JPH0475116B2 - - Google Patents

Info

Publication number
JPH0475116B2
JPH0475116B2 JP24986187A JP24986187A JPH0475116B2 JP H0475116 B2 JPH0475116 B2 JP H0475116B2 JP 24986187 A JP24986187 A JP 24986187A JP 24986187 A JP24986187 A JP 24986187A JP H0475116 B2 JPH0475116 B2 JP H0475116B2
Authority
JP
Japan
Prior art keywords
welding
trailing
electrode
wire
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24986187A
Other languages
Japanese (ja)
Other versions
JPH0191968A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP24986187A priority Critical patent/JPH0191968A/en
Publication of JPH0191968A publication Critical patent/JPH0191968A/en
Publication of JPH0475116B2 publication Critical patent/JPH0475116B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、多電極片面自動溶接法に関し、特
に開先シートギャップの幅変動に対して裏ビード
幅を一定に保つとともに、表ビード高さを一定に
保つ裏ビードと表ビードの同時制御に関するもの
である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a multi-electrode single-sided automatic welding method, and in particular maintains the back bead width constant against width fluctuations in the groove sheet gap, and maintains the front bead height. This is related to simultaneous control of the back bead and front bead to keep constant.

[従来の技術] 片面自動溶接法は、被溶接材の片面よりアーク
溶接を行い、被溶接材の裏面に良好な溶接ビード
を形成でき、被溶接材を反転する必要もないとい
う利点を有しているため、例えば船舶など反転で
きない構造物の溶接に広く利用されている。
[Conventional technology] The single-sided automatic welding method performs arc welding from one side of the material to be welded, and has the advantage that a good weld bead can be formed on the back side of the material to be welded, and there is no need to turn the material to be welded. Therefore, it is widely used for welding structures that cannot be reversed, such as ships.

然しながら、溶接ビードの形状は開先のルート
ギヤツプ幅の精度に左右される。例えばルートギ
ヤツプ幅が広い部位では溶けこみが過大となり、
著しい場合にはビード溶落が生じる。これを防ぐ
にはルートジヤツプ幅の精度を厳しく管理する必
要があるが、要求される精度は僅か±1mm程度で
あり、その実現は加工精度上、極めて困難であ
る。従つて、溶接線の全域に渡つて適正なビード
形状を得るには、溶接中に刻々と変化するルート
ギヤツプ幅に対し、溶接パラメーターの自動修正
を行う制御方法が不可欠である。
However, the shape of the weld bead depends on the accuracy of the root gap width of the groove. For example, in areas with a wide root gap, the penetration will be excessive,
In severe cases, bead erosion occurs. To prevent this, it is necessary to strictly control the accuracy of the root jump width, but the required accuracy is only about ±1 mm, and it is extremely difficult to achieve this in terms of processing accuracy. Therefore, in order to obtain an appropriate bead shape over the entire weld line, a control method that automatically corrects welding parameters in response to the constantly changing root gap width during welding is essential.

従来、この種の制御方法としては、例えば出願
人が特開昭61−56775号、特開昭61−137676号、
特開昭61−180677号等で提案した「片面溶接にお
ける裏ビード制御方法」があつた。これらの方法
はルートギヤツプ幅の変動によらず裏ビードを一
定に形成するものである。尚、この種の片面自動
溶接法は一般に二電極以上の多電極で実施される
場合が多いが、以下の説明でも多電極を用いるも
のとする。
Conventionally, as this type of control method, for example, the applicant has disclosed Japanese Patent Application Laid-Open No. 61-56775, Japanese Patent Application Laid-Open No. 61-137676,
``Back bead control method in single-sided welding'' was proposed in JP-A-61-180677 and other publications. These methods form a constant back bead regardless of variations in root gap width. Note that this type of single-sided automatic welding method is generally carried out using multiple electrodes, ie, two or more electrodes, but multiple electrodes will also be used in the following description.

第2図にその原理図を示す。図に示した片面溶
接において、電極ワイヤ4a,4bは溶接電源5
から電力を供給され、矢印方向へ溶接を行うが、
溶接線に沿つた電極ワイヤ4a,4bの移動は、
図示しない送り機構により自動的に行われるもの
とする。
Figure 2 shows the principle diagram. In the single-sided welding shown in the figure, the electrode wires 4a and 4b are connected to the welding power source 5.
Power is supplied from and welding is performed in the direction of the arrow, but
The movement of the electrode wires 4a, 4b along the welding line is as follows:
It is assumed that this is automatically performed by a feeding mechanism (not shown).

溶接開始時には裏面金属板(例えば銅板)3と
被溶接材1とは電気的接続がないため、溶接開始
時の裏当金属板3と被溶接材1間の電圧は零とな
つている。溶接開始後、裏ビードが良好に出てい
る時は、電極ワイヤ4aから発するアークが被溶
接材1の間を漏れてフラツクス等の無機材2を通
して裏当金属板3に達し、被溶接材1と裏当金属
板3間に電圧Vを生じる。
Since there is no electrical connection between the back metal plate (eg, copper plate) 3 and the workpiece 1 at the start of welding, the voltage between the backing metal plate 3 and the workpiece 1 at the start of welding is zero. After welding starts, when the back bead is well projected, the arc emitted from the electrode wire 4a leaks between the welded materials 1, passes through the inorganic material 2 such as flux, and reaches the backing metal plate 3, and the welded materials 1 A voltage V is generated between the backing metal plate 3 and the backing metal plate 3.

この被溶接材1と裏当金属板3間の電圧V(検
出電圧Vd)と裏ビード幅との関係を第3図のグ
ラフに示す。このグラフは縦軸に検出電圧Vd
[V]、横軸に裏ビード幅[mm]を採つてある。被
溶接材1と裏当金属板3間の電圧Vdとは第4図
のグラフに示す如く良い相関を示しており、この
相関を利用すると、所定の裏ビード幅を形成し得
る基準電圧V0を設定でき、片面自動溶接の裏ビ
ード幅の制御がオンラインで行える。
The relationship between the voltage V (detected voltage V d ) between the material to be welded 1 and the backing metal plate 3 and the back bead width is shown in the graph of FIG. This graph shows the detection voltage V d on the vertical axis.
[V], the back bead width [mm] is plotted on the horizontal axis. The voltage V d between the material to be welded 1 and the backing metal plate 3 shows a good correlation as shown in the graph of FIG. 0 can be set, and the back bead width for single-sided automatic welding can be controlled online.

