JPH0475765B2 - - Google Patents

Info

Publication number
JPH0475765B2
JPH0475765B2 JP60186450A JP18645085A JPH0475765B2 JP H0475765 B2 JPH0475765 B2 JP H0475765B2 JP 60186450 A JP60186450 A JP 60186450A JP 18645085 A JP18645085 A JP 18645085A JP H0475765 B2 JPH0475765 B2 JP H0475765B2
Authority
JP
Japan
Prior art keywords
blood
hemoconcentrator
hollow fiber
membrane
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60186450A
Other languages
Japanese (ja)
Other versions
JPS6247367A (en
Inventor
Yoshihisa Ishihara
Fumio Yoshimoto
Masahiko Kusumoto
Michio Tsuyumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAISERU KAGAKU KOGYO KK
NIPPON MEDEIKARU SAPURAI KK
Original Assignee
DAISERU KAGAKU KOGYO KK
NIPPON MEDEIKARU SAPURAI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAISERU KAGAKU KOGYO KK, NIPPON MEDEIKARU SAPURAI KK filed Critical DAISERU KAGAKU KOGYO KK
Priority to JP18645085A priority Critical patent/JPS6247367A/en
Publication of JPS6247367A publication Critical patent/JPS6247367A/en
Publication of JPH0475765B2 publication Critical patent/JPH0475765B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、手術あるいは疾患などにより増加し
た血液中の水分を除去し、正常な水分量にするた
めの血液濃縮器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hemoconcentrator for removing water increased in blood due to surgery or disease, and returning the blood to a normal water content.

〔従来技術〕 従来より、心臓切開手術には心臓と肺の機能を
一時的に代替するために人工心肺装置が用いられ
ている。人工心肺装置は、血液を輸送するための
ポンプ、血液に酸素を付与し二酸化炭素を除去す
るための人工肺及びこれらと人体とを結合し血液
の循環経路を形成する血液回路とから構成されて
いる。
[Prior Art] Conventionally, a heart-lung machine has been used in open heart surgery to temporarily replace the functions of the heart and lungs. An artificial heart-lung machine consists of a pump for transporting blood, an artificial lung for adding oxygen to the blood and removing carbon dioxide, and a blood circuit that connects these to the human body and forms a blood circulation route. There is.

ところで、人工心肺装置の使用による血液の体
外循環に伴つて、末梢循環の低下が起こり、術後
に種々の障害を招くおそれがあるが、これを防ぐ
ための多量の輸血は、血液の確保及び肝炎発生な
どの点で問題がある。そこで、血液をデキストラ
ン、グルコース液、ゼラチン液、アミノ酸溶液あ
るいはポリビニルピロリドンなどの晶質や膠質で
希釈する血液希釈体外循環法が一般に採用されて
いる。この方法によれば、血液のヘマトクリツト
値(血液中に占める血球の容積%)は、25%程度
に低下する。(正常値40〜50%)。また、手術中に
心筋保護液や心筋冷却用の氷の溶解液が血液中に
混入し、ヘマトクリツト値はさらに低下する場合
がある。このようにヘマトクリツト値が低下して
も手術中は低体温法によつて生体の酸素摂取量が
減少しているのであまり問題はないが、手術が終
わり新陳代謝が正常にもどつたときにヘマトクリ
ツト値が低いままでは酸素運搬能力が不足し、新
陳代謝に十分に対応できなくなるおそれがある。
By the way, with the extracorporeal circulation of blood due to the use of a heart-lung machine, peripheral circulation may decrease, which may lead to various postoperative disorders. To prevent this, large amounts of blood transfusion are necessary to secure blood and There are problems with the occurrence of hepatitis. Therefore, a blood dilution extracorporeal circulation method is generally employed in which blood is diluted with dextran, glucose solution, gelatin solution, amino acid solution, or crystalloid or colloid such as polyvinylpyrrolidone. According to this method, the hematocrit value of blood (volume % of blood cells in blood) decreases to about 25%. (normal value 40-50%). Furthermore, during surgery, a myocardial purge solution or an ice solution for cooling the myocardium may mix into the blood, and the hematocrit value may further decrease. Even if the hematocrit value decreases like this, it is not a big problem because the oxygen intake of the body is reduced by hypothermia during surgery, but when the surgery is over and the metabolism returns to normal, the hematocrit value will decrease. If it remains low, the oxygen carrying capacity will be insufficient and there is a risk that it will not be able to adequately support metabolism.

そこで、従来は利尿剤を投与して排尿を促進
し、血液中の過剰な水分を尿のかたちで除去して
ヘマトクリツト値が正常になるようにしていた。
しかし、このような方法では、腎臓に大きな負担
を与えるだけでなく、利尿剤に反応しにくい患者
や腎機能の低下した患者には適用できない欠点が
ある。また、多量の利尿剤を用いることによつて
血液中のカリウム濃度が増加するなどの副作用を
生ずることも問題であつた。さらに、除去する水
分の量をコントロールするのが難しいという問題
もあつた。
Therefore, in the past, diuretics were administered to promote urination and remove excess water from the blood in the form of urine, thereby normalizing the hematocrit value.
However, such a method not only places a heavy burden on the kidneys, but also has the disadvantage that it cannot be applied to patients who do not respond well to diuretics or whose renal function has decreased. Another problem is that the use of large amounts of diuretics causes side effects such as increased potassium concentration in the blood. Another problem was that it was difficult to control the amount of water removed.

