JPH0474833A - Nanocomposite shape memory material - Google Patents

Nanocomposite shape memory material

Info

Publication number
JPH0474833A
JPH0474833A JP2189063A JP18906390A JPH0474833A JP H0474833 A JPH0474833 A JP H0474833A JP 2189063 A JP2189063 A JP 2189063A JP 18906390 A JP18906390 A JP 18906390A JP H0474833 A JPH0474833 A JP H0474833A
Authority
JP
Japan
Prior art keywords
substance
shape memory
alloy
nanocomposite
high electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2189063A
Other languages
Japanese (ja)
Other versions
JPH076012B2 (en
Inventor
Yasuhiro Sugaya
康博 菅谷
Osamu Inoue
修 井上
Takeshi Hirota
健 廣田
Koichi Kugimiya
公一 釘宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2189063A priority Critical patent/JPH076012B2/en
Publication of JPH0474833A publication Critical patent/JPH0474833A/en
Publication of JPH076012B2 publication Critical patent/JPH076012B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To obtain a nanocomposite shape memory material capable of the speed-up of working and the precision control of shape recovering stress by coating the surface of alloy mother phase grains with martensitic transformation with plural different high electric-resistance materials and executing sintering. CONSTITUTION:This nanocomposite shape memory material is a one obtd. by coating the surface of alloy mother phase grains (a primary material) with martensitic transformation with a high electric-resistance material (a secondary material) and a high electric-resistance material (a third material) different from the primary material and the secondary material and executing sintering, in which the structure is formed into a one where the alloy grains are indepen dent approximatly with each other (a discontinuous structure), thus, by a high electric-resistance layer formed on the surface of the alloy grains, the high electric resistance of the nanocomposite material is secured. Furthermore, as the primary material, the alloy grains with martensitic transformation constitut ed of Ti-Ni, Fe-Mn-Si, Cu-Al-Ni, Cu-Zn-Al or the like are used, and as the secondary and third materials, Al2O3, AlN, ZrO2, MgO, B2O3, Y2O3, MgO, Bi2O3, PbO, TixOv, Fe2O3 or the like are used.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(よ 制御システムの分野に広く応用できるナノ
コンポジット形状記憶の材料に関する。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to nanocomposite shape memory materials which can be widely applied in the field of control systems.

従来の技術 上記の分野では従来から形状記憶合金力文 形状記憶素
子として用いられてきtも 例えばTi−Ni合金を直接通電させて加熱し 位置動
作速度、形状回復応力をコントロールする方法に使用さ
れている。
Conventional technology In the above-mentioned fields, shape memory alloys have been used as shape memory elements. For example, Ti-Ni alloys have been used in a method to control the positional movement speed and shape recovery stress by heating the Ti-Ni alloy by directly energizing it. There is.

発明が解決しようとする課題 しかしながら−F記従来の形状記憶合金でζ友 電気抵
抗が低い(10−’〜10−’[Ω・cm])た数 加
熱に要する電流を多く必要とし かつ形状回復に時間が
かかるた数 形状記憶素子としての動作速度が遅く形状
回復応力等のコントロールが困難であるという課題があ
った 本発明は上記従来の課題を解決するものであり、高電気
抵抗(10−’〜108[Ω・cm])を有すことによ
り動作速度が早く、形状回復のコントロールがし易い形
状記憶機能を有するナノコンポジット形状記憶材料を提
供することを目的とするものであ課題を解決するための
手段 上記目的を達成するために本発明のナノコンポジット形
状記憶材料は マルテンサイト変態をする合金母相粒子
(第1の物質)が高電気抵抗の物質(第2の物質)と、
第1の物質および第2の物質とは異なる高電気抵抗の物
質(第3の物質)とでその表面が覆われて焼結されてな
るものである。
Problems to be Solved by the Invention However, conventional shape memory alloys have low electrical resistance (10-' to 10-' [Ωcm]), require a large amount of current for heating, and are difficult to recover their shape. The present invention solves the above-mentioned problems of the conventional shape memory element, such as slow operation speed and difficulty in controlling shape recovery stress. The purpose is to provide a nanocomposite shape memory material that has a shape memory function that allows for fast operation speed and easy control of shape recovery by having a resistance value of 108 [Ωcm]), thereby solving the problem. Means for achieving the above object In the nanocomposite shape memory material of the present invention, alloy matrix particles (first substance) that undergo martensitic transformation are formed with a substance (second substance) having high electrical resistance;
The surface is covered and sintered with a high electrical resistance material (third material) different from the first material and the second material.

