JPH0475471B2 - - Google Patents

Info

Publication number
JPH0475471B2
JPH0475471B2 JP58031429A JP3142983A JPH0475471B2 JP H0475471 B2 JPH0475471 B2 JP H0475471B2 JP 58031429 A JP58031429 A JP 58031429A JP 3142983 A JP3142983 A JP 3142983A JP H0475471 B2 JPH0475471 B2 JP H0475471B2
Authority
JP
Japan
Prior art keywords
signal
component
magnetic field
electromagnet
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58031429A
Other languages
Japanese (ja)
Other versions
JPS59157548A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58031429A priority Critical patent/JPS59157548A/en
Publication of JPS59157548A publication Critical patent/JPS59157548A/en
Publication of JPH0475471B2 publication Critical patent/JPH0475471B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/389Field stabilisation, e.g. by field measurements and control means or indirectly by current stabilisation

Description

【発明の詳細な説明】 この発明は、例えば磁場中に置かれた原子核の
核磁気共鳴現象を利用して、その原子の空間的密
度分布や化学的結合状態の情報を断層画像として
得るNMR−CT装置に用いられ、電磁石が発生
する磁場の強度を自動的に制御するNMR−
LOCK装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention utilizes the nuclear magnetic resonance phenomenon of atomic nuclei placed in a magnetic field to obtain information on the spatial density distribution and chemical bonding state of the atoms as a tomographic image. NMR, which is used in CT equipment and automatically controls the strength of the magnetic field generated by an electromagnet.
It concerns the LOCK device.

<背景> 磁場中に置かれたある種の原子(原子番号か質
量数のどちらかが奇数であるような原子)の核磁
気共鳴周波数fは、その時の磁気強度Hに比例す
ることが知られている。この性質を利用して、従
来から電磁石が発生する磁場強度を知るために、
その磁場中に基準原子核(通常多くの場合、水素
原子核)を置き、その核磁気共鳴信号から、基準
磁場強度に対する偏差を検知して、その偏差を補
正するように前記電磁石の電源を制御するNMR
−LOCK装置が存在している。
<Background> It is known that the nuclear magnetic resonance frequency f of a certain type of atom (an atom with an odd atomic number or mass number) placed in a magnetic field is proportional to the magnetic strength H at that time. ing. Using this property, in order to know the magnetic field strength generated by an electromagnet,
NMR that places a reference atomic nucleus (usually a hydrogen nucleus in many cases) in the magnetic field, detects a deviation from the reference magnetic field strength from the nuclear magnetic resonance signal, and controls the power supply of the electromagnet to correct the deviation.
- A LOCK device is present.

従来のNMR−LOCK装置においては、前記基
準原子核(例えば水素原子核)の基準磁場強度
(例えば0.1Tesla)における核磁気共鳴周波数
(前記例においては4.3MHz)で発振している基準
RF(高周波)発振器を用意し、この出力信号で前
記基準原子核から実際に得られた核磁気共鳴信号
(前記例においては、4.3±△fMHz)を検波する。
この検波信号はAC(交流)成分として△fの周波
数を持ち、この△fが実際の磁場強度と基準磁場
強度との偏差に相当することを利用して電磁石の
電源を制御している。
In a conventional NMR-LOCK device, the reference atomic nucleus (e.g. hydrogen nucleus) is oscillated at the nuclear magnetic resonance frequency (4.3 MHz in the above example) at the reference magnetic field strength (e.g. 0.1 Tesla).
An RF (high frequency) oscillator is prepared, and a nuclear magnetic resonance signal (4.3±△fMHz in the above example) actually obtained from the reference atomic nucleus is detected using this output signal.
This detection signal has a frequency of Δf as an AC (alternating current) component, and the fact that this Δf corresponds to the deviation between the actual magnetic field strength and the reference magnetic field strength is used to control the power supply of the electromagnet.

