JPH0474852A - Ferritic stainless steel excellent in thermal fatigue resistance - Google Patents

Ferritic stainless steel excellent in thermal fatigue resistance

Info

Publication number
JPH0474852A
JPH0474852A JP19012390A JP19012390A JPH0474852A JP H0474852 A JPH0474852 A JP H0474852A JP 19012390 A JP19012390 A JP 19012390A JP 19012390 A JP19012390 A JP 19012390A JP H0474852 A JPH0474852 A JP H0474852A
Authority
JP
Japan
Prior art keywords
thermal fatigue
fatigue resistance
stainless steel
ferritic stainless
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19012390A
Other languages
Japanese (ja)
Inventor
Shunichiro Akiyama
秋山 俊一郎
Yasuhiro Kubota
窪田 康浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Stainless Steel Co Ltd
Original Assignee
Nippon Stainless Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Stainless Steel Co Ltd filed Critical Nippon Stainless Steel Co Ltd
Priority to JP19012390A priority Critical patent/JPH0474852A/en
Publication of JPH0474852A publication Critical patent/JPH0474852A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To improve thermal fatigue resistance by incorporating specific amounts of Nb and Ti into a ferritic stainless steel and also reducing the contents of O and S as impurities. CONSTITUTION:Nb and Ti are incorporated by 0.1-0.5% and 0.05-0.3% by weight, respectively, into a ferritic stainless steel having a composition consisting of <0.03% C, <0.5% Si, <0.4% Mn, 13-16% Cr, and the balance Fe so that the ratio between both (Nb%/Ti%) is regulated to 2-6, and also the total content of O and S as impurities is limited to <=50 ppm. Owing to the addition of Nb and Ti, the ferritic stainless steel excellent in thermal fatigue resistance and formability can be obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、例えば自動車用排気マニホールドや家庭用
熱器具等の素材として好適な耐熱疲労性の優れたフェラ
イト系ステンレス鋼に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a ferritic stainless steel with excellent thermal fatigue resistance and suitable as a material for, for example, automobile exhaust manifolds and household heating appliances.

〈従来技術とその課題〉 例えば自動車の排気マニホールドは、エンジンが始動し
ている間中高温の燃焼ガスに曝される部材であるため優
れた耐熱性や高温耐食性が要求されるものの1つである
が、従来から前記排気マニホールドの素材としてはダク
タイル鋳鉄が主流を占めていた。
<Prior art and its challenges> For example, the exhaust manifold of an automobile is a member that is exposed to high-temperature combustion gas while the engine is running, so it is one of the items that requires excellent heat resistance and high-temperature corrosion resistance. However, ductile cast iron has traditionally been the mainstream material for the exhaust manifold.

ところが、近年、自動車車体の軽量化やエンジン性能の
向上要求が厳しくなったこともあってマニホールド用材
も従来の鋳鉄からステンレス鋼を採用する気運が高まり
、一部では実用段階の検討に入るまでになっている。そ
して、この用途に供されるステンレス鋼としてはJIS
に規格されるSUS409Lmが最も有力視されていた
However, in recent years, as demands for reducing the weight of automobile bodies and improving engine performance have become stricter, there has been a growing trend to use stainless steel instead of conventional cast iron for manifold materials, and some have even reached the stage of considering practical applications. It has become. The stainless steel used for this purpose is JIS
SUS409Lm, which is standardized in

しかしながら、上記5US409L鋼は確かに70.0
℃付近までは良好な耐酸化性、耐熱疲労特性を示し、ま
たマニホールド形状への成形性にも優れてはいたが、使
用環境温度が800℃を超えて900℃付近になった場
合には耐酸化性も耐熱疲労特性も劣化することが指摘さ
れていた。そのため、益々高性能化するエンジンに対応
して使用環境温度も著しく上昇しているマニホールドの
状況を考えると、将来的には5US409L鋼では使用
に耐えなくなることが予想された。
However, the above 5US409L steel is certainly 70.0
Although it showed good oxidation resistance and thermal fatigue resistance up to around 30°F, and was also excellent in formability into manifold shapes, acid resistance deteriorated when the operating environment temperature exceeded 800°C and reached around 900°C. It has been pointed out that the thermal fatigue resistance and thermal fatigue properties deteriorate. Therefore, considering the situation in which manifolds are being used in environments where the temperature in which they are used is rising significantly in response to increasingly high-performance engines, it was predicted that 5US409L steel would no longer be able to withstand use in the future.