これらの問題点を解決するために、近年になつ
て半透膜を用いた血液濃縮器が実用化されるに至
つた。血液濃縮器の原理は、半透膜の一方の側に
血液を流し血液中の水分を膜の反対側に浸透させ
て血液中の水分を除去するものであり、防水効率
を高めるために通常は中空繊維膜が用いられてい
る。現在実用化されている血液濃縮器には、セル
ロースアセテートからなる膜が用いられている
が、透水速度が低く、防水効率が悪い欠点を有し
ている。また、多孔質ポリプロピレン膜やポリビ
ニルアルコール膜を血液濃縮器に用いることも試
みられているが、これらの膜は透水速度が大きい
反面、血液中のタンパク質も透過してしまうの
で、血液中から有用成分が多量に失われてしまう
欠点がある。さらに、特開昭57−43748号公報に
おいては、セルロース、ポリアクリロニトリル、
ポリカーボネート、ポリメチルメタクリレート、
ポリエチレンあるいはポリプロピレンなどからな
る透析型または限外濾過型人工腎臓用の膜の使用
が提案されているが、透析型人工腎臓用の膜は透
水速度が極端に低いので実用性に乏しく、限外濾
過型人工腎臓用の膜は、タンパク質の透過量が多
い欠点があり、血液濃縮器としては好ましいもの
ではない。
In order to solve these problems, a hemoconcentrator using a semipermeable membrane has recently been put into practical use. The principle of a hemoconcentrator is to remove water from the blood by flowing blood through one side of a semipermeable membrane and allowing the water in the blood to permeate to the other side of the membrane. Hollow fiber membranes are used. Although membranes made of cellulose acetate are used in hemoconcentrators currently in practical use, they have the drawbacks of low water permeation rate and poor waterproofing efficiency. In addition, attempts have been made to use porous polypropylene membranes and polyvinyl alcohol membranes in hemoconcentrators, but while these membranes have a high water permeability rate, they also allow proteins in the blood to pass through them, so useful components from the blood can be removed. The disadvantage is that a large amount of information is lost. Furthermore, in JP-A-57-43748, cellulose, polyacrylonitrile,
polycarbonate, polymethyl methacrylate,
The use of membranes for dialysis-type or ultrafiltration-type artificial kidneys made of polyethylene or polypropylene has been proposed, but membranes for dialysis-type artificial kidneys have extremely low water permeation rates, making them impractical; Membranes for type artificial kidneys have the disadvantage that a large amount of protein permeates through them, and are not preferred as hemoconcentrators.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記従来技術の問題点を解決するもの
であり、その目的は、透水速度の大きい血液濃縮
器を提供することにある。また、他の目的は、タ
ンパク質の損失の少ない血液濃縮器を提供するこ
とにある。
The present invention solves the problems of the prior art described above, and its purpose is to provide a hemoconcentrator with a high water permeation rate. Another object is to provide a hemoconcentrator that causes less protein loss.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、種々の高分子材料を用いて膜を
作成し、血液濃縮器としての性能を評価した結
果、芳香族ポリスルホンから得られる半透膜が、
上述の目的を達成する上で特にすぐれていること
を見い出し、本発明に到達した。
The present inventors created membranes using various polymeric materials and evaluated their performance as hemoconcentrators. As a result, the semipermeable membrane obtained from aromatic polysulfone
We have discovered that the above object is particularly excellent in achieving the above object, and have arrived at the present invention.

上記の問題点を解決するために、本発明におい
ては、少なくとも内表面に緻密層を有する芳香族
ポリスルホンからなる中空繊維膜を内蔵し、該中
空繊維膜の内側に血液を流し、中空繊維膜の両面
において圧力差を設け、この圧力差により血液中
の水分を中空繊維膜を透過して外側へ排出すると
ともに、排出される水分量を測定し膜の両面の圧
力差を調整して血液の濃縮率のコントロールを行
うシステムを具備する滅菌処理されてなる血液濃
縮器であつて、前記中空繊維膜はアルブミンの阻
止率が95%以上で、且つ透水速度が1/m2
分・Kg/cm2以上であることを特徴とする血液濃縮
器として構成した。上記アルブミンの阻止率は高
いほどよく、99%以上のものが好ましい。ここ
で、アルブミンの阻止率とは、5g/dl以下の濃
度のアルブミン含有溶液を中空糸膜に供給し、膜
間差圧約0.5Kg/cm2で十字流濾過を行い、供給液、
出口液、透過液のそれぞれのアルブミン濃度を測
定し、次式により算出される値をさして言う。
In order to solve the above problems, the present invention incorporates a hollow fiber membrane made of aromatic polysulfone having a dense layer on at least the inner surface, and allows blood to flow inside the hollow fiber membrane. A pressure difference is created on both sides, and this pressure difference causes water in the blood to pass through the hollow fiber membrane and drain to the outside.The amount of water discharged is measured and the pressure difference on both sides of the membrane is adjusted to concentrate the blood. A sterilized hemoconcentrator equipped with a rate control system, wherein the hollow fiber membrane has an albumin rejection rate of 95% or more and a water permeation rate of 1/m 2 .
It was constructed as a hemoconcentrator characterized by a blood flow rate of 1.0 kg/cm 2 or more. The higher the inhibition rate of albumin, the better, and preferably 99% or more. Here, the rejection rate of albumin means that an albumin-containing solution with a concentration of 5 g/dl or less is supplied to a hollow fiber membrane, and cross-flow filtration is performed at a transmembrane pressure difference of about 0.5 Kg/cm 2 .
The albumin concentration of each of the outlet liquid and permeate liquid is measured, and the value is calculated using the following formula.