ところが前記核磁気共鳴信号は、数十msecの
時定数で減衰する性質を有するため、一回の核磁
気共鳴信号からその検波信号の周波数(△f)
を、数Hzのオーダまで直接測定して知ることは極
めて難しい。このため、従来は特開昭57−6346号
公報に示すように変調用AF(低周波)発振器の発
振周波数(例えば5KHz)でゲートをON、OFF
し、核磁気共鳴信号の励起と核磁気共鳴信号の受
信とを周期的(前記例においては100μsecごと)
にくりかえして、信号の減衰をふせいでいる。
However, since the nuclear magnetic resonance signal has the property of attenuating with a time constant of several tens of milliseconds, the frequency (△f) of the detected signal from a single nuclear magnetic resonance signal
It is extremely difficult to directly measure and know down to the order of several Hz. For this reason, conventionally, the gate was turned on and off at the oscillation frequency (for example, 5KHz) of the modulation AF (low frequency) oscillator, as shown in Japanese Patent Application Laid-Open No. 57-6346.
The excitation of the nuclear magnetic resonance signal and the reception of the nuclear magnetic resonance signal are performed periodically (every 100 μsec in the above example).
This repeatedly prevents signal attenuation.

このようは方式の従来のNMR−LOCK装置
を、NMR−CT装置の電磁石制御用に利用した
場合、NMR−CT装置本体が被検体(通常多く
の場合人間)から、核磁気共鳴信号を受信してい
る時間帯(例えば16msec)の中に、NMR−
LOCK装置用の励起用パルスが送信され、しかも
NMR−CT装置、NMR−LOCK装置共に対象核
が水素原子核であるために、信号周波数が重なつ
て、NMR−CT装置の受信信号の中にNMR−
LOCK装置の励起用パルスがノイズとなつて現わ
れる。
When a conventional NMR-LOCK device using this method is used to control the electromagnet of an NMR-CT device, the NMR-CT device itself receives nuclear magnetic resonance signals from the subject (usually a human being in many cases). during the time period (e.g. 16 msec)
An excitation pulse for the LOCK device is transmitted, and
Since the target nucleus for both the NMR-CT device and the NMR-LOCK device is a hydrogen nucleus, the signal frequencies overlap, and the NMR-CT device receives an NMR-CT device.
The excitation pulse of the LOCK device appears as noise.

また特開昭54−155089号公報に示すように、受
信した核磁気共鳴信号を基準信号で検波し、この
検波出力として得られる交流成分を矩形波に変換
し、その矩形波を所定時間計数して、周波数の偏
差△fを求めることが提案されている。この場
合、1Hzの偏差を求めるためには最低1秒間の計
数を必要とし、0.5Hzの偏差の場合は最低2秒間
の計数を必要とし、小さな偏差△fまで検出しよ
うとすると、検出時間が比較的長い欠点がある。
Furthermore, as shown in Japanese Patent Application Laid-Open No. 54-155089, the received nuclear magnetic resonance signal is detected using a reference signal, the AC component obtained as the detected output is converted into a rectangular wave, and the rectangular wave is counted for a predetermined period of time. It has been proposed to calculate the frequency deviation Δf. In this case, to find a deviation of 1Hz, counting is required for at least 1 second, and for a deviation of 0.5Hz, counting is required for at least 2 seconds, and when trying to detect even a small deviation △f, the detection time is compared. There are long drawbacks.

<発明の概要> この発明の目的はパルス雑音が入るおそれがな
いNMR−LOCK装置を提供することがある。
<Summary of the Invention> An object of the present invention is to provide an NMR-LOCK device in which there is no possibility of pulse noise being introduced.