そこで、既存材料の中から上記5US409L鋼よりも
耐熱性が優れるステンレス鋼を探すと上位鋼種の5US
430LXが見付かるが、これに属する鋼種は耐酸化性
は900℃付近でも良好であるものの、耐熱疲労特性や
成形性が十分でない上に価格も高く、マニホールド用材
として満足できるものではなかった。
Therefore, when searching for stainless steel that has better heat resistance than the above-mentioned 5US409L steel among existing materials, the top steel type 5US
430LX was found, and although steel types belonging to this type have good oxidation resistance even at temperatures around 900°C, they do not have sufficient thermal fatigue resistance or formability, and are expensive, so they are not satisfactory as materials for manifolds.

このようなことから、本発明が目的としたのは、耐酸化
性、耐熱疲労特性並びに成形性の面で既存の5US40
9L鋼を凌駕し、例えば高性能化するエンジンに適用さ
れるマニホールド用材等としても十分に満足できる特性
を備えたステンレス網を提供することであった。
Therefore, the purpose of the present invention is to improve the existing 5US40 in terms of oxidation resistance, thermal fatigue resistance, and formability.
The object of the present invention was to provide a stainless steel mesh that has characteristics that are superior to 9L steel and that can be used as a material for manifolds used in high-performance engines, for example.

く課題を解決するための手段〉 本発明は、上記目的を達成すべく、数多くの実験を繰り
返しながら研究を重ねた本発明者等によって完成された
ものであり、 「ステンレス鋼を、 C: 0.03%以下(以降、成分割合を表わす%は重
量%とする)。
Means for Solving the Problems> The present invention was completed by the inventors of the present invention through repeated research and repeated numerous experiments in order to achieve the above object. .03% or less (hereinafter, percentages representing component proportions are expressed as weight percentages).

Si : 0.5%以下、   Mn : 0.4%以
下。
Si: 0.5% or less, Mn: 0.4% or less.

Cr:13〜16%、     Nb : 0.1〜0
.5%Ti : 0.05〜0.3% を含むと共に、残部がFe及び不純物から成り、かつ a)Nb(χ)/Ti(χ)〜2〜6゜b)不純物中の
0とSの合計量: 5Qppm以下なる条件を満たす構
成とすることによって、優れた耐熱疲労性、耐酸化性、
成形性を兼備せしめた点」 に特徴を有している。
Cr: 13-16%, Nb: 0.1-0
.. 5% Ti: Contains 0.05 to 0.3%, the remainder consists of Fe and impurities, and a) Nb (χ) / Ti (χ) ~ 2 to 6 degrees b) 0 and S in the impurities. Total amount: 5Qppm or less By having a configuration that satisfies the condition, excellent thermal fatigue resistance, oxidation resistance,
It is characterized by having good moldability.

以下、本発明において綱の成分割合を前記の如くに限定
した理由を、その作用と共に詳述する。
Hereinafter, the reason why the component ratio of the steel is limited as described above in the present invention will be explained in detail along with its effect.

く作用〉 Cは、鋼の強度確保に有効な成分ではあるが、0.03
%を超えて含有させるとフェライトの安定性。
Effect> C is an effective component for ensuring the strength of steel, but 0.03
If the content exceeds %, the stability of ferrite will decrease.

耐酸化性、耐熱性、成形性及び溶接性を劣化する傾向を
見せることから、C含有量は上記特性を維持するために
0.03%以下と定めた。
Since C tends to deteriorate oxidation resistance, heat resistance, formability, and weldability, the C content is set at 0.03% or less in order to maintain the above characteristics.

針 Siには鋼の耐酸化性を向上させる作用があるが、0.
5%を超えて含有させると耐熱疲労性及び成形性の劣化
が顕著となることから、Si含有量は(L5%以下と定
めた。
Needle Si has the effect of improving the oxidation resistance of steel, but 0.
If the Si content exceeds 5%, the thermal fatigue resistance and formability will deteriorate significantly, so the Si content was determined to be (L5% or less).

Mn Mnは製鋼時の脱酸成分として必要な元素ではあるが、
その含有量が0.4%を超えると熱疲労特性に悪影響を
及ぼすようになることから、Mn含有量は0.4%以下
と定めた。
Mn Although Mn is a necessary element as a deoxidizing component during steel manufacturing,
If the Mn content exceeds 0.4%, it will have an adverse effect on thermal fatigue properties, so the Mn content is set at 0.4% or less.