阻止率(%) =(1−2×透過液濃度/供給液濃度+出口液濃度)
×100 上記血液濃縮器の構造は公知の如く多数の中空
繊維膜を束ねて一定の長さに切断し中空繊維膜の
夫々の内側に血液を流し圧力差を利用して外側に
水分を排出するよう構成される。
Rejection rate (%) = (1-2 x permeate concentration/feed solution concentration + outlet solution concentration)
×100 As is well known, the structure of the hemoconcentrator is that a large number of hollow fiber membranes are bundled and cut into a certain length, blood is flowed inside each hollow fiber membrane, and water is discharged to the outside using the pressure difference. It is configured like this.

〔作用〕[Effect]

芳香族ポリスルホンからなる半透膜は水分は効
率よく通し、アルブミンなどの高分子を阻止する
孔を従来になく緻密に形成することが可能であ
り、従つて半透膜の性質を保持しながら、透水速
度の大きな膜が得られる。この半透膜を中空繊維
膜に形成すればアルブミンの阻止率が高く透水速
度の大きい血液濃縮器が得られることになる。
Semipermeable membranes made of aromatic polysulfone allow water to pass through efficiently, and can form pores that are denser than ever before to block polymers such as albumin. Therefore, while retaining the properties of semipermeable membranes, A membrane with high water permeation rate can be obtained. If this semipermeable membrane is formed into a hollow fiber membrane, a hemoconcentrator with a high albumin rejection rate and a high water permeation rate can be obtained.

従来よりあるセルロースアセテート膜を使用し
た血液濃縮器は、透水速度が0.2〜0.3/m2
分・Kg/cm2であるが、芳香族ポリスルホンを使用
すると、1/m2・分・Kg/cm2以上の透水速度が
容易に得られる。しかも、このような高い透水速
度が達成されるにもかかわらず、タンパク質はほ
とんど透過しない。すなわち、血液中のタンパク
質のなかでも分子量の小さいアルブミンの阻止率
が95%以上、好ましいものとしては99%以上のも
のが得られる。
Conventional hemoconcentrators using cellulose acetate membranes have a water permeation rate of 0.2 to 0.3/ m2 .
However, when aromatic polysulfone is used, a water permeation rate of 1/m 2 · min·Kg/cm 2 or higher can be easily obtained. Moreover, even though such a high water permeation rate is achieved, proteins hardly permeate through it. That is, a blocking rate of albumin, which has a small molecular weight among blood proteins, is 95% or more, preferably 99% or more.

〔実施例〕〔Example〕

本発明を実施例により詳細に説明する。 The present invention will be explained in detail by examples.

本発明において使用する芳香族ポリスルホンと
しては、式 で示す繰り返し単位からなるポリエーテルスルホ
ン及び式 で示す繰り返し単位からなるポリスルホン並びに
これらの混合物を挙げることができる。
The aromatic polysulfone used in the present invention has the formula Polyether sulfone consisting of repeating units shown and formula Examples include polysulfones consisting of repeating units represented by and mixtures thereof.

芳香族ポリスルホンから中空繊維膜を製造する
には、芳香族ポリスルホンを有機溶媒に溶解した
紡糸原液を環状ノズルより押出し、有機溶媒とは
混和するが芳香族ポリスルホンは溶解しない凝固
液と接触させる。
To produce a hollow fiber membrane from aromatic polysulfone, a spinning dope in which aromatic polysulfone is dissolved in an organic solvent is extruded through an annular nozzle and brought into contact with a coagulating liquid that is miscible with the organic solvent but does not dissolve the aromatic polysulfone.