この片面溶接における裏ビード制御方法に使用
する制御回路ブロツクの一例を第4図に示す。図
において変換器7は電圧計6で検出した被溶接材
1と裏当金属板3間の検出電圧Vdを直流信号に
変換する。この変換器7は溶接電源5として交流
電源を使用した場合に必要であるが、溶接電線5
が直流電源の場合は不要である。変換器7から出
力された電圧信号はフイルタ8によりノイズを除
去されて比較器9に入力する。比較器9に入力し
た電圧信号は、第5図に示した裏ビード幅及び被
溶接材1と裏当金属板3間の検出電圧Vdとの相
関により、所定の裏ビード幅に応じてあらかじめ
設定された基準電圧信号10と比較される。比較
器9は上記両電圧信号の偏差信号を積分器11を
介して溶接電源5に与える。溶接電源5は、その
入力信号に応じた溶接電流を出力する。即ち、被
溶接材1と裏当金属板3間の電圧信号と基準電圧
信号10が常に一致するように制御する。
An example of a control circuit block used in this back bead control method in single-sided welding is shown in FIG. In the figure, a converter 7 converts the detected voltage V d between the welded material 1 and the backing metal plate 3 detected by the voltmeter 6 into a DC signal. This converter 7 is necessary when an AC power source is used as the welding power source 5.
is not necessary if it is a DC power supply. The voltage signal output from the converter 7 has noise removed by a filter 8 and is input to a comparator 9. The voltage signal input to the comparator 9 is determined in advance according to a predetermined back bead width based on the correlation with the back bead width shown in FIG. 5 and the detected voltage V d between the workpiece 1 and the backing metal plate 3. It is compared with a set reference voltage signal 10. Comparator 9 provides a deviation signal between the two voltage signals to welding power source 5 via integrator 11. The welding power source 5 outputs a welding current according to the input signal. That is, control is performed so that the voltage signal between the workpiece 1 and the backing metal plate 3 always matches the reference voltage signal 10.

尚、この例では溶接中における被溶接材1と裏
当金属板3間の電圧Vを直接検出したが、電極4
aと被溶接材1間の電圧すなわちアーク電圧と電
極4aと裏当金属板3間の電圧を測定し、両電圧
間の差を求め、この両電圧の差を一定に制御して
も上記説明と同様に裏ビード幅を均一に制御する
こともできる。
In this example, the voltage V between the workpiece 1 and the backing metal plate 3 during welding was directly detected, but the voltage V between the electrode 4
Even if the voltage between a and the welded material 1, that is, the arc voltage, and the voltage between the electrode 4a and the backing metal plate 3 are measured, the difference between the two voltages is determined, and the difference between the two voltages is controlled to be constant, the above explanation will not occur. Similarly, the back bead width can also be controlled uniformly.

また、この例では検出電気信号及び基準信号と
して電圧を用いているが、電流を用いてもよく、
制御すべき溶接パラメーターは裏ビード形成に有
効で検出信号を制御できるものであればアーク電
圧、溶接電流、溶接速度、ワイヤ突出長など何れ
でもよい。検出信号の発生源も溶接電源に限るも
のではなく、特別に信号発生器(溶接電源とは異
る周波数、電流、電圧特性を有するもの)を用い
てもよい。
In addition, although voltage is used as the detection electric signal and reference signal in this example, current may also be used.
The welding parameters to be controlled may be arc voltage, welding current, welding speed, wire protrusion length, etc., as long as they are effective for forming the back bead and can control the detection signal. The source of the detection signal is not limited to the welding power source, and a special signal generator (having frequency, current, and voltage characteristics different from those of the welding power source) may be used.

従来の片面自動溶接法は上記のように構成さ
れ、検出信号が常に基準信号に一致するように溶
接パラメータを制御することにより、この基準信
号に応じた一定幅の裏ビード幅を形成できるよう
になつている。
The conventional single-sided automatic welding method is configured as described above, and by controlling the welding parameters so that the detection signal always matches the reference signal, it is possible to form a constant back bead width according to this reference signal. It's summery.

[発明が解決しようとする問題点] 上記のような従来の片面自動溶接では、裏ビー
ド幅は開先ルートギヤツプ幅の変動によらず一定
に形成できるものの、表ビードに関しては開先ル
ートギヤツプ幅の変動によりビード高が不均一と
なり、特に開先ルートギヤツプ幅が広くなると余
盛不足を生じるという問題点があつた。
[Problems to be Solved by the Invention] In the conventional single-sided automatic welding as described above, the back bead width can be formed constant regardless of fluctuations in the groove root gap width, but for the front bead, due to fluctuations in the groove root gap width. As a result, the bead height becomes non-uniform, and especially when the groove root gap width becomes wide, there is a problem of insufficient reinforcement.

この発明は、かかる問題点を解決するためにな
されたもので、開先ルートギヤツプ幅の変動によ
らず裏ビードの幅を一定に形成するとともに、表
ビードの高さも一定に形成しうる多電極片面自動
溶接法を得ることを目的とするものである。
This invention has been made to solve these problems, and is capable of forming a constant width of the back bead regardless of fluctuations in the groove root gap width, as well as a constant height of the front bead. The purpose is to obtain an automatic welding method.

