JPH0475080B2 - - Google Patents

Info

Publication number
JPH0475080B2
JPH0475080B2 JP19961983A JP19961983A JPH0475080B2 JP H0475080 B2 JPH0475080 B2 JP H0475080B2 JP 19961983 A JP19961983 A JP 19961983A JP 19961983 A JP19961983 A JP 19961983A JP H0475080 B2 JPH0475080 B2 JP H0475080B2
Authority
JP
Japan
Prior art keywords
water
treated
aeration
nitrite nitrogen
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19961983A
Other languages
Japanese (ja)
Other versions
JPS6097096A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58199619A priority Critical patent/JPS6097096A/en
Publication of JPS6097096A publication Critical patent/JPS6097096A/en
Publication of JPH0475080B2 publication Critical patent/JPH0475080B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水中に含まれるBOD成分やCOD成分
等の有害物質を生物学的に分解除去する水処理方
法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a water treatment method for biologically decomposing and removing harmful substances such as BOD components and COD components contained in water.

〔発明の背景〕[Background of the invention]

この種の水処理方法においては被処理水中に含
まれるBOD成分やCOD成分等の有害物質、なか
んずく蛋白質、アミン類のような含窒素化合物が
好気的条件下における活性汚泥との接触によつて
アンモニア性窒素に分解され、更に亜硝酸性窒素
を経て硝酸性窒素に至る。この際、被処理水中の
亜硝酸性窒素の濃度が一定以上に増大すると活性
汚泥中に含まれる微生物の機能を阻害して被処理
水中の有害物質の生物学的分解に支障をきたす。
しかし一方では該微生物が順調に被処理水中の有
害物質を分解していれば亜硝酸性窒素の生成と亜
硝酸性窒素の酸化のバランスがくずれて亜硝酸性
窒素の濃度が増加する。そこでこの種の水処理方
法においては被処理水中の亜硝酸性窒素の濃度が
微生物の機能を阻害するに至る一歩手前の濃度
(臨界濃度)で操業を行うことが望ましい。そこ
で亜硝酸性窒素が該臨界濃度を越えた場合は曝気
送風量を減少して被処理水中の溶存酸素濃度を減
少せしめたり返送汚泥量を調節して亜硝酸性窒素
の生成を抑制するかまたは、塩素、過酸化水素等
の酸化剤を添加して亜硝酸性窒素の酸化を促進し
たりして亜硝酸性窒素濃度を減少せしめる操業方
法が考えられるが、そのためには亜硝酸性窒素の
臨界濃度を簡単に検知する手段が必要である。
In this type of water treatment method, harmful substances such as BOD and COD components contained in the water to be treated, especially proteins and nitrogen-containing compounds such as amines, are removed by contact with activated sludge under aerobic conditions. It is decomposed into ammonia nitrogen, which then passes through nitrite nitrogen to nitrate nitrogen. At this time, if the concentration of nitrite nitrogen in the water to be treated increases above a certain level, the function of microorganisms contained in the activated sludge will be inhibited and the biological decomposition of harmful substances in the water to be treated will be hindered.
However, on the other hand, if the microorganisms are smoothly decomposing harmful substances in the water to be treated, the balance between the production of nitrite nitrogen and the oxidation of nitrite nitrogen will be disrupted, and the concentration of nitrite nitrogen will increase. Therefore, in this type of water treatment method, it is desirable to operate at a concentration (critical concentration) of nitrite nitrogen in the water to be treated that is just one step away from inhibiting the functions of microorganisms. Therefore, if nitrite nitrogen exceeds the critical concentration, reduce the aeration flow rate to reduce the dissolved oxygen concentration in the water to be treated, or adjust the amount of returned sludge to suppress the production of nitrite nitrogen. One possible method of operation is to reduce the concentration of nitrite nitrogen by adding oxidizing agents such as chlorine, hydrogen peroxide, etc. to promote the oxidation of nitrite nitrogen. A means to easily detect concentration is needed.