芳香族ポリスルホンを溶解するための有機溶媒
としては、ジメチルスルホキシド、ジメチルアセ
トアミド、ジメチルホルムアミド、N−メチルピ
ロリドンおよびモルホリンなどを用いることがで
きる。これらは単独で用いてもよいし2種類以上
を混合したものでもよい。溶解液の濃度は5〜35
重量%が適当であり、10〜30重量%が好ましい。
濃度が35重量%をこえると、得られる半透膜の透
水性能が低下し1/m2・分・Kg/cm2以下になつ
てしまう。また、5重量%より低い濃度では十分
な強度を持つた半透膜が得られないので、血液が
漏洩するおそれがある。紡糸原液は芳香族ポリス
ルホンの単なる溶解液でもよいが、種々の添加剤
を添加して膜性能を変化させることもできる。添
加剤としては、無機塩、多価アルコール、脂肪族
または芳香族カルボン酸あるいはそのエステル、
カルボン酸アミド、スルホン酸およびリン酸アル
キルエステルなどを使用することができる。さら
に具体的にいえば、無機塩としては塩化ナトリウ
ム、硝酸ナトリウム、硝酸カリウム、硫酸ナトリ
ウムなどをあげることができ、多価アルコールと
してはポリエチレングリコールが挙げられる。脂
肪族カルボン酸あるいはそのエステルとしては、
ギ酸、酢酸、プロピオン酸、ギ酸メチル、ギ酸エ
チル、酢酸メチル、酢酸エチル、乳酸及び乳酸エ
チルなどを例示することができ、芳香族カルボン
酸としては、安息香酸、サリチル酸、テレフタル
酸及びトリメリツト酸などを例示することができ
る。またカルボン酸アミドとしてはN−メチルホ
ルムアミドおよびN−メチルアセトアミドを、ス
ルホン酸としてはベンゼンスルホン酸を、リン酸
アルキルエステルとしてはリン酸トリメチル及び
リン酸トリエチルをそれぞれ例示することができ
る。添加剤は単独で使用することもできるし2種
以上を同時に使用することもできる。これらの添
加剤の種類、添加量などを選択することにより、
透水性及びタンパク質の阻止率などの膜性能の異
なる中空繊維膜を製造することができる。
As an organic solvent for dissolving the aromatic polysulfone, dimethyl sulfoxide, dimethylacetamide, dimethylformamide, N-methylpyrrolidone, morpholine, etc. can be used. These may be used alone or in combination of two or more. The concentration of the solution is 5-35
% by weight is suitable, preferably 10-30% by weight.
When the concentration exceeds 35% by weight, the water permeability of the resulting semipermeable membrane decreases to less than 1/m 2 ·min ·Kg/cm 2 . Furthermore, if the concentration is lower than 5% by weight, a semipermeable membrane with sufficient strength cannot be obtained, so there is a risk of blood leakage. The spinning dope may be a simple solution of aromatic polysulfone, but various additives may be added to change the membrane performance. Additives include inorganic salts, polyhydric alcohols, aliphatic or aromatic carboxylic acids or their esters,
Carboxylic acid amides, sulfonic acids, phosphoric acid alkyl esters, and the like can be used. More specifically, examples of inorganic salts include sodium chloride, sodium nitrate, potassium nitrate, and sodium sulfate, and examples of polyhydric alcohols include polyethylene glycol. As aliphatic carboxylic acid or its ester,
Examples include formic acid, acetic acid, propionic acid, methyl formate, ethyl formate, methyl acetate, ethyl acetate, lactic acid, and ethyl lactate. Examples of aromatic carboxylic acids include benzoic acid, salicylic acid, terephthalic acid, and trimellitic acid. I can give an example. Further, examples of the carboxylic acid amide include N-methylformamide and N-methylacetamide, examples of the sulfonic acid include benzenesulfonic acid, and examples of the phosphoric acid alkyl ester include trimethyl phosphate and triethyl phosphate. The additives can be used alone or in combination of two or more. By selecting the type and amount of these additives,
Hollow fiber membranes with different membrane properties such as water permeability and protein rejection can be produced.

紡糸原液は適当な口径を有する二重環状ノズル
より押し出し、外面あるいは内外面を凝固液と接
触させる。凝固液としては水あるいは水と有機溶
媒との混合液が好ましく使用される。環状ノズル
より押し出された紡糸原液は、直ちに凝固液と接
触させてもよいが、一旦空気中に押し出してから
凝固液と接触させるようにしてもよい。また、環
状ノズルの内面より凝固液を注入しない場合に
は、繊維の形状を良好に保つために気体または非
凝固性溶体を注入するのが好ましい。凝固液と接
触した紡糸原液は直ちに凝固し、凝固液中に溶媒
が浸出して中空繊維が形成される。
The spinning dope is extruded through a double annular nozzle having an appropriate diameter, and its outer or inner surfaces are brought into contact with the coagulating liquid. As the coagulating liquid, water or a mixture of water and an organic solvent is preferably used. The spinning dope extruded from the annular nozzle may be brought into contact with the coagulating liquid immediately, or may be once extruded into the air and then brought into contact with the coagulating liquid. Further, when the coagulating liquid is not injected from the inner surface of the annular nozzle, it is preferable to inject a gas or a non-coagulating solution in order to maintain a good shape of the fibers. The spinning stock solution that comes into contact with the coagulation liquid immediately coagulates, and the solvent is leached into the coagulation liquid to form hollow fibers.

このようにして得られる芳香族ポリスルホン中
空繊維は、膜の片面または両面に緻密層を有して
おり、膜内部は多孔質構造になつている。そして
膜内部には空洞を有する場合もある。膜の性能は
主として表面の緻密層により決定され、内部の多
孔質構造の部分は膜の形態を保持するための支持
体層として作用するので、血液中のタンパク質を
ほとんど透過させないためには、中空繊維の内表
面及び/または外表面を走査型電子顕微鏡で観察
した場合に、孔または隙間が実質的に認められな
い程度のものでなければならない。血液中のタン
パク質は、分子量69000のアルブミン、分子量約
160000のグロブリン及びさらに高分子量の種々の
タンパク質から主として構成されているので、血
液中のタンパク質を透過させないためには、アル
ブミンの阻止率が高い値を示さなければならな
い。したがつて、本発明において使用される膜は
アルブミンの阻止率が95%以上であることが必要
であり、好ましくは99%以上である。
The aromatic polysulfone hollow fiber thus obtained has a dense layer on one or both sides of the membrane, and the inside of the membrane has a porous structure. There may be a cavity inside the membrane. The performance of the membrane is mainly determined by the dense layer on the surface, and the internal porous structure acts as a support layer to maintain the membrane's shape. When the inner and/or outer surfaces of the fibers are observed with a scanning electron microscope, substantially no pores or gaps should be observed. The protein in the blood is albumin, which has a molecular weight of 69,000, and has a molecular weight of approx.
Since it is mainly composed of 160,000 globulins and various proteins of higher molecular weight, it must exhibit a high albumin blocking rate in order to prevent blood proteins from permeating through it. Therefore, the membrane used in the present invention needs to have an albumin rejection rate of 95% or more, preferably 99% or more.