[問題点を解決するための手段] この発明に係る多電極片面自動溶接法は、被溶
接材の裏側に無機材を介して裏当金属板を当てが
い、前記被溶接材の表側より開先に沿つて溶接電
極を移動させながら連続的なアーク溶接を施すに
際し、溶接中の前記母材と裏当金属板間の電気信
号を検出し、この検出信号が予め設定された基準
信号に一致するように先行溶接電極の溶接電流を
含む溶接パラメータを制御する多電極片面自動溶
接法において、 (イ) 前記制御された先行電極の溶接電流ILを検出
し、この検出溶接電流ILの変化に対して先行ワ
イヤ送給速度VfLを下式、 VfL=AIL+BlLIL 2 (ILは先行溶接電流の書記値、lLは先行ワイヤ
突出長(一定)、A、Bは溶接ワイヤ及びシー
ルドガス等の溶接使用材料の種類により一義的
に定まる定数) により可変制御し、 (ロ) 前記制御された先行電極の溶接電流ILの変化
に対して溶接速度を下式、 v1=v0・IL/IL0 (v0は溶接速度の初期値、v1は制御すべき〜溶
接速度、IL0は溶接電流の初期値)により可変
制御することにより、先行電極による溶着量を
一定に保つと共に、 (ハ) 後行ワイヤ突出長lTに対して後行ワイヤ送給
速度VfTを下式、 VfT=AIT+BlTIT 2 (ITは後行溶接電流、但しIT0を後行溶接電流の
初期値〜とするとIT=IT0、A、Bは前述した先
行ワイヤ送給速度VfT式中の定数A、Bと同一
の値) により可変制御し、 (ニ) ルートギヤツプ幅の変化△Gを下式、 △G=(IL0〜IL)/a (aは溶接ワイヤ及びシールドガス等の溶接使
用材料の種類により一義的に定まる定数) により求め、 (ホ) 前記ルートギヤツプ幅の変化△Gに対応する
開先断面積の変化△Sを下式、 △S=T・△G (Tは母材の板厚) により求め、 (ヘ) 前記開先断面積の変化△Sに対し下式、 △S=K{[VfL/v1)−(VfL0/v0)]+[(VfT
//v1)−(VfT0/v0)]} (VfL0は先行ワイヤ送給速度VfLの初期値、
VfT0は後行ワイヤ送給速度VfTの初期値、Kは
溶接ワイヤ及びシールドガス等の溶接使用材料
の種類により一義的に定まる定数) を満足するように後行電極のワイヤ突出長lT
可変制御することによつて溶接ビードを一定の
高さで形成することにより上記問題点を解決し
たものである。
[Means for Solving the Problems] In the multi-electrode single-sided automatic welding method according to the present invention, a backing metal plate is applied to the back side of the material to be welded via an inorganic material, and a groove is formed from the front side of the material to be welded. When performing continuous arc welding while moving the welding electrode along the welding electrode, an electric signal between the base metal and the backing metal plate during welding is detected, and this detection signal matches a preset reference signal. In the multi-electrode single-sided automatic welding method that controls welding parameters including the welding current of the preceding welding electrode, (a) the controlled welding current I L of the preceding electrode is detected, and the change in the detected welding current I L is In contrast, the preceding wire feeding speed V fL is calculated by the following formula: V fL = AI L + Bl L I L 2 (I L is the written value of the preceding welding current, l L is the preceding wire protrusion length (constant), A, B are welding (a constant uniquely determined by the type of welding materials such as wire and shielding gas ) ; The amount of welding by the leading electrode can be controlled by variable control using = v 0 / I L0 (v 0 is the initial value of the welding speed, v 1 is the welding speed to be controlled, and I L0 is the initial value of the welding current). (c) For the trailing wire protrusion length l T , the trailing wire feeding speed V fT is calculated using the following formula, V fT = AI T + Bl T I T 2 (I T is the trailing welding current, However, if I T0 is the initial value of the trailing welding current, then I T = I T0 , A and B are variably controlled by the preceding wire feeding speed V (the same values as constants A and B in the fT formula), (d) Find the change in root gap width △G using the following formula: △G = (I L0 ~ I L )/a (a is a constant uniquely determined by the type of welding materials such as welding wire and shielding gas), (e) Find the change △S in the groove cross-sectional area corresponding to the change △G in the root gap width using the following formula: △S=T・△G (T is the thickness of the base material), (f) The groove For the change in cross-sectional area △S, the following formula, △S=K {[V fL /v 1 )−(V fL0 /v 0 )] + [(V fT
//v 1 )−(V fT0 /v 0 )]} (V fL0 is the initial value of the preceding wire feeding speed V fL ,
(V fT0 is the initial value of the trailing wire feeding speed V fT , K is a constant uniquely determined by the type of welding materials such as welding wire and shielding gas) The wire protrusion length of the trailing electrode l T This problem is solved by forming the weld bead at a constant height by variably controlling the height of the weld bead.

[作用] この発明に従えば、多電極片面自動溶接におい
て均一な幅で裏ビードを形成するには、上記従来
技術の裏ビード制御方法を行う。但し、本発明に
用いる裏ビード制御方法は、制御対象として先行
電極に対する溶接電流を採るものとする。
[Operation] According to the present invention, in order to form a back bead with a uniform width in multi-electrode single-sided automatic welding, the above-mentioned prior art back bead control method is performed. However, in the back bead control method used in the present invention, the welding current for the preceding electrode is taken as the control target.

以下、上記従来技術の裏ビード制御方法を行う
に際して、均一な高さで表ビードを形成する作用
について説明する。尚、以下の説明中の式に於
て、a、A、B、K等の定数は、溶接ワイヤ及び
シールドガス等の溶接使用材料の種類により一義
的に定まる定数である。これらの定数の値は、予
め実験的に求めるか、或は経験により蓄積された
データを使用するものとする。また、以下の説明
は多電極溶接の一例として二電極溶接について説
明する。
Hereinafter, when carrying out the back bead control method of the prior art described above, the effect of forming the front bead at a uniform height will be explained. In the formulas described below, constants such as a, A, B, and K are constants that are uniquely determined by the types of welding materials such as welding wire and shielding gas. The values of these constants may be determined experimentally in advance, or data accumulated through experience may be used. In addition, the following description will describe two-electrode welding as an example of multi-electrode welding.

