ン
グノズルと記す)と100鮪下方に設けたロングノズル
(以下第20ングノズルと記す)を用いた。第5図に示
すように(第10ングノズルを用いた溶鋼の流入でスル
ープット6t/5Iinの場合には窒素ガスのガス流量
が100Nβ/sinで窒素の増加NΔNが20p卯程
度であり、第20ングノズルを用いた場合にもスルーブ
ッ1−5t/sinではガス流11100N 1 /p
ainでΔNがほぼ20ppm程度であった。
In this example, the nitrogen gas supply hole (size 5 pieces) for nitriding is replaced with the inert gas supply hole (size 3 piece) for slag outflow detection.
A long nozzle (hereinafter referred to as the 10th nozzle) provided below the 50 mm cut of tuna and a long nozzle provided below the 100 mm cut (hereinafter referred to as the 20th nozzle) were used. As shown in Fig. 5, when the throughput of molten steel is 6t/5Iin using the 10th nozzle, the gas flow rate of nitrogen gas is 100Nβ/sin, the increase in nitrogen NΔN is about 20p, and the 20th nozzle Even when using a throughput of 1-5t/sin, the gas flow is 11100N 1 /p
At ain, ΔN was approximately 20 ppm.

又、スルーブツト3t/minの場合ば、第1゜20ン
グノズルともガス流11t14ON 127 minで
ΔNが20 ppm程度であった。
Further, in the case of a throughput of 3 t/min, ΔN was about 20 ppm at a gas flow rate of 11 t/14 on 127 min for both the first 20° nozzles.

(発明の効果) かくしてこの発明によれば、取鍋に収容した溶鋼をタン
デイシュなどの中間容器へ注出しながら該溶鋼の加窒を
行うときに検知するのが困雛であったスラグの流出を的
確に把握できる。
(Effects of the Invention) Thus, according to the present invention, it is possible to prevent the outflow of slag, which is difficult to detect when nitriding the molten steel stored in a ladle while pouring it into an intermediate container such as a tundish. Can be accurately grasped.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施に用いて好適な設備の構成説明
図 第2図はノズル内圧力と吹き込みガスのガス流量の関係
を示すグラフ、 第3図、第4図はArガス流量とArガスの背圧の変化
状況をそれぞれ示したグラフ 第5図は窒素ガスのガス涼デとΔNの関係を示すグラフ
である。 1・・・取鍋       2・−・鍋ノズル2a・・
・ガス供給孔   3・・・ロングノズル3a・・・ガ
ス供給孔   4・・・溶鋼5・・・スラグ     
 6・・・クンデイシュ7ガス供給管     8・・
・流量針9・・・背圧計      10・・・スラグ
検知器11・・・ガス供給管 第1図 第3図 第4図 第2図 口欠IN力”′大流量(N!/冷゛う 第5図
Fig. 1 is a diagram illustrating the configuration of equipment suitable for carrying out the present invention. Fig. 2 is a graph showing the relationship between the nozzle internal pressure and the gas flow rate of the blown gas. Figs. 3 and 4 are graphs showing the relationship between the Ar gas flow rate and the Ar Graphs illustrating changes in gas back pressure, respectively. FIG. 5 is a graph illustrating the relationship between nitrogen gas cooling and ΔN. 1... Ladle 2... Pot nozzle 2a...
・Gas supply hole 3... Long nozzle 3a... Gas supply hole 4... Molten steel 5... Slag
6...Kundish 7 Gas supply pipe 8...
・Flow rate needle 9...Back pressure gauge 10...Slag detector 11...Gas supply pipe Fig. 1 Fig. 3 Fig. 4 Fig. 2 Opening IN force "' Large flow rate (N!/Cooling) Figure 5

Claims (1)

【特許請求の範囲】 1、取鍋の底部に設けたノズルを介して該取鍋内に収容
した溶鋼を中間容器内に注入するに当たり、 上記ノズルの長手方向に沿って少なくとも2つの開孔を
設けて、ノズル内を通過する溶鋼の注出流に、該ノズル
の下側の開孔より窒素含有ガスを吹き込んで加窒すると
ともに、該ノズルの上側の開孔より溶鋼の注出流によっ
て吸い込まれる不活性ガスを供給し、該不活性ガスの流
量または/および背圧の変化を検出することにより中間
容器内へのスラグの流出を判定することを特徴とする溶
鋼の加窒を兼ねたスラグ流出検知方法。
[Claims] 1. When injecting the molten steel contained in the ladle into the intermediate container through a nozzle provided at the bottom of the ladle, at least two openings are provided along the longitudinal direction of the nozzle. Nitrogen-containing gas is blown into the flow of molten steel passing through the nozzle through the opening at the bottom of the nozzle to nitrate it, and the flow of molten steel is sucked in through the opening at the top of the nozzle. A slag that also serves as a nitrider of molten steel, characterized in that the outflow of slag into an intermediate container is determined by supplying an inert gas such that the inert gas flows and/or detecting changes in the flow rate and/or back pressure of the inert gas. Spill detection method.
JP18539490A 1990-07-16 1990-07-16 Detection of slag outflow used commonly for nitriding of molten steel Pending JPH0475767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18539490A JPH0475767A (en) 1990-07-16 1990-07-16 Detection of slag outflow used commonly for nitriding of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18539490A JPH0475767A (en) 1990-07-16 1990-07-16 Detection of slag outflow used commonly for nitriding of molten steel