この発明によればNMR−LOCK用の基準原子
核を高周波パルスで励起し、この原子核から得た
核磁気共鳴信号を、基準RF発振器野の信号で検
波する。この検波信号は実際の磁場強度と基準磁
場強度との偏差に相当し、その偏差に相当する周
波数△fの交流成分を含む。その検波信号を、高
周波パルスの直後から、その信号が減衰するまで
の時間より短く、つまり磁場強度の自動制御のた
めに通常用いられる磁場強度検出用の原子の核磁
気共鳴信号の減衰時間(スピンスピン緩和時間
T2であつて励起パルスから信号強度がe分の1
に減衰するまでの時間)は通常200ミリ秒〜1秒
であるから1時間より十分短い一定の時間△T
(例えば20msec)の間積分することにより、△f
に対応する情報を得て、磁場制御をする。この
際、前記検波信号からDC(直流)成分を差し引い
て、AC成分のみを信号として積分することによ
り、△fに対応する情報の積分精度を上げること
ができる。そして△fが零の時に、前記検波信号
のAC成分が零となるように検波器に入力する基
準RF発振器の信号位相が調整される。これによ
つて前記AC成分の立ち上がり微分係数は、△f
の大小・符号に対応して変化し、△fが数Hz程度
の十分小さい範囲で、前記AC成分を一定時間積
分した結果が、△fすなわち実際の磁場強度と基
準磁場強度との偏差と一対一で対応するわけであ
る。
According to this invention, a reference atomic nucleus for NMR-LOCK is excited with a high-frequency pulse, and a nuclear magnetic resonance signal obtained from this atomic nucleus is detected with a signal from a reference RF oscillator field. This detection signal corresponds to the deviation between the actual magnetic field strength and the reference magnetic field strength, and includes an alternating current component with a frequency Δf corresponding to the deviation. The detection signal is shorter than the time from immediately after the high-frequency pulse until the signal decays, that is, the decay time of the nuclear magnetic resonance signal of the atom (spin spin relaxation time
T 2 and the signal strength from the excitation pulse is 1/e
The time required for the decay to decay) is usually 200 milliseconds to 1 second, so it is a constant time △T that is sufficiently shorter than 1 hour.
(for example, 20 msec), △f
Obtain information corresponding to the magnetic field and control the magnetic field. At this time, by subtracting the DC (direct current) component from the detected signal and integrating only the AC component as a signal, it is possible to improve the integration accuracy of the information corresponding to Δf. Then, the signal phase of the reference RF oscillator input to the detector is adjusted so that when Δf is zero, the AC component of the detected signal becomes zero. As a result, the rising differential coefficient of the AC component is △f
The result of integrating the AC component over a certain period of time within a sufficiently small range of about several Hz is the difference between Δf, that is, the deviation between the actual magnetic field strength and the reference magnetic field strength. So we have to deal with it all at once.

つまり、同期検波出力から直流分を差し引いた
AC成分は、△fが1Hzの場合は、高周波パルス
直後の波形は第1図の曲線△f=1Hzとなる。こ
の曲線の足り上り点は正確に高周波パルスの中心
点であるが、高周波パルスのパルス幅は極めて短
く、例えば300μs程度であるから、このパルス幅
を無視して示している。また△fが2Hzの場合は
曲線△f=2Hzとなり、曲線△f=1Hzよりも急
速に立ち上り、つまり立ち上り微分係数が大であ
る。△f−2Hzの場合は、曲線△f=−2Hzとな
り、曲線△f=2Hzと逆位相、つまり立ち上り微
分係数の絶対値が同一で符号が負となる。従つて
これら曲線を高周波パルスの直後から、1秒間よ
りも十分短い時間△T、例えば20ミリ秒間だけ積
分すると、曲線△f=1Hzの場合は第1図の横線
ハツチング部分の面積の大きさが正の値として得
られ、曲線△f=2Hzの場合は縦線ハツチング部
分の面積の大きさが正の値として得られ、これは
△f=1Hzのそれよりも大きな値となる。曲線△
f=−2Hzの場合は斜線ハツチング部分の面積が
負の値として得られ、この値は△f=2Hzの場合
と同一であり、符号が異なる。このようにAC成
分の積分出力は、△fが高い程大きく、かつその
正負に応じた符号となる。
In other words, the DC component is subtracted from the synchronous detection output.
For the AC component, when Δf is 1 Hz, the waveform immediately after the high-frequency pulse becomes the curve Δf=1 Hz in FIG. 1. The rising point of this curve is exactly the center point of the high-frequency pulse, but since the pulse width of the high-frequency pulse is extremely short, for example, about 300 μs, this pulse width is ignored in the figure. Further, when Δf is 2 Hz, the curve Δf=2 Hz, which rises more rapidly than the curve Δf=1 Hz, that is, the rising differential coefficient is larger. In the case of Δf-2Hz, the curve Δf=-2Hz, which has an opposite phase to the curve Δf=2Hz, that is, the absolute value of the rising differential coefficient is the same and the sign is negative. Therefore, if these curves are integrated for a time △T that is sufficiently shorter than 1 second, for example 20 milliseconds, from immediately after the high-frequency pulse, if the curve △f = 1 Hz, the area of the horizontal hatched part in Fig. 1 will be When the curve Δf=2 Hz, the area of the hatched portion of the vertical line is obtained as a positive value, which is larger than that when Δf=1 Hz. Curve △
When f=-2Hz, the area of the hatched portion is obtained as a negative value, and this value is the same as when Δf=2Hz, but the sign is different. In this way, the integral output of the AC component becomes larger as Δf is higher, and has a sign corresponding to its sign.