上記従来技術の被溶接材〜裏当金属板間の検出
信号に基いて溶接電流を制御する裏ビード制御を
行う際、裏ビード制御時の制御された先行溶接電
流ILと溶接速度vとの比IL/vが一定となるよう
に溶接速度vを変化させると、入熱一定になるの
で先行電極による溶着量は一定になる。
When performing the back bead control in which the welding current is controlled based on the detection signal between the workpiece to be welded and the backing metal plate in the prior art described above, the difference between the controlled preceding welding current I L and the welding speed v during the back bead control is When the welding speed v is changed so that the ratio I L /v remains constant, the heat input becomes constant, so the amount of welding by the preceding electrode becomes constant.

従つて、先行溶接電流ILの変化に対して先行電
極による溶接量を一定に保持する溶接速度v1は、
溶接電流の初期値をIL0、溶接速度の設定初期値
をv0とすると、 溶接速度制御式 v1=v0・IL/IL0 ……() として求められる。
Therefore, the welding speed v 1 that keeps the amount of welding by the preceding electrode constant against changes in the preceding welding current I L is:
When the initial value of the welding current is I L0 and the initial value of the welding speed setting is v 0 , the welding speed control formula is obtained as v 1 = v 0 · I L /I L0 ().

本発明に於ては、この()式に従つて溶接速
度を可変制御するが、この場合、前記制御された
溶接電流ILの変化に対応して周知の関係式、 先行ワイヤ送給速度制御式 VfL=AIL+BlLIL 2 ……() に従い、先行電極のワイヤ送給速度VfLが可変制
御され、先行電極のワイヤ突出長lLが予め定めら
れた一定値に保持される。
In the present invention, the welding speed is variably controlled according to this equation (), but in this case, in response to the change in the controlled welding current IL , the well-known relational equation is used to control the advance wire feeding speed. According to the formula V fL = AI L + Bl L I L 2 ... (), the wire feeding speed V fL of the leading electrode is variably controlled, and the wire protrusion length l L of the leading electrode is maintained at a predetermined constant value. .

前述の()式に基いた溶接速度の可変制御
は、()式の如く先行電極のワイヤ突出長lL
一定値に制御されたもとに行われ、先行電極によ
る溶着量が一定に保たれる。
Variable control of the welding speed based on the above formula () is performed while the wire protrusion length l L of the leading electrode is controlled to a constant value, as shown in formula (), and the amount of welding by the leading electrode is kept constant. .

尚、溶着量が一定の場合、溶接ビード高さは開
先ルートギヤツプの変化により過不足が生じる
が、本発明によれば、開先ルートギヤツプの変化
に対しては、後行電極により溶着量の補償制御を
行い、溶接ビード高さを一定に保つ。
Note that when the amount of welding is constant, the weld bead height may be excessive or insufficient due to changes in the groove root gap, but according to the present invention, the trailing electrode compensates for the amount of welding due to changes in the groove root gap. Control is performed to keep the weld bead height constant.

後行電極のワイヤ送給速度VfTは、後述の如く
可変制御される後行電極のワイヤ突出長lTに応じ
て周知の関係式、 後行ワイヤ送給速度制御式 VfT=AIT+BlTIT 2 ……() に従い可変制御される。尚、()式に於て、IT
は後行電極の溶接電流であつて、この溶接電流IT
は、その設定初期値IT0に等しい。
The wire feeding speed V fT of the trailing electrode is calculated according to the wire protrusion length l T of the trailing electrode, which is variably controlled as described below, using the well-known relational expression, trailing wire feeding speed control formula V fT = AI T + Bl Variable control is performed according to T I T 2 ...(). Furthermore, in equation (), I T
is the welding current of the trailing electrode, and this welding current I T
is equal to its initial setting value I T0 .

()式の制御により、後行電極のワイヤ突出
長lTはルートギヤツプ幅が設定幅の時は予め定め
られた値(以下、設定値lT0と称する)に保たれ
るが、この発明に従えば、ルートギヤツプ幅の変
化が検出されると、ワイヤ突出長lTはルートギヤ
ツプ幅の変化に応じて可変の値を採る。即ち、ル
ートギヤツプ幅の変化を検出し、この検出ルート
ギヤツプ幅の変化に対応した開先断面積の変化を
求め、この開先断面積の変化に対して必要な溶着
量を後行電極のワイヤ突出長lTの可変制御により
補償し、先行電極と後行電極とで形成されるビー
ド高さを一定に保つ。
By controlling the equation (), the wire protrusion length l T of the trailing electrode is maintained at a predetermined value (hereinafter referred to as the set value l T0 ) when the root gap width is the set width. For example, when a change in the root gap width is detected, the wire protrusion length l T takes a variable value in accordance with the change in the root gap width. That is, a change in the root gap width is detected, a change in the groove cross-sectional area corresponding to the change in the detected root gap width is determined, and the amount of welding required for this change in the groove cross-section is determined by the wire protrusion length of the trailing electrode. l Compensate by variable control of T to keep the bead height formed by the leading and trailing electrodes constant.

ここで、ルートギヤツプ幅の変化の検出には前
記制御された溶接電流ILを用いる。この制御され
た溶接電流ILは、ルートギヤツプ幅の変化を△G
とすると、 IL=IL0−a△G 即ち、 ルートギヤツプ幅変化算出式 △G=(IL0−IL)/a ……() なる線形な特性を有することが確かめられてい
る。
Here, the controlled welding current I L is used to detect a change in the root gap width. This controlled welding current I L changes the root gap width by △G
It has been confirmed that it has a linear characteristic as follows: I L =I L0 -a△G, that is, the root gap width change calculation formula: △G=(I L0 -I L )/a...().

この()式に従つて、ルートギヤツプ幅の変
化△Gが検出される。
According to this equation (), the change ΔG in the root gap width is detected.