Cr Crは耐酸化性、耐熱疲労性を改善する作用を有してい
るが、その含有量が13%未満では前記作用による所望
の効果が得られず、一方、16%を超えて含有させると
耐熱疲労性や成形性の劣化を招く上、コスト的にも不利
となることから、Cr含有量は13〜16%と定めた。
Cr Cr has the effect of improving oxidation resistance and thermal fatigue resistance, but if the content is less than 13%, the desired effect due to the above effect cannot be obtained, while on the other hand, if the content exceeds 16%, The Cr content was determined to be 13 to 16%, since this would lead to deterioration in thermal fatigue resistance and formability, and would also be disadvantageous in terms of cost.

Nb Nbには、後述する所定の割合でTiと複合添加した場
合に鋼の耐熱疲労性と成形性とを著しく改善する作用が
ある。しかし、その含有量が0.1%未満では上記作用
による所望の効果が得られず、−方、0.5%を超えて
含有させると耐熱疲労性や成形性は却って劣化する傾向
見せることから、Nb含有量は0.1〜0.5%と定め
た。
Nb Nb has the effect of significantly improving the thermal fatigue resistance and formability of steel when added in combination with Ti at a predetermined ratio described below. However, if the content is less than 0.1%, the desired effect due to the above action cannot be obtained, and on the other hand, if the content exceeds 0.5%, thermal fatigue resistance and formability tend to deteriorate. , the Nb content was determined to be 0.1 to 0.5%.

Ti TiもNbとの共存で同様の作用を発揮するので、本発
明鋼において欠かせない成分であるが、その含有量がO
,05%未満では十分な効果が得られず、一方、0.3
%を超えて含有させるとやはり耐熱疲労性や成形性が劣
化傾向を見せることから、Ti含有量は0.05〜0.
3%と定めた。
Ti Ti also exhibits a similar effect when coexisting with Nb, so it is an essential component in the steel of the present invention.
, less than 0.05%, sufficient effect cannot be obtained; on the other hand, 0.3%
If the Ti content exceeds 0.05 to 0.0%, thermal fatigue resistance and formability tend to deteriorate.
It was set at 3%.

独■ルσ旦U至ル 本発明鋼においてNb/Tiの比率は極めて重要な要件
であり、Nb/Tiの比率が2未満であっても、逆に6
を超えても耐熱疲労性改善効果を確保することができな
い。従って、Nb/Tiの比率は2〜6と限定した。
In the steel of the present invention, the Nb/Ti ratio is an extremely important requirement, and even if the Nb/Ti ratio is less than 2, on the contrary
Even if it exceeds 100%, the effect of improving thermal fatigue resistance cannot be ensured. Therefore, the Nb/Ti ratio was limited to 2-6.

第1図は、C:0.01%、Si:0.2%、Mn:0
.1%。
Figure 1 shows C: 0.01%, Si: 0.2%, Mn: 0
.. 1%.

Cr : 14.0%、  O: 15ppm、  S
 : 5ppmを含むと共に、更にNb及びTiを種々
の[Nb/Ti比率〕で含有するフェライト系ステンレ
ス網を完全拘束し、この状態で200℃と900℃の間
の加熱冷却を繰り返す熱疲労性試験に供した結果を示し
ている。なお、第1図における“熱疲労寿命”とは割れ
発生までの加熱冷却回数である。この第1図に示される
結果からも、Nb/Tiの比率が2〜6の範囲内にある
場合に初めて、優れた耐熱疲労性改善効果を確保できる
ことが確認できる。
Cr: 14.0%, O: 15ppm, S
: A thermal fatigue test in which a ferritic stainless steel mesh containing 5 ppm and further containing Nb and Ti at various [Nb/Ti ratios] is completely restrained, and heating and cooling are repeated between 200°C and 900°C in this state. The results are shown below. In addition, "thermal fatigue life" in FIG. 1 is the number of times of heating and cooling until cracking occurs. The results shown in FIG. 1 also confirm that an excellent effect of improving thermal fatigue resistance can be ensured only when the Nb/Ti ratio is within the range of 2 to 6.

○、 S O及びSは何れも非金属介在物を形成する不純物元素で
あるが、これらの合計量が50ppmを超えると耐熱疲
労性及び成形性が共に劣化する傾向を見せることから、
0.Sの含有量を合計で50ppm以下と定めた。
○, SO Both O and S are impurity elements that form nonmetallic inclusions, but if their total amount exceeds 50 ppm, both thermal fatigue resistance and formability tend to deteriorate.
0. The total S content was set at 50 ppm or less.