作用 したがって本発明によれば 高電気抵抗の物質で覆われ
た合金粒子を焼結することによって合金粒子はほぼ相互
に独立した構造(不連続の構造)になも したがって合
金粒子の表面に形成された高電気抵抗層によりナノコン
ポジット材料の高電気抵抗が確保される。
Therefore, according to the present invention, by sintering the alloy particles covered with a substance having high electrical resistance, the alloy particles are formed into an almost mutually independent structure (a discontinuous structure) on the surface of the alloy particles. The high electrical resistance layer ensures high electrical resistance of the nanocomposite material.

その結果 通電による自己加熱の制御が容易になり、動
作速度の高速(L  形状回復応力の精密な制御が可能
となる。
As a result, self-heating due to energization can be easily controlled, allowing for high operating speed (accurate control of L-shape recovery stress).

実施例 以下本発明の一実施例について詳しく説明すも本発明の
ナノコンポジット形状記憶材料は マルテンサイト変態
をする合金母相粒子を第1の物質とし 高電気抵抗の物
質を第2の物質とし 上記第1の物質および第2の物質
いずれとも異なる高電気抵抗の物質を第3の物質とL 
第2および第3の物質で第1の物質をほぼ覆う構成をと
した焼結体である。
EXAMPLE Hereinafter, an example of the present invention will be described in detail.The nanocomposite shape memory material of the present invention uses alloy matrix particles that undergo martensitic transformation as the first substance, and a substance with high electrical resistance as the second substance. A substance with high electrical resistance that is different from both the first substance and the second substance is used as a third substance.
The sintered body has a structure in which the first material is substantially covered with the second and third materials.

第1の物質としては マルテンサイト変態をするTi−
Ni、 Fe−Mn−3i、 Cu−Al−Ni、 C
u−Zn−A1等よりなる合金粒子があげられる。
The first substance is Ti- which undergoes martensitic transformation.
Ni, Fe-Mn-3i, Cu-Al-Ni, C
Examples include alloy particles made of u-Zn-A1 and the like.

第2および第3の物質としてIL  Al2O3、AI
N、 ZrO2、MgO,B2O3、Y2O3、MgO
,Bi2O3,PbO,TixO,、FeaO3等があ
げられる。
IL Al2O3, AI as second and third substances
N, ZrO2, MgO, B2O3, Y2O3, MgO
, Bi2O3, PbO, TixO, and FeaO3.

以下具体的な実施例をあけて説明する。Specific examples will be explained below.