一方、開先ルートギヤツプ幅の変化△Gに対応
する開先断面積の変化△Sは、開先角を無視でき
るものとすると、 開先断面積変化算出式 △S=T・△G ……() として開先ルートギヤツプ幅の変化△Gと板厚T
との積で表わせる。
On the other hand, the change △S in the groove cross-sectional area corresponding to the change △G in the groove root gap width is calculated by the formula △S=T・△G, assuming that the groove angle can be ignored. ) as change in groove root gap width △G and plate thickness T
It can be expressed as the product of

また、前記()〜()式に基いた制御によ
る溶着量の増加分△Mは、前記()、()式に
よる先行電極の溶着量の増加分△MLと、前記
()、()式による後行電極の溶着量の増加分
△MTとの和、 △M=△ML+△MT である。
Further, the increase ΔM in the amount of welding due to the control based on the formulas () to () above is the increase ΔM L in the amount of welding of the preceding electrode according to the formulas () and () above, and the increase ΔM in the amount of welding of the preceding electrode according to the formulas () and () above, and The sum of the increase in the amount of welding of the trailing electrode ΔM T according to the formula, ΔM=ΔM L +ΔM T.

ここで△MLは、VfLの初期設定値をVfL0とする
と、前記()、()式により、 △ML=(VfL/v1)−(VfL0/v0) である。
Here, ΔM L is ΔM L = (V fL /v 1 )−(V fL0 /v 0 ) according to the above equations () and (), assuming that the initial setting value of V fL is V fL0 .

同様に△MTは、VfTの初期設定値をVfT0とする
と、前記()、()式により、 △MT=(VfT/v1)−(VfT0/v0) である。
Similarly, ΔM T is ΔM T =(V fT /v 1 )−(V fT0 /v 0 ) according to the above equations () and (), assuming that the initial setting value of V fT is V fT0 .

従つて、前記()〜()式に基いた制御に
よる溶接量の増加分△Mは、 溶着量算出式 △M=△ML+△MT={(VfL/v1)−(VfL0/v0
}+{(VfT/v1)−(VfT0/v0)}……() である。
Therefore, the increase △M in the welding amount due to the control based on the above formulas () to () is as follows: △M = △M L + △M T = {(V fL /v 1 ) − (V fL0 / v0 )
}+{(V fT /v 1 )−(V fT0 /v 0 )}...().

()〜()式により、開先断面積の変化△
Sと溶着量の増加分Mには、 関係式 △S=T・△G =T・{(IL0−IL)/a} =K・△M =K・{△ML+△MT} =K{[(VfL/v1)−(VfLO/v0)] +[(VfT/v1)−(VfT0/v0)]} ……() の関係を得る。
According to formulas () to (), the change in groove cross-sectional area △
The relational expression △S=T・△G=T・{(I L0 −I L )/a} =K・△M=K・{△M L +△M T }=K{[(V fL /v 1 )−(V fLO /v 0 )] + [(V fT /v 1 )−(V fT0 /v 0 )]} ...() is obtained.

この()式を満足するように後行電極のワイ
ヤ突出長lTを可変制御することにより、ルートギ
ヤツプ幅の変化に応じて溶着量が補償され、先行
電極と後行電極とで形成されるビード高さが一定
に保たれる。
By variably controlling the wire protrusion length l T of the trailing electrode so as to satisfy this equation (), the amount of welding is compensated according to changes in the root gap width, and the bead formed by the leading and trailing electrodes is The height remains constant.

[実施例] 以下、本発明の好ましい実施例について添付図
面を参照して詳細に説明する。尚、裏ビード制御
に付いては上記従来技術と同様であるから、裏ビ
ード制御の説明は省略する。
[Embodiments] Preferred embodiments of the present invention will now be described in detail with reference to the accompanying drawings. Note that the back bead control is the same as the above-mentioned prior art, so a description of the back bead control will be omitted.

第1図はこの発明の一実施例に係る制御ブロツ
ク図であり、この発明を二電極片面自動溶接に適
用した例を示す。
FIG. 1 is a control block diagram according to an embodiment of the present invention, and shows an example in which the present invention is applied to two-electrode, single-sided automatic welding.

図に於て、送り機構19は先行・後行電極(図
示せず)を一体的に移動させるが、その制御は駆
動モータ18を介して溶接速度制御器17によつ
て行なわれる。また、先行(後行)ワイヤ送給モ
ータ21,(23)の制御は先行(後行)モータ
制御器20,(22)によつて行なわれ、更に、
後行ワイヤ送給モータ23は後行ワイヤ突出長制
御器24によつても制御される。
In the figure, a feed mechanism 19 integrally moves leading and trailing electrodes (not shown), which is controlled by a welding speed controller 17 via a drive motor 18. Further, the leading (trailing) wire feeding motors 21, (23) are controlled by the leading (trailing) motor controllers 20, (22), and further,
Trailing wire feed motor 23 is also controlled by trailing wire protrusion length controller 24 .

これらの各制御器17,20,22,24への
制御指令は、例えばマイクロコンピユータ等の演
算制御装置15から与えられ、演算制御装置15
は付属する入力装置16によつて設定入力された
各定数(a、A、B、K等)及び初期設定値
(vo、IL0)と後述の検出信号を前述の()〜
()式に従つて演算処理し、各制御器に制御信
号を与える。
Control commands to each of these controllers 17, 20, 22, 24 are given from an arithmetic and control device 15 such as a microcomputer, for example.
are the constants (a, A, B, K, etc.) and initial setting values (vo, I L0 ) set and inputted by the attached input device 16 and the detection signals described later in the above-mentioned () to
Arithmetic processing is performed according to equation () and a control signal is given to each controller.