なお、本発明に係るフェライト系ステンレス網において
は、通常のフェライト鋼程度の量であればNiの含有が
許容される。
In addition, in the ferritic stainless steel mesh according to the present invention, Ni can be contained in an amount comparable to that of ordinary ferritic steel.

続いて、本発明の効果を実施例によって更に具体的に説
明する。
Next, the effects of the present invention will be explained in more detail with reference to Examples.

〈実施例〉 まず、第1表に示す各成分組成の鋼を溶製し、熱間圧延
及び冷間圧延を経て板材とした。
<Example> First, steel having each component composition shown in Table 1 was melted, and was made into a plate material through hot rolling and cold rolling.

次に、得られた銅板から試験片を採取し、耐熱疲労性、
耐酸化性、成形性並びに溶接性を調査した。
Next, a test piece was taken from the obtained copper plate, and the thermal fatigue resistance and
Oxidation resistance, formability and weldability were investigated.

なお、耐熱疲労性の評価は、試験片を完全拘束して20
0℃と900℃の間の加熱冷却を繰り返す熱疲労性試験
に供し、その際の割れ発生までの回数(熱疲労寿命)を
測定して実施した。
The thermal fatigue resistance was evaluated by fully restraining the test piece at 20
A thermal fatigue test was conducted by repeatedly heating and cooling between 0° C. and 900° C., and the number of times until cracking occurred (thermal fatigue life) was measured.

耐酸化性の評価は、試験片を大気中で900℃に加熱し
、200時間保持したときの酸化状態を調査して実施し
た。
The oxidation resistance was evaluated by heating the test piece to 900° C. in the atmosphere and examining the oxidation state when the test piece was held for 200 hours.

成形性は、試験片をエリクセン試験に供し、得られたエ
リクセン等を基に評価した。
The moldability was evaluated by subjecting the test piece to an Erichsen test and based on the obtained Erichsen test.

溶接性は、TIG溶接した試験片を曲げ試験に供し、溶
接部の割れ発生の状況を観察して評価した。
Weldability was evaluated by subjecting a TIG welded test piece to a bending test and observing the occurrence of cracks in the welded portion.

これらの結果を第1表に併せて示す。These results are also shown in Table 1.

第1表に示される結果からも明らかなように、本発明鋼
では何れも5US409L相当の優れた成形性、溶接性
を確保した上で、耐熱疲労性、耐酸化性面において5U
S409Lを凌駕した評価が得られており、しかも16
%を超えるCr量の高価な鋼種(SUS430LX等)
では期待できない良好な成形性、溶接性を示し、900
℃程度の高温域でも十分な性能を発揮する構造材となる
ことが分かる。
As is clear from the results shown in Table 1, the steels of the present invention have excellent formability and weldability equivalent to 5US409L, and also have 5U in terms of thermal fatigue resistance and oxidation resistance.
It has been rated better than S409L, and it is 16
Expensive steel types with a Cr content exceeding % (SUS430LX, etc.)
It shows good formability and weldability that cannot be expected with 900
It can be seen that this is a structural material that exhibits sufficient performance even in the high temperature range of around ℃.

これに対して、成分組成条件が本発明で規定する条件か
ら外れた比較材では、耐熱疲労性、耐酸化性、成形性或
いは溶接性面の性能に劣ることが明らかである。
On the other hand, it is clear that comparative materials whose compositional conditions deviate from those defined by the present invention are inferior in terms of thermal fatigue resistance, oxidation resistance, formability, and weldability.

〈効果の総括〉 以上に説明した如く、この発明によれば、従来のダクタ
イル鋳鉄よりも高温での使用が可能な比較的低コストの
自動車排気マニホールド用材料を提供できるほか、例え
ば家庭用熱器具耐熱部材等に本発明鋼を適用してその性
能・使用寿命を大幅に向上することも可能となるなど、
産業上極めて有用な効果がもたらされる。
<Summary of Effects> As explained above, according to the present invention, in addition to providing a relatively low-cost material for automobile exhaust manifolds that can be used at higher temperatures than conventional ductile cast iron, it is also possible to provide a material for automobile exhaust manifolds that can be used at higher temperatures than conventional ductile cast iron. By applying the steel of the present invention to heat-resistant parts, etc., it is possible to significantly improve their performance and service life.
Industrially extremely useful effects are brought about.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、フェライト系ステンレス綱のNb/Ti比と
熱疲労寿命との関係を示したグラフである。 出願人 日本ステンレス株式会社
FIG. 1 is a graph showing the relationship between the Nb/Ti ratio and the thermal fatigue life of ferritic stainless steel. Applicant Nippon Stainless Co., Ltd.