このようにすることにより、核磁気共鳴信号が
減衰するより、つまり1秒間より十分短い時間内
に、数Hzのオーダの△fを識別することが可能と
なり、従来技術の欠点を克服することができる。
さらにこの発明によれば、NMR−LOCK用の送
受信を、間欠的に(例えば1秒に1回ずつ)行な
うだけで、△fを十分高い精度で検出することが
可能となり、LOCK用励起パルスを、NMR−
CT用の送受信が行なわれていないタイミングに
同期をとつて送信することもできる。このため
NMR−CT装置からの信号に影響させることな
く正しく制御することができる。
By doing this, it becomes possible to identify Δf on the order of several Hz before the nuclear magnetic resonance signal attenuates, that is, within a time sufficiently shorter than one second, and it is possible to overcome the drawbacks of the conventional technology. can.
Furthermore, according to the present invention, it is possible to detect △f with sufficiently high accuracy by simply performing transmission and reception for NMR-LOCK intermittently (for example, once every second), and the excitation pulse for LOCK can be detected with sufficient accuracy. , NMR−
It is also possible to transmit in synchronization with timing when CT transmission and reception are not being performed. For this reason
Correct control can be achieved without affecting the signal from the NMR-CT device.

しかし、DC成分を差し引いてAC成分を単に積
分するだけで磁場強度の偏差が大き過ぎ△fが高
くなり、これが積分時間△Tの逆数の半分を越え
ると(△f>1/2・△T前記例においては、△T =20msecであるから△f>25Hz)、積分時間内に
AC成分の正負が逆転した信号、つまりAC成分の
半周期以上の信号を含むようになるため、積分結
果がかえつて減少しはじめて適切な制御ができな
くなるおそれがある。すなわち、磁場強度の偏差
(言い換えれば△f)がある上限を越えると、制
御性が急激に悪化するわけである。この欠点をも
克服するためには、検波信号のAC成分を積分す
る際に、そのAC成分の絶対値をとり、その絶対
値を一定時間積分し、偏差の方向(極性)は検波
時の位相情報から検出すればよい。このようにす
ることによつて磁場偏差の広い範囲に渡つて制御
可能なNMR−LOCK装置が実現できる。
However, if the DC component is subtracted and the AC component is simply integrated, the deviation of the magnetic field strength becomes too large and △f becomes high, and if this exceeds half the reciprocal of the integration time △T (△f>1/2・△T In the above example, since △T = 20msec, △f>25Hz), within the integration time
Since the signal includes a signal in which the polarity of the AC component is reversed, that is, a signal that is longer than half the period of the AC component, there is a risk that the integration result will start to decrease and that appropriate control will not be possible. That is, when the deviation of the magnetic field strength (in other words, Δf) exceeds a certain upper limit, the controllability deteriorates rapidly. In order to overcome this drawback, when integrating the AC component of the detected signal, take the absolute value of the AC component, integrate that absolute value for a certain period of time, and determine the direction (polarity) of the deviation from the phase at the time of detection. It can be detected from information. By doing so, it is possible to realize an NMR-LOCK device that can control the magnetic field deviation over a wide range.