中空繊維の内径及び膜厚についてはとくに限定
されるものではないが、内径200〜1000μで膜厚
が100〜200μのものが製造しやすく、また血液の
濃縮効率もよいので好ましく使用される。さら
に、中空繊維は水などで洗浄して十分に脱溶媒し
てから使用に供するが、これを一旦乾燥してから
使用に供する場合には、透水性能を維持するため
にグリセリンなどを含浸させて親水化しておくの
が好ましい。
Although the inner diameter and membrane thickness of the hollow fibers are not particularly limited, hollow fibers with an inner diameter of 200 to 1000 μm and a membrane thickness of 100 to 200 μm are preferably used because they are easy to manufacture and have good blood concentration efficiency. Furthermore, hollow fibers are washed with water and thoroughly desolvated before use, but if they are dried before use, they must be impregnated with glycerin or the like to maintain water permeability. It is preferable to make it hydrophilic.

本発明の血液濃縮器は、従来より使用されてい
る中空繊維を内蔵する血液処理装置と同様にして
製造される。すなわち、多数の中空繊維を束ねて
一定の長さに切断したものをハウジング内に収納
し、両端をポリウレタンなどの硬化性樹脂で固着
し、両端に血液の入口及び出口を設けて中空繊維
の内側を血液が流れるようにする。使用する中空
繊維の量は、総膜面積が0.8〜1.5m2程度になるよ
うにするのが好ましい。
The hemoconcentrator of the present invention is manufactured in the same manner as conventional blood processing devices incorporating hollow fibers. In other words, a large number of hollow fibers are bundled and cut into a certain length, then stored in a housing, both ends are fixed with a hardening resin such as polyurethane, and blood inlets and outlets are provided at both ends to allow blood flow inside the hollow fibers. to allow blood to flow. The amount of hollow fibers used is preferably such that the total membrane area is approximately 0.8 to 1.5 m2 .

血液濃縮器は滅菌してから使用されるが、本発
明のものはエチレンオキサイドガス滅菌、高圧蒸
気滅菌及び放射線滅菌のいずれの方法も使用する
ことができる。
The hemoconcentrator is used after being sterilized, and the device of the present invention can be sterilized using ethylene oxide gas, high-pressure steam sterilization, or radiation sterilization.

本発明の血液濃縮器を用いて血液中の水分を除
去し血液の濃縮を行うには、血液濃縮器の入口よ
り血液を導入し血液を加圧するか中空繊維の外側
を陰圧にして血液側の圧力が相対的に高くなるよ
うにすればよい。圧力差(トランス・メンブレン
圧)は200〜500mmHg程度が適当である。血液中
の水分は膜の両面の圧力差によつて膜を透過して
中空繊維の外側へ排出され、血液の濃縮が行われ
る。血液の濃縮率のコントロールは、排出される
水分量を測定し、圧力差を調整することにより行
われる。
In order to remove water from the blood and concentrate the blood using the hemoconcentrator of the present invention, blood is introduced from the inlet of the hemoconcentrator and the blood is pressurized, or the outside of the hollow fiber is placed under negative pressure and the blood side is What is necessary is to make the pressure relatively high. The appropriate pressure difference (trans membrane pressure) is about 200 to 500 mmHg. Moisture in the blood permeates the membrane and is discharged to the outside of the hollow fiber due to the pressure difference between the two sides of the membrane, thereby concentrating the blood. The blood concentration rate is controlled by measuring the amount of water discharged and adjusting the pressure difference.

本発明の血液濃縮器は、人工心肺装置を使用し
た心臓手術における血液中の水分除去のほかに、
疾患により体内に過剰の水分が溜まつた場合の治
療にも使用することができる。
The hemoconcentrator of the present invention can be used to remove water from blood in heart surgery using an artificial heart-lung machine.
It can also be used to treat cases where excess fluid accumulates in the body due to disease.

以下、具体的な実施例により本発明をさらに具
体的に説明する。
Hereinafter, the present invention will be explained in more detail with reference to specific examples.