Claims (1)

【特許請求の範囲】 重量割合にて C:0.03%以下、Si:0.5%以下、Mn:0.
4%以下、Cr:13〜16%、Nb:0.1〜0.5
%、Ti:0.05〜0.3%を含むと共に、残部がF
e及び不純物から成り、かつ a)Nb(%)/Ti(%)=2〜6、 b)不純物中のOとSの合計量:50ppm以下なる条
件を満たしていることを特徴とする、耐熱疲労性の優れ
たフェライト系ステンレス鋼。
[Claims] C: 0.03% or less, Si: 0.5% or less, Mn: 0.
4% or less, Cr: 13-16%, Nb: 0.1-0.5
%, Ti: 0.05 to 0.3%, and the remainder is F
A heat-resistant material consisting of e and impurities, and satisfying the following conditions: a) Nb (%) / Ti (%) = 2 to 6, b) total amount of O and S in impurities: 50 ppm or less Ferritic stainless steel with excellent fatigue resistance.
JP19012390A 1990-07-18 1990-07-18 Ferritic stainless steel excellent in thermal fatigue resistance Pending JPH0474852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19012390A JPH0474852A (en) 1990-07-18 1990-07-18 Ferritic stainless steel excellent in thermal fatigue resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19012390A JPH0474852A (en) 1990-07-18 1990-07-18 Ferritic stainless steel excellent in thermal fatigue resistance

Publications (1)

Publication Number Publication Date
JPH0474852A true JPH0474852A (en) 1992-03-10

Family

ID=16252779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19012390A Pending JPH0474852A (en) 1990-07-18 1990-07-18 Ferritic stainless steel excellent in thermal fatigue resistance

Country Status (1)

Country Link
JP (1) JPH0474852A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5427634A (en) * 1992-04-09 1995-06-27 Nippon Steel Corporation Ferrite system stainless steel having excellent nacl-induced hot corrosion resistance and high temperature strength
US9908272B2 (en) 2013-03-12 2018-03-06 Sabic Global Technologies B.V. Thin wall application with injection compression molding and in-mold roller

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5427634A (en) * 1992-04-09 1995-06-27 Nippon Steel Corporation Ferrite system stainless steel having excellent nacl-induced hot corrosion resistance and high temperature strength
US9908272B2 (en) 2013-03-12 2018-03-06 Sabic Global Technologies B.V. Thin wall application with injection compression molding and in-mold roller

Similar Documents

Publication Publication Date Title
EP0016225B1 (en) Use of an austenitic steel in oxidizing conditions at high temperature
KR0180206B1 (en) Heat resistant ferritic stainless steel excellent in low-temperature, weldability &amp; heat resistance
WO2003004714A1 (en) Ferritic stainless steel for member of exhaust gas flow passage
JP5540637B2 (en) Ferritic stainless steel with excellent heat resistance
JPWO2002063056A1 (en) Steel and air preheater with excellent sulfuric acid dew point corrosion resistance
US5792285A (en) Hot-rolled ferritic steel for motor vehicle exhaust members
JPH0474852A (en) Ferritic stainless steel excellent in thermal fatigue resistance
US5350559A (en) Ferrite steel which excels in high-temperature strength and toughness
JPH04147945A (en) High al-containing ferritic stainless steel excellent in high temperature oxidation resistance and toughness
JPH0586463B2 (en)
JPS5935424B2 (en) heat resistant cast steel
KR20020055536A (en) Fe-cr-al alloy for heat resistance wire
US3310396A (en) High-temperature corrosion-resistant austenitic steel
JPH04224657A (en) Ferritic stainless steel excellent in strength at high temperature and toughness in weld heat-affected zone
JPS5864359A (en) Heat resistant cast steel
JPH06136488A (en) Ferritic stainless steel excellent in workability, high temperature salt damage resistance, and high temperature strength
JPH0359967B2 (en)
JPS596908B2 (en) heat resistant cast steel
JPS596910B2 (en) heat resistant cast steel
JPH04280947A (en) Ferritic stainless steel with high thermal fatigue resistance for automobile exhaust manifold
JPS62214149A (en) Heat resistant alloy for exhaust valve
JPH06200354A (en) Heat resistant steel for exhaust valve
JPH0372053A (en) Ferritic stainless steel excellent in thermal fatigue resistance
JPS596907B2 (en) heat resistant cast steel
JPH04147944A (en) High al-containing ferritic stainless steel excellent in high temperature oxidation resistance