Publications (1)

Publication Number Publication Date
JPH0475767A true JPH0475767A (en) 1992-03-10

Family

ID=16170042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18539490A Pending JPH0475767A (en) 1990-07-16 1990-07-16 Detection of slag outflow used commonly for nitriding of molten steel

Country Status (1)

Country Link
JP (1) JPH0475767A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012148336A (en) * 2010-12-27 2012-08-09 Jfe Steel Corp Method for predicting and detecting defect in cast slab, method for manufacturing the cast slab, device for predicting and detecting defect in the cast slab, and continuous casting apparatus having the device for predicting and detecting defect in the cast slab
WO2013073212A1 (en) * 2011-11-18 2013-05-23 Jfeスチール株式会社 Predictive detection method for slab defect, slab manufacturing method, predictive detection device for occurrence of slab defect, and continuous casting equipment provided with said predictive detection device for occurrence of slab defect
CN107234217A (en) * 2017-07-14 2017-10-10 山东钢铁股份有限公司 A kind of ar blowing refining method for being used to produce SPHC steel grades
WO2019044292A1 (en) * 2017-08-30 2019-03-07 Jfeスチール株式会社 Continuous casting method for steel and method for manufacturing thin steel plate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012148336A (en) * 2010-12-27 2012-08-09 Jfe Steel Corp Method for predicting and detecting defect in cast slab, method for manufacturing the cast slab, device for predicting and detecting defect in the cast slab, and continuous casting apparatus having the device for predicting and detecting defect in the cast slab
WO2013073212A1 (en) * 2011-11-18 2013-05-23 Jfeスチール株式会社 Predictive detection method for slab defect, slab manufacturing method, predictive detection device for occurrence of slab defect, and continuous casting equipment provided with said predictive detection device for occurrence of slab defect
KR101536088B1 (en) * 2011-11-18 2015-07-10 제이에프이 스틸 가부시키가이샤 Method for predicting occurrence of steel sheet defect in slab, method for manufacturing slab, device for predicting occurrence of steel sheet defect in slab, and continuous casting machine equipped with device for predicting occurrence of steel sheet defect in slab
CN107234217A (en) * 2017-07-14 2017-10-10 山东钢铁股份有限公司 A kind of ar blowing refining method for being used to produce SPHC steel grades
WO2019044292A1 (en) * 2017-08-30 2019-03-07 Jfeスチール株式会社 Continuous casting method for steel and method for manufacturing thin steel plate
JP6493635B1 (en) * 2017-08-30 2019-04-03 Jfeスチール株式会社 Method of continuous casting of steel and method of manufacturing thin steel sheet

Similar Documents

Publication Publication Date Title
US3253307A (en) Method and apparatus for regulating molten metal teeming rates
SK283020B6 (en) Method and apparatus for the manufacture of formable steel
JPH0475767A (en) Detection of slag outflow used commonly for nitriding of molten steel
JPS59130663A (en) Casting nozzle
US5028033A (en) Process for detecting outflow of slag
TWI673122B (en) Continuous casting method of steel and method for manufacturing thin steel sheet
US4327798A (en) Method of applying flux
Poirier et al. Mechanisms and countermeasures of alumina clogging in submerged nozzles
CA1243188A (en) Submerged nozzle for use in the continuous casting of slabs
US4066444A (en) Process for deoxidizing steel by means of molten aluminum
US3189956A (en) Production of effervescing steel
JPH0422538A (en) Method for continuously casting beam blank
KR101310985B1 (en) Gas Supply Apparatus for Ladle furnace
SU588059A1 (en) Sleeve for lateral metal supply
US4303118A (en) Apparatus for producing aluminum-deoxidized continuously cast steel
WO2005042183A1 (en) A method and a device for detecting slag
JPS5731453A (en) Continuous casting method for steel
Morioka et al. Process for Detecting Outflow of Slag
KR960004425B1 (en) Method for detecting slag flow
JPH1147895A (en) Method for preheating tundish for continuous casting
JPH04127943A (en) Method for preventing clogging of submerged nozzle for continuous casting
JP2000052004A (en) Molten steel continuous casting method
JPS5811714A (en) Method for selecting and tapping molten steel and molten slag
JPH04127942A (en) Method for preventing clogging of submerged nozzle for continuous casting
JPS61261418A (en) Method for blowing refining agent