<実施例> 以下に、この発明の実施例について説明する。
第2図に示すように基準RF発振器11の出力は、
送信増幅器12で増幅された後、送信ゲート13
において、コンピユータよりなる制御部14の指
示するタイミングでパルス変調される。電磁石1
5が発生する磁場内にプローブ16が置かれ、プ
ローブ16に送信ゲート13を通過した高周波パ
ルスが供給され、プローブ16中の原子核スピン
を90゜倒すように励起する。送信ゲート13が閉
になつた後、プローブ16から得られる核磁気共
鳴信号は、受信増幅器17で増幅されて検波器1
8へ供給される。基準RF発振器11の出力は移
相器19で移相調整され、基準信号として検波器
18へ供給され、受信増幅器17の出力が検波さ
れる。この時、移送器19は、プローブ16より
の核磁気共鳴信号の周波数が基準RF発振器11
の周波数と等しい場合に、検波器18の検波信号
のAC成分が零になるように調節されている。
<Examples> Examples of the present invention will be described below.
As shown in FIG. 2, the output of the reference RF oscillator 11 is
After being amplified by the transmission amplifier 12, the transmission gate 13
At this time, pulse modulation is performed at a timing instructed by a control unit 14 made up of a computer. Electromagnet 1
A probe 16 is placed in the magnetic field generated by the probe 16, and a high frequency pulse that has passed through the transmission gate 13 is supplied to the probe 16 to excite the nuclear spins in the probe 16 so as to incline them by 90 degrees. After the transmission gate 13 is closed, the nuclear magnetic resonance signal obtained from the probe 16 is amplified by the reception amplifier 17 and sent to the detector 1.
8. The output of the reference RF oscillator 11 is phase-shifted and adjusted by a phase shifter 19, and is supplied as a reference signal to a detector 18, where the output of the receiving amplifier 17 is detected. At this time, the transfer device 19 is configured so that the frequency of the nuclear magnetic resonance signal from the probe 16 is set to the reference RF oscillator 11.
The AC component of the detection signal of the wave detector 18 is adjusted to be zero when the frequency is equal to the frequency of .

検波器18の出力はAD変換器21でデジタル
信号に変換されて制御部14に取り込まれる。制
御部14はこの取り込まれた検波信号のAC成分
に対し、その絶対値についてのみ積分し、更に演
算処理をほどこして、その処理結果の出力が、検
波信号のAC成分の周波数と一対一に対応するよ
うにする。この演算処理の結果は、DA変換器2
2でアナログ信号に変換されて電磁石電源23に
供給され、電磁石15の磁場強度の基準磁場強度
に対する偏差がなくなるように電磁石電源23が
制御される。このようにして広いダイナミツクレ
ンジをもつ磁場制御が可能となる。
The output of the wave detector 18 is converted into a digital signal by an AD converter 21 and input to the control section 14. The control unit 14 integrates only the absolute value of the AC component of the detected signal taken in, and further performs arithmetic processing, so that the output of the processing result corresponds one-to-one to the frequency of the AC component of the detected signal. I'll do what I do. The result of this arithmetic processing is sent to the DA converter 2.
2, it is converted into an analog signal and supplied to the electromagnet power supply 23, and the electromagnet power supply 23 is controlled so that there is no deviation of the magnetic field strength of the electromagnet 15 from the reference magnetic field strength. In this way, magnetic field control with a wide dynamic range becomes possible.

制御部14の演算処理として、単に検波信号の
AC成分の絶対値を積分するだけでなく、積分結
果がAC成分の周波数の一次関数(あるいは電磁
石制御に最適な関数)になるような補正処理をす
ることにより、磁場制御を広い範囲にわたつて最
適化することもできる。この補正処理は例えばメ
モリの中に書き込まれているテーブルを参照して
行うことができる。
The arithmetic processing of the control unit 14 is simply based on the detection signal.
Magnetic field control can be controlled over a wide range by not only integrating the absolute value of the AC component, but also by performing correction processing so that the integration result becomes a linear function of the frequency of the AC component (or the optimal function for electromagnet control). It can also be optimized. This correction processing can be performed, for example, by referring to a table written in a memory.

<効果> 以上説明したように、この発明によれば、磁場
の偏差を短時間で検出し、広い範囲にわたつて最
適制御可能なNMR−LOCK装置を実現すること
ができる。
<Effects> As described above, according to the present invention, it is possible to realize an NMR-LOCK device that can detect magnetic field deviations in a short time and can perform optimal control over a wide range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は偏差交流成分の短時間積分を説明する
ための図、第2図はこの発明によるNMR−
LOCK装置の一例を示すブロツク図である。 11:基準RF発振器、13:送信ゲート、1
4:制御部、15:電磁石、16:プローブ、1
8:検波器、19:移送器、21:AD変換器、
22:DA変換器、23:電磁石電源。
Figure 1 is a diagram for explaining short-time integration of the deviation AC component, and Figure 2 is a diagram for explaining the short-time integration of the deviation AC component.
FIG. 2 is a block diagram showing an example of a LOCK device. 11: Reference RF oscillator, 13: Transmission gate, 1
4: Control unit, 15: Electromagnet, 16: Probe, 1
8: Detector, 19: Transfer device, 21: AD converter,
22: DA converter, 23: Electromagnet power supply.