実施例 1 ポリスルホン(ユニオンカーバイド社製P−
1700)18.5重量部、ポリビニルピロリドン(平均
分子量10000)7.5重量部、N,N−ジメチルアセ
トアミド74重量部を混合溶解し、紡糸原液とし
た。各々15℃に調温した紡糸原液および芯液であ
る水を二重環状ノズルより押出し、乾湿式紡糸し
た。空中における滞留時間は0.12秒で、その後外
部凝固液である水中へ導き巻取りを行つた。この
時の巻取り速度は29m/分であつた。
Example 1 Polysulfone (Union Carbide P-
1700), 7.5 parts by weight of polyvinylpyrrolidone (average molecular weight 10,000), and 74 parts by weight of N,N-dimethylacetamide were mixed and dissolved to prepare a spinning dope. A spinning stock solution and water as a core solution each having a temperature controlled at 15° C. were extruded through a double annular nozzle, and wet-dry spinning was performed. The residence time in the air was 0.12 seconds, and then it was introduced into water, which is an external coagulating liquid, and wound up. The winding speed at this time was 29 m/min.

得られた中空繊維膜は内径500μ、外径700μで
あり、内外両表面に電子顕微鏡観察によつても空
隙の認められない緻密層を有し、膜内部は指状多
孔層であつた。また、透水速度は3/m2・分・
Kg/cm2でアルブミン阻止率は100%であり、分画
分子量は約13000であつた。
The obtained hollow fiber membrane had an inner diameter of 500 μm and an outer diameter of 700 μm, and had dense layers on both the inner and outer surfaces with no voids observed even by electron microscopic observation, and the inside of the membrane was a finger-shaped porous layer. In addition, the water permeation rate is 3/ m2・min・
The albumin rejection rate was 100% at Kg/cm 2 and the molecular weight cutoff was about 13,000.

この中空繊維膜を束ねてハウジング内に組み込
んで血液濃縮器を作製し、犬を用いた血液の体外
循環を実施した。血液流速100ml/分(剪断速度
320sec-1)、トランス・メンブレン圧192mmHg、
血液のヘマトクリツト値37%の条件で繊維内部に
血液を流し、血液濃縮を行つたところ、水分の濾
過速度は61ml/m2・分であつた。そして瀘液中の
アルブミン濃度は検出限界以下であつた。
This hollow fiber membrane was bundled and incorporated into a housing to create a hemoconcentrator, and extracorporeal blood circulation was performed using a dog. Blood flow rate 100ml/min (shear rate
320sec -1 ), transformer membrane pressure 192mmHg,
When blood was allowed to flow inside the fiber under conditions of a blood hematocrit value of 37% to perform hemoconcentration, the water filtration rate was 61 ml/m 2 ·min. The albumin concentration in the filtrate was below the detection limit.

実施例 2 N,N−ジメチルアセトアミドのかわりにモル
ホリンを用いる以外は実施例1と同一原液及び芯
液を用いて紡糸した。2.4秒空中を走行させた後
16℃の水中へ導き、24m/分で巻取りした。
Example 2 Spinning was carried out using the same stock solution and core solution as in Example 1, except that morpholine was used instead of N,N-dimethylacetamide. After running in the air for 2.4 seconds
It was introduced into water at 16°C and wound up at a speed of 24 m/min.

得られた中空繊維膜は内外両表面に緻密層を有
し、膜内部は指状多孔層であつた。このものの透
水速度は3/m2・分・Kg/cm2で耐圧性も良好で
あつた。アルブミン阻止率は100%であり、分画
分子量は約28000であつた。
The obtained hollow fiber membrane had dense layers on both the inner and outer surfaces, and the inside of the membrane was a finger-like porous layer. This material had a water permeation rate of 3/m 2 ·min·Kg/cm 2 and good pressure resistance. The albumin inhibition rate was 100%, and the molecular weight cutoff was approximately 28,000.

実施例1と同様にしてin vivo血液濃縮実験を
行つたところ、水分の濾過速度は58ml/m2・分で
あり、瀘液中にアルブミンは検出されなかつた。
このときの血液流速は100ml/分、トランス・メ
ンブレン圧200mmHg、ヘマトクリツト値32%であ
つた。
When an in vivo hemoconcentration experiment was conducted in the same manner as in Example 1, the water filtration rate was 58 ml/m 2 ·min, and no albumin was detected in the filtrate.
At this time, the blood flow rate was 100 ml/min, the transmembrane pressure was 200 mmHg, and the hematocrit value was 32%.

実施例 3 ポリエーテルスルホン(ICI社製4800−P)20
重量部、ポリエチレングリコール(PEG−600)
16重量部、ジメチルスルホキシド64重量部を混合
溶解し、紡糸原液とした。各々30℃に調温した紡
糸原液及び芯液である水を二重環状ノズルにより
押出し、乾湿式紡糸した。空中における滞留時間
は2秒で、その後40℃の水中へ導き、10m/分で
巻取つた。
Example 3 Polyether sulfone (ICI 4800-P) 20
Parts by weight, polyethylene glycol (PEG-600)
16 parts by weight and 64 parts by weight of dimethyl sulfoxide were mixed and dissolved to prepare a spinning stock solution. A spinning stock solution and water serving as a core liquid, each of which was controlled at a temperature of 30° C., were extruded through a double annular nozzle and subjected to dry-wet spinning. The residence time in the air was 2 seconds, after which it was introduced into water at 40°C and wound up at 10 m/min.