上記従来技術の裏ビード幅一定制御によつて先
行溶接電流ILが変動するが、この制御された先行
溶接電流ILは先行電流検出器12により検出さ
れ、変換器13で直流信号に変換される、但し、
この変換器13は溶接電源として直流電源を用い
た場合は不要である。変換器13から出力された
直流信号はフイルター14によりノイズを除去さ
れて演算制御装置15に入力する。演算制御装置
15は、検出先行溶接電流ILと入力装置16に設
定入力された初期速度v0及び初期溶接電流IL0
前述の溶接速度制御式()式に従つて演算し、
先行電極による溶着量を一定に保持する溶接速度
v1を求める。更に、この溶接速度v1に対応する速
度制御信号を溶接速度制御器17に与え、送り機
構駆動モータ18の駆動を制御し、送り機構19
の速度を可変制御する。即ち、溶接速度を可変制
御する。
Although the preceding welding current I L fluctuates due to the back bead width constant control of the above-mentioned conventional technology, this controlled preceding welding current I L is detected by the preceding current detector 12 and converted into a DC signal by the converter 13. However,
This converter 13 is unnecessary when a DC power source is used as the welding power source. The DC signal output from the converter 13 has noise removed by a filter 14 and is input to the arithmetic and control unit 15 . The arithmetic and control device 15 calculates the detected preceding welding current IL , the initial speed v 0 and the initial welding current I L0 set and input to the input device 16 according to the above-mentioned welding speed control formula (),
Welding speed that keeps the amount of welding by the leading electrode constant
Find v 1 . Furthermore, a speed control signal corresponding to this welding speed v 1 is given to the welding speed controller 17 to control the drive of the feed mechanism drive motor 18 and to control the drive of the feed mechanism 19.
variable speed control. That is, the welding speed is variably controlled.

また、検出先行溶接電流ILの変動に対して、先
行ワイヤ突出長lLを一定に保持するのが、前述の
先行ワイヤ送給速度制御式()式である。演算
制御装置15は、定数A、B、設定値lLの入力装
置16による設定入力、及び検出先行溶接電流IL
を()式に従つて演算し、検出先行溶接電流IL
の変動に応じた先行ワイヤ送給速度VfLの制御信
号を先行ワイヤ送給速度制御器20に与える。先
行ワイヤ送給速度制御器20は先行ワイヤ送給モ
ータ21の駆動を制御して先行ワイヤ突出長lL
一定に保持する。
Further, the above-mentioned preceding wire feeding speed control formula (2) maintains the preceding wire protrusion length l L constant against fluctuations in the detected preceding welding current IL. The arithmetic and control device 15 receives setting inputs from the input device 16 for constants A, B, and set values l L and detects the detected preceding welding current I L
is calculated according to formula (), and the detected preceding welding current I L
A control signal for the preceding wire feeding speed VfL in accordance with the fluctuation of is given to the preceding wire feeding speed controller 20. The leading wire feeding speed controller 20 controls the driving of the leading wire feeding motor 21 to maintain the leading wire protrusion length l L constant.

以上の制御を同時に行うことにより、先行ワイ
ヤ突出長lLが一定のもと、先行溶接電流ILの変動
に対して先行電極による溶着量が一定に保たれ
る。
By performing the above control at the same time, the amount of welding by the preceding electrode can be kept constant against fluctuations in the preceding welding current I L while the preceding wire protrusion length l L is constant.

尚、後行電極の後行ワイヤ送給速度VfTは後行
ワイヤ突出長lTの変化に対して可変制御される
が、そのための制御式が前述の後行ワイヤ送給速
度制御式()式である。この()式の演算制
御装置15は、定数A、B、IT、設定値lT0の入力
装置16による設定入力を()式に従つて演算
し、後行ワイヤ送給速度VfTの制御信号を後行ワ
イヤ送給速度制御器22に与え、後行ワイヤ送給
モータ23の駆動を制御して与えられた後行ワイ
ヤ突出長lT0を一定に保持し、ルートギヤツプ幅
の変化が無い限り、この設定値lT0を保持する。
Note that the trailing wire feeding speed V fT of the trailing electrode is variably controlled in response to changes in the trailing wire protrusion length l T , and the control formula for this is the aforementioned trailing wire feeding speed control formula () It is a formula. The arithmetic control device 15 of this equation () calculates the setting inputs from the input device 16 of constants A, B, I T , and set value l T0 according to the equation (), and controls the trailing wire feeding speed V fT. A signal is given to the trailing wire feed speed controller 22 to control the drive of the trailing wire feed motor 23 to keep the given trailing wire protrusion length l T0 constant and as long as there is no change in the root gap width. , this setting value l T0 is held.

上記の()〜()式による制御に際して、
ルートギヤツプ幅の大きさGの変化を、開先断面
積の変化△Sとしてとらえるが前述のルートギヤ
ツプ幅変化算出式()及び開先断面積変化算出
式()式である。演算制御装置15には、これ
ら算出式()、()式も与えられており、初期
値IL0、定数aの入力装置16による設定入力及
びフイルター14からの検出信号ILが()式に
従つて演算され、ルートギヤツプ幅の大きさGが
求められる。この()式の演算結果及び被溶接
材の板厚Tの入力装置16による設定入力が
()式に従つて演算され、開先断面積の変化△
Sが求められる。
When controlling using the above formulas () to (),
A change in the size G of the root gap width is taken as a change ΔS in the groove cross-sectional area using the root gap width change calculation formula ( ) and the groove cross-sectional area change calculation formula ( ) described above. These calculation formulas () and () are also given to the arithmetic and control unit 15, and the initial value I L0 , the setting input by the input device 16 of the constant a, and the detection signal I L from the filter 14 are expressed in the formula (). Therefore, the magnitude G of the root gap width is calculated. The calculation result of this formula () and the setting input by the input device 16 of the plate thickness T of the material to be welded are calculated according to the formula (), and the change in the groove cross-sectional area △
S is required.

一方、上記の制御式()〜()式に基く制
御による初期設定値V0、、VfL0、VfT0〜制御後の
値v1、VfL、vfT間の溶着量の増加分△Mをとらえ
るのが前述の溶着量増加分算出式()式であ
る。演算制御装置15には、このための演算式も
与えられており、初期値v0、、VfL0、VfT0の入力
装置16による設定入力及び()〜()式で
求めた制御後のv1、VfL、VfTを()式に従つて
演算し、溶着量の増加分△Mを求める。
On the other hand, the increase in the amount of welding △M between the initial setting values V 0 , V fL0 , V fT0 and the post-control values v 1 , V fL , v fT due to control based on the above control formulas () to () The above-mentioned formula () for calculating the increase in welding amount captures this. The arithmetic and control unit 15 is also given an arithmetic expression for this purpose, and the initial values v 0 , V fL0 , V fT0 are set by the input device 16 and the controlled v determined by the formulas () to () is 1 , V fL and V fT are calculated according to the formula () to find the increase in the amount of welding ΔM.