〔従来の技術〕[Conventional technology]

そこで従来からPH価を指標として曝気送風量を
調節して上記適正な操業を行うことが提案されて
いる(例えば特開昭56−65682号公報)。
Therefore, it has been proposed to perform the above-mentioned appropriate operation by adjusting the amount of aeration using the PH value as an index (for example, Japanese Patent Laid-Open No. 56-65682).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら上記従来の方法では適正なPH価を
どのようにして求めるかが明確にされておらず、
適正な操業を簡単に行うことが困難であつた。
However, with the above conventional methods, it is not clear how to obtain the appropriate PH value,
It was difficult to easily carry out proper operations.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記従来の課題を解決するための手段
として、被処理水を好気的条件下で活性汚泥と接
触させることによつて被処理水中に含まれる有害
物質を生物学的に分解除去する水処理方法におい
て、該被処理水のPHを経時的に測定して該PHが急
激に低下し始める屈曲点を求め、該被処理水のPH
を該屈曲点近傍になるように曝気量を制御する水
処理方法を提供するものである。
As a means to solve the above conventional problems, the present invention biologically decomposes and removes harmful substances contained in treated water by bringing the treated water into contact with activated sludge under aerobic conditions. In a water treatment method, the PH of the water to be treated is measured over time, the inflection point where the PH begins to drop rapidly is determined, and the PH of the water to be treated is determined.
The present invention provides a water treatment method in which the amount of aeration is controlled so that the amount of aeration is near the bending point.

〔作用〕[Effect]

本発明では被処理水のPHの屈曲点が亜硝酸性窒
素の臨界濃度と対応することが見出された。そこ
で本発明では活性汚泥処理が進むにつれて被処理
水のPHが次第に低下し、屈曲点に達した時点で曝
気量を調節し、以後該被処理水のPHを該屈曲点近
傍に維持すると、該被処理水中の亜硝酸性窒素の
濃度が臨界濃度で操業出来る。
In the present invention, it has been found that the PH inflection point of the water to be treated corresponds to the critical concentration of nitrite nitrogen. Therefore, in the present invention, as the activated sludge treatment progresses, the PH of the water to be treated gradually decreases, and when the inflection point is reached, the aeration amount is adjusted, and thereafter the PH of the water to be treated is maintained near the inflection point. It is possible to operate at a critical concentration of nitrite nitrogen in the water being treated.

〔実施例〕〔Example〕

本発明を以下に詳細に説明する。 The present invention will be explained in detail below.

第1図に示すのは本発明の方法に用いられる装
置の一実施例に関するものであり、図において被
処理水は先づ第1沈澱槽1に導かれ、含有する固
形分のうち粗なるものをここで分離せられ、次い
で曝気槽2に導かれここで活性汚泥を混合せられ
るとともに曝気管6から曝気せられ、かくして被
処理水中のBOD成分、COD成分等の有害物質は
生物学的に分解除去せられる。かくして処理され
た被処理水は第2沈澱槽3に導かれてここで混合
せられている汚泥が分離せられ、該沈降汚泥の一
部は返送汚泥として曝気槽2へ戻され、残余は余
剰汚泥として系外へ取出される。上記汚泥を分離
された被処理水は放流槽9を介して放流される。
上記活性汚泥処理装置において第2沈澱槽3にPH
計7を配し、被処理水のPHを測定し、該測定結果
は風量制御器8に入力される。上記活性汚泥処理
が進むにつれて被処理水のPHは第2図に示すよう
に次第に低下し、やがて処理時間t、p、HPの
点、即ち屈曲点Pから急激に低下する。この点か
ら以下では亜硝酸性窒素の濃度が臨界濃度以上に
なり生物学的処理に支障をきたすようになるから
PHの屈曲点Pに達したら風量制御器8によつて電
磁弁5を制御しブロア4から曝気管6へ送通する
空気量を減少させる。かくして曝気槽2内の被処
理水の溶存酸素量が減少し亜硝酸窒素の生成が抑
制され亜硝酸窒素濃度は低下する。被処理水中の
有害物質の生物学的分解は前記のようにPHの屈曲
点Pの近傍で最も良好に行われるからPHが屈曲点
Pより若干低下した時点で風量制御器8を介して
電磁弁5を制御して曝気管6へ送通する空気量を
調節する。PH屈曲点Pは各処理装置において被処
理水の原PH、BOD負荷、処理量等に影響され、
一律には規定出来ないが大体5.5〜9.0の範囲にあ
る。しかし一応特定の装置で特定の条件で処理を
行つて独自の該屈曲点Pを実験的に求めるには上
記のようにPH−処理時間の関係を求める他に下記
に並記する手段がある。
FIG. 1 shows an embodiment of the apparatus used in the method of the present invention. In the figure, the water to be treated is first led to a first sedimentation tank 1, and the coarse solids contained therein are is separated here, then led to the aeration tank 2, where it is mixed with activated sludge and aerated through the aeration pipe 6. In this way, harmful substances such as BOD components and COD components in the water to be treated are biologically removed. Decomposed and removed. The treated water thus treated is led to the second settling tank 3, where the mixed sludge is separated, a part of the settled sludge is returned to the aeration tank 2 as return sludge, and the remainder is used as surplus. It is taken out of the system as sludge. The treated water from which the sludge has been separated is discharged via the discharge tank 9.
PH in the second settling tank 3 in the above activated sludge treatment equipment
A total of 7 units are arranged to measure the pH of the water to be treated, and the measurement results are input to the air volume controller 8. As the activated sludge treatment progresses, the pH of the water to be treated gradually decreases as shown in FIG. 2, and then rapidly decreases from the point of treatment time t, p, and HP, that is, the bending point P. From this point on, the concentration of nitrite nitrogen will exceed the critical concentration and cause problems in biological treatment.
When the PH reaches the bending point P, the air volume controller 8 controls the solenoid valve 5 to reduce the amount of air sent from the blower 4 to the aeration pipe 6. In this way, the amount of dissolved oxygen in the water to be treated in the aeration tank 2 decreases, the production of nitrite nitrogen is suppressed, and the nitrite nitrogen concentration decreases. As mentioned above, biological decomposition of harmful substances in the water to be treated is best carried out near the PH inflection point P, so when the PH drops slightly below the PH inflection point P, the solenoid valve 5 to adjust the amount of air sent to the aeration pipe 6. The PH inflection point P is influenced by the raw PH of the water to be treated, BOD load, processing amount, etc. in each treatment equipment.
Although it cannot be specified uniformly, it is generally in the range of 5.5 to 9.0. However, in order to experimentally obtain the unique inflection point P by carrying out processing under specific conditions with a specific device, there are methods described below in addition to determining the relationship between PH and processing time as described above.