得られた中空繊維膜の内表面は緻密で外表面に
は微孔が多数存在し、膜内部は指状多孔層であつ
た。また、透水速度は7/m2・分・Kg/cm2で、
アルブミン阻止率は100%、分画分子量は約28000
であつた。
The inner surface of the obtained hollow fiber membrane was dense, the outer surface had many micropores, and the inside of the membrane was a finger-shaped porous layer. In addition, the water permeability rate is 7/m 2 · min · Kg/cm 2 ,
Albumin rejection rate is 100%, molecular weight cutoff is approximately 28000
It was hot.

血液濃縮器を作製し、ヘマトクリツト値40%の
牛血を用いてin vitro血液濃縮実験を行つた。血
液流量100ml/分(繊維内での剪断速度
320sec-1)、トランス・メンブレン圧200mmHgに
おける水分の濾過速度は120ml/cm2・分であつた。
そして瀘液中にアルブミンは検出されなかつた。
We constructed a hemoconcentrator and performed an in vitro hemoconcentration experiment using bovine blood with a hematocrit value of 40%. Blood flow rate 100ml/min (shear rate within the fiber
320sec -1 ), and the water filtration rate at a trans membrane pressure of 200 mmHg was 120 ml/cm 2 ·min.
No albumin was detected in the filtrate.

比較例 1 市販の血液濃縮器(C−Dメデイカル社製、商
品名ヘモコン)を用いてin vivo試験を行つた。
この血液濃縮器に内蔵されている膜はセルロース
アセテート中空繊維膜であり、透水速度は0.24
/m2・分・Kg/cm2、アルブミン阻止率は95%で
ある。
Comparative Example 1 An in vivo test was conducted using a commercially available hemoconcentrator (manufactured by CD Medical Co., Ltd., trade name: Hemocon).
The membrane built into this blood concentrator is a cellulose acetate hollow fiber membrane, and the water permeation rate is 0.24.
/m 2 ·min·Kg/cm 2 , albumin inhibition rate is 95%.

犬を用いて血液流量100ml/分、トランス・メ
ンブレン圧200mmHg、ヘマトクリツト値38%の条
件で体外循環による血液濃縮を実施したところ、
水分の濾過速度は27ml/cm2・分であつた。また濾
過前の血漿アルブミン濃度1.40g/dlに対して、
瀘液中には0.09g/dlのアルブミンが検出され
た。
Hemoconcentration using extracorporeal circulation was performed using dogs under conditions of blood flow rate of 100 ml/min, transmembrane pressure of 200 mmHg, and hematocrit value of 38%.
The water filtration rate was 27 ml/cm 2 ·min. In addition, for plasma albumin concentration of 1.40 g/dl before filtration,
Albumin of 0.09 g/dl was detected in the filtrate.

以上の結果から明らかなように、芳香族ポリス
ルホンからは透水速度が大きく分画分子量の小さ
い半透膜を容易に得ることができる。そして、得
られる膜は血液を処理した場合にも血液中の水分
の透過速度が大きく蛋白質の透過をほぼ完全に阻
止することができるので、血液濃縮器用の膜とし
て極めて有用である。
As is clear from the above results, a semipermeable membrane with a high water permeation rate and a low molecular weight cutoff can be easily obtained from aromatic polysulfone. The obtained membrane has a high permeation rate of water in the blood even when blood is processed, and can almost completely block the permeation of proteins, so it is extremely useful as a membrane for a hemoconcentrator.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明に係る血液濃縮器に
よれば、透水速度が1/m2・分・Kg/cm2以上の
芳香族ポリスルホンからなる中空繊維膜を用いて
いるので、従来のセルロースアセテート等からな
る膜に比較して透水速度が大きく、しかもこの中
空繊維膜は、少なくとも内表面に緻密層を有し、
且つ、アルブミンの阻止率が95%以上のものを用
いたもので、血液中のタンパク質をほとんど透過
させず、ほぼ完全に阻止し得る効果がある。
As described above, the hemoconcentrator according to the present invention uses a hollow fiber membrane made of aromatic polysulfone with a water permeation rate of 1/m 2 ·min ·Kg/cm 2 or more, so that it This hollow fiber membrane has a higher water permeation rate than a membrane made of acetate or the like, and has a dense layer on at least the inner surface.
In addition, it uses a product with an albumin blocking rate of 95% or more, which has the effect of almost completely blocking the passage of proteins in the blood.

Claims (1)