Claims (1)

【特許請求の範囲】[Claims] 1 電磁石が発生する磁場中に置かれた原子核を
高周波パルスで励起し、その原子核から、核磁気
共鳴信号を受信し、その信号から前記磁場の強度
変化を検知して、前記磁場強度の変動分を補正す
るように前記電磁石の電源を制御するNMR−
LOCK装置において、前記核磁気共鳴信号を、基
準発振器の信号で検波する検波器と、その検波信
号から直流成分を差し引く手段と、その直流分が
差し引かれた残りの交流成分を、前記高周波パル
スの直後から、1秒間より十分短い一定時間積分
して前記電磁石の電源を制御する信号を得る積分
手段とを具備することを特徴とするNMR−
LOCK装置。
1 An atomic nucleus placed in a magnetic field generated by an electromagnet is excited with a high-frequency pulse, a nuclear magnetic resonance signal is received from the atomic nucleus, a change in the strength of the magnetic field is detected from the signal, and the variation in the magnetic field strength is detected. NMR− to control the power supply of the electromagnet so as to correct
In the LOCK device, a detector detects the nuclear magnetic resonance signal using a signal from a reference oscillator, a means for subtracting a DC component from the detected signal, and a means for subtracting the DC component and the remaining AC component from the high-frequency pulse. an integrating means for obtaining a signal for controlling the power source of the electromagnet by immediately integrating for a certain period of time sufficiently shorter than one second.
LOCK device.
JP58031429A 1983-02-25 1983-02-25 Nmr-lock device Granted JPS59157548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58031429A JPS59157548A (en) 1983-02-25 1983-02-25 Nmr-lock device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58031429A JPS59157548A (en) 1983-02-25 1983-02-25 Nmr-lock device

Publications (2)

Publication Number Publication Date
JPS59157548A JPS59157548A (en) 1984-09-06
JPH0475471B2 true JPH0475471B2 (en) 1992-11-30

Family

ID=12330993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58031429A Granted JPS59157548A (en) 1983-02-25 1983-02-25 Nmr-lock device

Country Status (1)

Country Link
JP (1) JPS59157548A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54155089A (en) * 1978-04-14 1979-12-06 Varian Associates Method and device for automatically fixing relation between magnetic field and frequency in nmr spectrometer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54155089A (en) * 1978-04-14 1979-12-06 Varian Associates Method and device for automatically fixing relation between magnetic field and frequency in nmr spectrometer

Also Published As

Publication number Publication date
JPS59157548A (en) 1984-09-06

Similar Documents

Publication Publication Date Title
JPH0580904B2 (en)
CA1234869A (en) Nuclear magnetic resonance blood flowmeter
JP2664071B2 (en) Nuclear spin tomography equipment
US11204407B2 (en) Magnetic field sensor, method for operating the said magnetic field sensor and method and system for compensation magnetic noise caused by environmental noise
US5068610A (en) Mri method and device for fast determination of the transverse relaxation time constant t2
US4429277A (en) Nuclear magnetic resonance apparatus utilizing multiple magnetic fields
JPH0475471B2 (en)
JPH02107230A (en) Method and device for compensating eddy current of mr device
JP2001190516A (en) Nuclear magnetic resonance inspection device
JPH0919413A (en) Subject body weight measuring method for mri, mri device, and table device
JP3337712B2 (en) Magnetic resonance imaging equipment
JPH0647446Y2 (en) Electrocardiographic signal synchronizer for MRI
JP3133083B2 (en) MR device
JPS6123953A (en) Nuclear magnetic resonance device
JPH049414B2 (en)
JPH05220126A (en) Magnetic resonance imaging device
JPS61202286A (en) Nuclear magnetic resonance image device
JPS61235741A (en) Nuclear magnetic resonance device
JPS606881A (en) Checking method of nuclear magnetic material
JPH0439855B2 (en)
JPH031828Y2 (en)
JPH0527418B2 (en)
JPH11276453A (en) Measuring method of magnetic resonance frequency using magnetic resonance imaging device
JP3447120B2 (en) MRI equipment
JPH0467848A (en) Static magnetic field strength measuring/display method for magnetic resonance imaging device