1 被処理水のBOD,CODが最低値を示す点の
PHを求める。BOD計としてはクーロメトリー
方式、酸素センサー方式等があり、COD計と
しては電位差滴定方式、定電流電量方式等があ
り、DO計としてガルバニ電池方式、ポーラロ
グラフ方式がある。
1 Point at which BOD and COD of treated water show the lowest values
Find PH. BOD meters include coulometry and oxygen sensor methods, COD meters include potentiometric titration and constant current coulometric methods, and DO meters include galvanic cell and polarographic methods.

2 被処理水のSSが最低値を示す点のPHを求め
る。SSは通常濾別法によつて測定されるが透
過光方式、散乱光方式、積分球方式、あるいは
これら方式を組み合わせた方式等の濁度計も用
いられる。
2 Find the PH at the point where the SS of the water to be treated shows the lowest value. SS is usually measured by a filtration method, but turbidity meters using a transmitted light method, a scattered light method, an integrating sphere method, or a combination of these methods are also used.

3 被処理水の有機汚濁度が最低値を示す点のPH
を求める。有機汚濁度は通常紫外・可視吸光度
方式によつて測定される。
3 PH at the point where the degree of organic pollution of the water to be treated shows the lowest value
seek. Organic pollution is usually measured by the ultraviolet/visible absorbance method.

4 被処理水の全有機炭素量が最低値を示す点の
PHを求める。全有機炭素量は被処理水の乾固物
を燃焼させて発生する炭酸ガスの量を、赤外線
分析により求めることによつて測定されるのが
一般的である。
4 The point at which the total organic carbon content of the water to be treated shows the lowest value
Find PH. The amount of total organic carbon is generally measured by infrared analysis of the amount of carbon dioxide gas generated by burning the dry matter of the water to be treated.

かくして屈曲点Pが求められた操業はP+1>
P>P−0.6、望ましくはP+0.8>P>P−0.4、
更に望ましくはP+0.55>P>P−0.25の範囲で
行う。
Thus, the operation in which the inflection point P was determined is P+1>
P>P-0.6, preferably P+0.8>P>P-0.4,
More preferably, the range is P+0.55>P>P-0.25.