これら算出式()〜()式によつて求めら
れた開先断面積の変化△Sと溶着量の増加分△M
との関係を示すのが、前述の関係式()式であ
る。演算制御装置15は()〜()式の演算
結果を関係式()式に代入し、()式を満足
するように後行ワイヤ突出長lTの制御指令を後行
ワイヤ突出長制御器24に与える。後行ワイヤ突
出長制御器24は後行ワイヤ送給モータ23を介
して()式を満足するように後行ワイヤ突出長
lTを可変制御する。演算制御装置15はこの時の
後行ワイヤ突出長lTの値を()式の制御に用い
る初期値として再設定し、以後の制御を続ける。
この後行ワイヤ突出長lTの制御により、ルートギ
ヤツプ幅の変化に対して溶着量が補償され、溶接
全領域線に亘つて表ビードが一定の高さで形成さ
れる。
Change in groove cross-sectional area △S and increase in welding amount △M calculated by these calculation formulas () to ()
The above-mentioned relational expression () shows the relationship between . The arithmetic and control unit 15 substitutes the calculation results of equations () to () into the relational expression (), and issues a control command for the trailing wire protrusion length l T to the trailing wire protrusion length controller so that the equation () is satisfied. Give to 24. The trailing wire protrusion length controller 24 controls the trailing wire protrusion length via the trailing wire feed motor 23 so as to satisfy the equation ().
l Variably control T. The arithmetic and control unit 15 resets the value of the trailing wire protrusion length l T at this time as the initial value used in the control of equation (), and continues the subsequent control.
By controlling the trailing wire protrusion length l T , the amount of welding is compensated for changes in the root gap width, and a surface bead is formed at a constant height over the entire weld area line.

上記のように構成された多電極片面自動溶接法
に於ては、先行溶接電流を制御して一定の幅で裏
ビードを形成するとともに、この制御された先行
溶接電流に基き溶接速度、先行ワイヤ送給速度及
び後行ワイヤ突出長を制御することにより一定の
高さで表ビードを形成できる。
In the multi-electrode single-sided automatic welding method configured as described above, the preceding welding current is controlled to form a back bead with a constant width, and the welding speed and the preceding wire are controlled based on this controlled preceding welding current. By controlling the feeding speed and the protruding length of the trailing wire, a surface bead can be formed at a constant height.

尚、上記実施例に於ては、この発明を二電極片
面自動溶接に適用する場合に付いて説明したが、
三電極以上を用いる片面自動溶接に適用しても良
い。
Incidentally, in the above embodiments, the case where the present invention is applied to two-electrode, single-sided automatic welding was explained.
It may also be applied to single-sided automatic welding using three or more electrodes.