【特許請求の範囲】 1 少なくとも内表面に緻密層を有する芳香族ポ
リスルホンからなる中空繊維膜を内蔵し、該中空
繊維膜の内側に血液を流し、中空繊維膜の両面に
おいて圧力差を設け、この圧力差により血液中の
水分を中空繊維膜を透過して外側へ排出するとと
もに、排出される水分量を測定し膜の両面の圧力
差を調整して血液の濃縮率のコントロールを行う
システムを具備する滅菌処理されてなる血液濃縮
器であつて、前記中空繊維膜はアルブミンの阻止
率が95%以上で、且つ透水速度が1/m2・分・
Kg/cm2以上であることを特徴とする血液濃縮器。 2 上記アルブミンの阻止率が99%以上である特
許請求の範囲第1項に記載の血液濃縮器。 3 上記芳香族ポリスルホンが、式 で示す繰り返し単位からなるポリエーテルスルホ
ンである特許請求の範囲第1項または第2項に記
載の血液濃縮器。 4 上記芳香族ポリスルホンが、式 で示す繰り返し単位からなるポリスルホンである
特許請求の範囲第1項または第2項に記載の血液
濃縮器。 5 上記中空繊維膜が、緻密な表面層と多孔質構
造の支持体層とを有する特許請求の範囲第1項な
いし第4項のいずれかの項に記載の血液濃縮器。
[Claims] 1. A hollow fiber membrane made of aromatic polysulfone having a dense layer on at least the inner surface is built in, blood is allowed to flow inside the hollow fiber membrane, a pressure difference is created on both sides of the hollow fiber membrane, and the Equipped with a system that allows water in the blood to pass through the hollow fiber membrane and discharge to the outside based on the pressure difference, and also measures the amount of water discharged and adjusts the pressure difference on both sides of the membrane to control the blood concentration rate. The hollow fiber membrane has an albumin rejection rate of 95% or more and a water permeation rate of 1/m 2 ·min.
A hemoconcentrator characterized in that the hemoconcentrator is Kg/cm 2 or more. 2. The hemoconcentrator according to claim 1, wherein the albumin rejection rate is 99% or more. 3 The aromatic polysulfone has the formula The hemoconcentrator according to claim 1 or 2, which is a polyether sulfone consisting of repeating units represented by: 4 The aromatic polysulfone has the formula The hemoconcentrator according to claim 1 or 2, which is a polysulfone consisting of repeating units represented by: 5. The hemoconcentrator according to any one of claims 1 to 4, wherein the hollow fiber membrane has a dense surface layer and a porous support layer.
JP18645085A 1985-08-24 1985-08-24 Blood concentrator Granted JPS6247367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18645085A JPS6247367A (en) 1985-08-24 1985-08-24 Blood concentrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18645085A JPS6247367A (en) 1985-08-24 1985-08-24 Blood concentrator

Publications (2)

Publication Number Publication Date
JPS6247367A JPS6247367A (en) 1987-03-02
JPH0475765B2 true JPH0475765B2 (en) 1992-12-01

Family

ID=16188667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18645085A Granted JPS6247367A (en) 1985-08-24 1985-08-24 Blood concentrator

Country Status (1)

Country Link
JP (1) JPS6247367A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011530384A (en) * 2008-08-12 2011-12-22 カリディアンビーシーティ、インコーポレイテッド System and method for collecting plasma protein fractions from separated blood components

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5733545A (en) * 1995-03-03 1998-03-31 Quantic Biomedical Partners Platelet glue wound sealant
JP2009189743A (en) * 2008-02-18 2009-08-27 Toru Tani Method for allowing endothelial progenitor cell to grow

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735906A (en) * 1980-08-12 1982-02-26 Kuraray Co Ltd Production of polysulfone-based membrane having selective permeability
JPS58132111A (en) * 1982-01-29 1983-08-06 Asahi Chem Ind Co Ltd Polysulfone hollow fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735906A (en) * 1980-08-12 1982-02-26 Kuraray Co Ltd Production of polysulfone-based membrane having selective permeability
JPS58132111A (en) * 1982-01-29 1983-08-06 Asahi Chem Ind Co Ltd Polysulfone hollow fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011530384A (en) * 2008-08-12 2011-12-22 カリディアンビーシーティ、インコーポレイテッド System and method for collecting plasma protein fractions from separated blood components

Also Published As

Publication number Publication date
JPS6247367A (en) 1987-03-02

Similar Documents

Publication Publication Date Title
US8197745B1 (en) Perm selective asymmetric hollow fibre membrane for the separation of toxic mediators from blood
JP2782583B2 (en) Asymmetric microporous hollow fiber
US6042783A (en) Hollow yarn membrane used for blood purification and blood purifier
JPH10108907A (en) Membrane for hemocatharsis, its preparation and module for hemocatharsis
JP2792556B2 (en) Blood purification module, blood purification membrane and method for producing the same
AU672856B2 (en) High flux hollow fiber membrane
JP5292762B2 (en) Blood purifier with excellent mass replacement characteristics
JP2703266B2 (en) Polysulfone hollow fiber membrane and method for producing the same
JPH0475765B2 (en)
JP3253861B2 (en) Permselective hollow fiber membrane
JPH09308685A (en) Hollow fiber membrane for blood purification and blood purifying device
JP3651121B2 (en) Permselective separation membrane
JP4003982B2 (en) Polysulfone-based selectively permeable separation membrane
JP2003275300A (en) Regenerated cellulose hollow fiber membrane for blood purification, its manufacturing method, and blood purifying apparatus
JPS61200805A (en) Polyether sulfone microporous hollow yarn membrane and its production
JP2005074019A (en) Hollow fiber type blood purification membrane
JP4381022B2 (en) Hollow fiber blood purification membrane
JP2000107577A (en) Production of permselective hollow fiber membranes
JP2005065725A (en) Hollow fiber blood purifying membrane
JP3295314B2 (en) Permselective hollow fiber membrane
JP3205268B2 (en) Method for producing selectively permeable hollow fiber membrane
JP3205267B2 (en) Method for producing selectively permeable hollow fiber membrane
JP2855725B2 (en) Porous hollow fiber membrane for plasma separation
JPH0143562B2 (en)
JP2019180568A (en) Hollow fiber membrane for filtering ascitic fluid