上記実施例ではPH計を第2沈澱槽3に配したが
正確には曝気槽2にPH計を配して曝気槽2内の被
処理水のPHを直接測定しなければならない。しか
し曝気槽2内の被処理水は活性汚泥その他の固形
分を分散しており、該固形分がPH計表面に付着し
たり、あるいはPH計表面で微生物が繁殖したり、
更にはPH計表面に曝気の際の気泡が付着したりし
て正確なPH測定が困難である。そこで曝気槽2に
PH計を配する場合には曝気槽2内の被処理水の出
来るだけ深い位置、例えば水深1m内外の位置に
PH計を配するかまたはPH計に付着する固形分、気
泡、微生物等を頻繁に除去するような管理を行う
ことが必要となる。更にこれらの不都合のない第
2沈澱槽3にPH計を配してもよく、曝気槽2と第
2沈澱槽3とでは被処理水のPH値の差は0.1以内
であり問題がないことが判明した。更に第3図に
示すように曝気槽2からポンプ11によつて被処
理水をサンプリングしてサンプリング槽10に導
き、ここでPH計7によつてPHを測定してもよい。
また更に風量は手動で制御してもよい。即ち電磁
弁5にかえて手動の吸入弁、吐出弁、空気逃し弁
等を配し、PHが屈曲点P近傍になるようにこれら
を手動で調節してもよい。
In the above embodiment, the PH meter was placed in the second settling tank 3, but to be more precise, the PH meter must be placed in the aeration tank 2 to directly measure the pH of the water to be treated in the aeration tank 2. However, the water to be treated in the aeration tank 2 has activated sludge and other solids dispersed in it, and the solids may adhere to the surface of the PH meter, or microorganisms may propagate on the surface of the PH meter.
Furthermore, bubbles from aeration may adhere to the surface of the PH meter, making accurate PH measurement difficult. So in aeration tank 2
When installing a PH meter, place it at the deepest possible position of the water to be treated in the aeration tank 2, for example, at a depth of 1 m or less.
It is necessary to install a PH meter or to frequently remove solids, air bubbles, microorganisms, etc. that adhere to the PH meter. Furthermore, a PH meter may be placed in the second settling tank 3 which does not have these disadvantages, and the difference in the PH value of the water to be treated between the aeration tank 2 and the second settling tank 3 is within 0.1, so there is no problem. found. Furthermore, as shown in FIG. 3, the water to be treated may be sampled from the aeration tank 2 by the pump 11 and introduced into the sampling tank 10, where the pH value may be measured by the PH meter 7.
Furthermore, the air volume may be controlled manually. That is, instead of the electromagnetic valve 5, a manual suction valve, a discharge valve, an air release valve, etc. may be provided, and these may be manually adjusted so that the PH is near the bending point P.

更に本発明においては亜硝酸性窒素生成を抑制
する手段、即ち送通する空気量の減少あるいは返
送汚泥量の増加以外に亜硝酸性窒素を分解する手
段、即ち塩素、過酸化水素、過塩素酸塩、過硫酸
塩等の酸化剤を添加してもよい。
Furthermore, in the present invention, in addition to means for suppressing the production of nitrite nitrogen, i.e., reducing the amount of air to be passed through or increasing the amount of returned sludge, the present invention also provides means for decomposing nitrite nitrogen, i.e., chlorine, hydrogen peroxide, perchloric acid. Oxidizing agents such as salts and persulfates may also be added.

〔発明の効果〕 本発明は上記したように簡単かつ正確に測定出
来るPHの屈曲点を指標として亜硝酸性窒素濃度を
臨界濃度近傍に維持するように曝気量を制御する
から、被処理水中のBOD成分、COD成分、固形
分等の有害物質の分解は促進されて処理が完全に
行われ、また微生物のバルキング現象も全く見ら
れない適正操業が極めて簡単かつ容易に維持され
る。
[Effects of the Invention] As described above, the present invention controls the aeration amount to maintain the nitrite nitrogen concentration near the critical concentration using the PH inflection point, which can be easily and accurately measured, as an indicator. The decomposition of harmful substances such as BOD components, COD components, and solid contents is promoted and the treatment is completed, and proper operation without any microbial bulking phenomenon can be maintained very simply and easily.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法に用いられる装置の系統
図、第2図はPHと処理時間の関係を示すグラフ、
第3図は他の実施例の説明図である。 図中、2……曝気槽、3……第2沈澱槽、4…
…ブロア、5……電磁弁、6……曝気管、7……
PH計、8……風量制御器。
Fig. 1 is a system diagram of the apparatus used in the method of the present invention, Fig. 2 is a graph showing the relationship between PH and processing time,
FIG. 3 is an explanatory diagram of another embodiment. In the figure, 2... aeration tank, 3... second settling tank, 4...
...Blower, 5...Solenoid valve, 6...Aeration pipe, 7...
PH meter, 8...Air volume controller.