[発明の効果] 以上に述べた如くこの発明によれば、多電極片
面自動溶接に於て、開先ルートギヤツプ幅の変動
に依らず、溶接全領域線に亘つて均一な幅の裏ビ
ードと均一な高さの表ビードを同時に形成し得る
という効果がある。
[Effects of the Invention] As described above, according to the present invention, in multi-electrode single-sided automatic welding, a back bead with a uniform width and a uniform width can be achieved over the entire weld area line, regardless of variations in the groove root gap width. This has the effect that surface beads of a certain height can be formed at the same time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に使用する制御回路のブロツク
図、第2図は従来のビード制御方法を示す部分断
面図付側面図、第3図は検出電圧−裏ビード幅の
特性図、第4図は従来のビード制御方法に使用す
る制御系のブロツク図である。 図中、12は先行電流検出器、13は変換器、
14はフイルタ、15は演算制御装置、16は入
力装置、17は溶接速度制御器、18は送り機構
駆動モータ、19は送り機構、20は先行ワイヤ
送給速度制御器、21は先行ワイヤ送給モータ、
22は後行ワイヤ送給速度制御器、23は後行ワ
イヤ送給モータ、24は後行ワイヤ突出長制御器
を示す。 尚、各図中同一符号は同一または相当部分を示
す。
Fig. 1 is a block diagram of the control circuit used in the present invention, Fig. 2 is a side view with a partial cross section showing a conventional bead control method, Fig. 3 is a characteristic diagram of detection voltage vs. back bead width, and Fig. 4 1 is a block diagram of a control system used in a conventional bead control method. In the figure, 12 is a leading current detector, 13 is a converter,
14 is a filter, 15 is an arithmetic control unit, 16 is an input device, 17 is a welding speed controller, 18 is a feed mechanism drive motor, 19 is a feed mechanism, 20 is a leading wire feeding speed controller, and 21 is a leading wire feeding motor,
22 is a trailing wire feeding speed controller, 23 is a trailing wire feeding motor, and 24 is a trailing wire protrusion length controller. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 被溶接材の裏側に無機材を介して裏当金属板
を当てがい,前記被溶接材の表側より開先に沿っ
て先行及び後行溶接電極を移動させながら連続的
なアーク溶接を施すに際し、溶接中の前記母材と
裏当金属板間の電気信号を検出し、この検出信号
が予め設定された基準信号に一致するように先行
溶接電極の溶接電流を含む溶接パラメータを制御
する多電極片面自動溶接法において、 (イ) 前記制御された先行電極の溶接電流ILを検出
し、この検出溶接電極ILの変化に対して先行ワ
イヤ送給速度VfLを下式 VfL=AIL+BlLIL 2 (ILは先行溶接電流の初期値、lLは先行ワイヤ
突出長(一定)、A、Bは溶接ワイヤ及びシー
ルドガス等の溶接使用材料の種類により一義的
に定まる定数) により可変制御し、 (ロ) 前記制御された先行電極の溶接電流ILの変化
に対して溶接速度を下式、 v1=v0・IL/IL0 (v0は溶接速度の初期値、v1は制御すべき溶接
速度、IL0は溶接電流の初期値) により可変制御することにより、先行電極によ
る溶着量を一定に保つと共に、 (ハ) 後行ワイヤ突出長lTに対して後行ワイヤ送給
速度VfTを下式、 VfT=AIT+BlTIT 2 (ITは後行溶接電流、但しIT0を後行溶接電流の
初期値とするとIT=IT0、A、Bは前述した先行
ワイヤ送給速度VfT式中の定数A、Bと同一の
値) により可変制御し、 (ニ) ルートギップ幅の変化△Gを下式、 △G=(IL0−IL)/a (aは溶接ワイヤ及びシールドガス等の溶接使
用材料の種類により一義的に定まる定数) により求め、 (ホ) 前記ルートギツプ幅の変化△Gに対応する開
先断面積の変化△Sを下式、 △S=T・△G (Tは母材の板厚) により求め、 (ヘ) 前記開先断面積の変化△Sに対して下式、 △S=K{[(VfT/v1)−(VfL0/v0)]+[(V
fT/v1)−(VfT0/v0)]} (VfL0は先行ワイヤ送給速度VfLの初期値、
VfT0は後行ワイヤ送給速度VfTの初期値、Kは
溶接ワイヤ及びシールドガス等の溶接使用材料
の種類により一義的に定まる定数) を満足するように後行電極のワイヤ突出長lT
可変制御することにより、溶接ビードを一定の
高さで形成することを特長とする多電極片面自
動溶接法。
[Scope of Claims] 1. A backing metal plate is applied to the back side of the material to be welded via an inorganic material, and the leading and trailing welding electrodes are continuously moved from the front side of the material to be welded along the groove. When performing arc welding, the electric signal between the base metal and the backing metal plate during welding is detected, and the welding current including the welding current of the preceding welding electrode is adjusted so that this detection signal matches a preset reference signal. In a multi-electrode single-sided automatic welding method that controls parameters, (a) the controlled welding current I L of the preceding electrode is detected, and the preceding wire feeding speed V fL is decreased in response to a change in the detected welding electrode I L ; Formula V fL = AI L + Bl L I L 2 (I L is the initial value of the preceding welding current, l L is the preceding wire protrusion length (constant), A and B are depending on the type of welding materials used such as welding wire and shielding gas. (b) The welding speed is variably controlled by the following formula, v 1 = v 0 · I L / I L0 (v 0 is the initial value of the welding speed, v 1 is the welding speed to be controlled, I L0 is the initial value of the welding current), the amount of welding by the leading electrode is kept constant, and (c) the trailing wire protrusion is The following formula is used to calculate the trailing wire feed speed V fT for the length l T , V fT = AI T + Bl T I T 2 ( IT is the trailing welding current, where I T0 is the initial value of the trailing welding current. I T = I T0 , A and B are the same values as the constants A and B in the above-mentioned preceding wire feeding speed V fT formula). G = (I L0 - I L )/a (a is a constant uniquely determined by the type of welding materials such as welding wire and shielding gas), and (e) the opening corresponding to the change in root gap width △G. The change in the cross-sectional area of the groove △S is determined by the following formula, △S=T・△G (T is the plate thickness of the base material). =K{[(V fT /v 1 )−(V fL0 /v 0 )] + [(V
fT / v 1 ) − (V fT0 / v 0 )]} (V fL0 is the initial value of the preceding wire feeding speed V fL ,
(V fT0 is the initial value of the trailing wire feeding speed V fT , K is a constant uniquely determined by the type of welding materials such as welding wire and shielding gas) The wire protrusion length of the trailing electrode l T A multi-electrode single-sided automatic welding method that forms a weld bead at a constant height by variable control.
JP24986187A 1987-10-05 1987-10-05 Multiple electrode one-side automatic welding method Granted JPH0191968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24986187A JPH0191968A (en) 1987-10-05 1987-10-05 Multiple electrode one-side automatic welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24986187A JPH0191968A (en) 1987-10-05 1987-10-05 Multiple electrode one-side automatic welding method

Publications (2)

Publication Number Publication Date
JPH0191968A JPH0191968A (en) 1989-04-11
JPH0475116B2 true JPH0475116B2 (en) 1992-11-27

Family

ID=17199280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24986187A Granted JPH0191968A (en) 1987-10-05 1987-10-05 Multiple electrode one-side automatic welding method

Country Status (1)

Country Link
JP (1) JPH0191968A (en)

Also Published As

Publication number Publication date
JPH0191968A (en) 1989-04-11

Similar Documents

Publication Publication Date Title
KR100299256B1 (en) Pulse Arc Welding Device
US4441011A (en) Rotary arc-welding method
US4302655A (en) Method and device for adaptive control of the weld parameters in automatic arc welding processes
JPS59205189A (en) Arc length controller of arc furnace
US4816641A (en) Automatic arc-welding method
US4816640A (en) Automatic arc-welding method
WO1993019883A1 (en) Stand-off control apparatus for plasma processing machines
CA1303683C (en) Automatic arc-welding method
US4302656A (en) Controlling the operations of an electric arc welder
JPH0475116B2 (en)
JPH0479750B2 (en)
JPS6224180B2 (en)
JPH064194B2 (en) Welding method by arc welding robot
JP2675624B2 (en) AC TIG welding method and apparatus
JPH0479749B2 (en)
JPH04238680A (en) Butt welding method for strips
JPS6029587B2 (en) Arc welding method
JPS6246273B2 (en)
JPH0459992B2 (en)
JPH0148114B2 (en)
JPS6247108B2 (en)
JP2518733B2 (en) Back bead control method in single-sided welding
JPS60191667A (en) Arc welding robot
JP3328378B2 (en) High frequency heating equipment
JPS6225475B2 (en)