Claims (1)

【特許請求の範囲】[Claims] 1 被処理水を好気的条件下で活性汚泥と接触さ
せることによつて被処理水中に含まれる有害物質
を生物学的に分解除去する水処理方法において、
該被処理水のPHを経時的に測定して該PHが急激に
低下し始める屈曲点を求め、該被処理水のPHを該
屈曲点近傍になるよう曝気量を制御することを特
徴とする水処理方法。
1. In a water treatment method that biologically decomposes and removes harmful substances contained in treated water by bringing the treated water into contact with activated sludge under aerobic conditions,
The method is characterized in that the PH of the water to be treated is measured over time to determine the inflection point where the PH begins to drop rapidly, and the amount of aeration is controlled so that the PH of the water to be treated is near the inflection point. Water treatment methods.
JP58199619A 1983-10-24 1983-10-24 Water treating method Granted JPS6097096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58199619A JPS6097096A (en) 1983-10-24 1983-10-24 Water treating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58199619A JPS6097096A (en) 1983-10-24 1983-10-24 Water treating method

Publications (2)

Publication Number Publication Date
JPS6097096A JPS6097096A (en) 1985-05-30
JPH0475080B2 true JPH0475080B2 (en) 1992-11-27

Family

ID=16410860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58199619A Granted JPS6097096A (en) 1983-10-24 1983-10-24 Water treating method

Country Status (1)

Country Link
JP (1) JPS6097096A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665682A (en) * 1979-10-31 1981-06-03 Nippon Tv Housoumou Kk Biological treatment apparatus of nitrogen containing organic waste water
JPS58124596A (en) * 1982-01-20 1983-07-25 Meidensha Electric Mfg Co Ltd Apparatus for controlling active sludge process
JPS5858898B2 (en) * 1975-12-29 1983-12-27 セイコ−コウキ カブシキガイシヤ Electronic clock step motor drive device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858898U (en) * 1981-10-14 1983-04-21 株式会社明電舎 PH control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858898B2 (en) * 1975-12-29 1983-12-27 セイコ−コウキ カブシキガイシヤ Electronic clock step motor drive device
JPS5665682A (en) * 1979-10-31 1981-06-03 Nippon Tv Housoumou Kk Biological treatment apparatus of nitrogen containing organic waste water
JPS58124596A (en) * 1982-01-20 1983-07-25 Meidensha Electric Mfg Co Ltd Apparatus for controlling active sludge process

Also Published As

Publication number Publication date
JPS6097096A (en) 1985-05-30

Similar Documents

Publication Publication Date Title
US8916046B2 (en) Method for controlling oxygen supply for treating wastewater, and facility for implementing same
US4898829A (en) Apparatus for the detection of biodegradable and toxic substances in aqueous solutions
KR101233623B1 (en) Process and device for simulating water quality
KR100332165B1 (en) Activated-sludge processing apparatus and method for control of sludge to be returned
JP3058414B1 (en) Water treatment equipment
CN107367476A (en) Assess method and system and its application in water process of the biodegradability of water
JPH0475080B2 (en)
JPS6120357B2 (en)
JP2005274170A (en) Respiration speed measuring method for calculating concentration of organic matter in organic wastewater and respiration speed measuring instrument therefor
JPH0133236B2 (en)
KR101066892B1 (en) System for controlling the dosage of external carbon source using continuous measurement device of nitrogen ion
JP2007090148A (en) Method and apparatus for measuring reaction ratio
JP2006116480A (en) Method and apparatus for treating and measuring waste water
JPS61161195A (en) Water treatment
JPH091172A (en) Biological treatment device
JP7438484B1 (en) How to obtain activated sludge treated water COD
KR102000885B1 (en) Measurement of suspended solids concentration using turbidity sensor and Apparatus for determining the fraction of aerobic granule sludge
JPH09155380A (en) Nitric acid concentration measuring device
Roesler et al. Variables to be measured in wastewater treatment plant monitoring and control
ITMI951686A1 (en) METHOD FOR CHECKING THE CONCENTRATION IN LIQUIDS OF SUBSTANCES WHICH ARE DEGRADED BY ACIDIFYING ORGANISMS OR
JP3731249B2 (en) Biological treatment equipment
JPS5814997A (en) Control method for biological denitrification process
JPH03111759A (en) Method and apparatus for measuring bod
JPH09206791A (en) Instrument for measuring nitrification activity and nitrification method
JP3814936B2 (en) Method for evaluating nitrification inhibition of activated sludge