実施例1 組成が重量%(以後wt%と記す)比で82.1wt%
Cu13、9wt%Al−4,0wt%Ni合金の球状
粉末(平均粒径約50μm)をエトキシシランの水溶液
に浸し 撹拌させた 次にこの溶液を吸引ろ過した後、
80℃で乾燥させると、厚さ1100nの5102薄膜
が粉末の表面に形成された この粉体にY2O3を0.
2wt%添加した後、800[kg/ cm2]の圧力
を加え 真空中にて800℃でホットプレスを行1.k
  高密度(相対密度99%)に焼結 焼き入れを行っ
てナノコンポジット形状記憶材料を得旭 このナノコンポジット形状記憶材料の変態温度ζL  
Ms=7t、  Mf=2t、  As=26t、  
Af=45℃であり、電気抵抗率ρは ρ=7x10’
[Ω・cm]であつ九このたム 通電量制御によるマル
テンサイト相から母相への逆変態応力(0〜10[kg
/mm2])の正確なコントロールが容易になつ九 実施例2 大気中で、組成が82.1wt%Cu−13,9wt%
Al−4,0wt%Ni合金の球状粉末(平均粒径約5
0μm)を800℃で10分熱処理することによって厚
さ数nmのAl2O3の絶縁膜を表面に形成した この
粉体にY2O3を0.2wt%添加したa  800[
kg/Cm”]の圧力を加え 真空中にて800℃でホ
ットプレスを行1.X、高密度(相対密度99%)に焼
結 焼き入れを行ってナノコンポジット形状記憶材料を
得た このナノコンポジット形状記憶材料の変態温度(よ M
s=5″′C,、Mf=−2肛 As=20覧 Af=
40℃であり、電気抵抗率ρ(よ ρ=4X102[Ω
・cm]であったこのた取 通電量制御によるマルテン
サイト相から母相への逆変態応力(0〜10[kg/m
m2])の正確なコントロールが容易になっ九 実施例3 粒径が20μmの44.34wt%Ti−55,66w
t%Ni合金の球状粉末と粒径が1100nのZrO2
の球状粉末を混合して、合金粉の表面にZrO2粉を付
着させてコーティングした さらに焼結助剤としてB1
2(hの微粉末(0,1μm以下)を合金粉に対して0
.5wt%添力l 母相粒子表面を固定化した後、それ
らの混合粉末を1000℃1 h r、 真空中にて1
000[kg/Cm2]の圧力を加えてホットプレスを
行し\ 氷水中に投入して焼き入れ さらにその焼結体
を400℃で、lhr時効処理してナノコンポジット形
状記憶材料を作製し九このナノコンポジット形状記憶材
料のマルテンサイト変態温度GL  Ms=10t、 
 Mf=20t、  As=30t。
Example 1 Composition is 82.1 wt% in weight% (hereinafter referred to as wt%) ratio
A spherical powder of Cu13, 9wt% Al-4,0wt%Ni alloy (average particle size of about 50 μm) was immersed in an aqueous solution of ethoxysilane and stirred. Next, this solution was suction-filtered, and then
When dried at 80°C, a 5102 thin film with a thickness of 1100 nm was formed on the surface of the powder.
After adding 2 wt%, a pressure of 800 [kg/cm2] was applied and hot pressing was performed at 800°C in a vacuum.1. k
The nanocomposite shape memory material is obtained by sintering and quenching to a high density (99% relative density).Transformation temperature ζL of the nanocomposite shape memory material
Ms=7t, Mf=2t, As=26t,
Af=45℃, and electrical resistivity ρ is ρ=7x10'
[Ω・cm] Reverse transformation stress from martensite phase to parent phase (0 to 10 [kg
/mm2])) Example 2 In the atmosphere, the composition is 82.1 wt% Cu-13.9 wt%
Spherical powder of Al-4.0wt%Ni alloy (average particle size approximately 5
A 800[
kg/Cm"] and hot-pressed at 800℃ in a vacuum to obtain a nanocomposite shape memory material. Transformation temperature of composite shape memory material (yo M
s=5″′C,, Mf=-2 anus As=20 view Af=
The temperature is 40℃, and the electrical resistivity ρ (ρ=4×102[Ω
The reverse transformation stress from the martensitic phase to the parent phase (0 to 10 [kg/m
Example 3 44.34 wt% Ti-55,66w with particle size of 20 μm
Spherical powder of t%Ni alloy and ZrO2 with particle size of 1100n
spherical powder was mixed and coated with ZrO2 powder attached to the surface of the alloy powder.Additionally, B1 was added as a sintering aid.
2 (h fine powder (0.1 μm or less) to alloy powder
.. 5wt% addition l After fixing the surface of the matrix particles, the mixed powder was heated at 1000°C for 1 hour in a vacuum for 1 hour.
The sintered body was hot pressed under a pressure of 000 [kg/Cm2] and quenched in ice water.The sintered body was then aged at 400°C for 1 hour to produce a nanocomposite shape memory material. Martensitic transformation temperature GL Ms of nanocomposite shape memory material = 10t,
Mf=20t, As=30t.

Af=40℃で、R相変態温度は35℃前後であり、電
気抵抗率ρ(よ ρ=3X 10’[Ω・cm]であっ
九R相変態のみを利用して形状記憶素子として利用する
場合法 5[V]、 1[mAlの通電量で歪の回復(
0,5%)がみられ 繰り返し寿命特性は104回以上
であった一人  マルテンサイト逆変態を利用した場合
は 実施例1および2と同様に通電量で形状回復応力を
20[kg/mm2]までの範囲で正確にコントロール
することが可能であった 比較例 44、34wt%Ti−55,66wt%Ni合金のイ
ンゴットを真空中で1000℃、lhr溶体化処理した
後、氷水中に投入して焼き入れ さらに真空中で400
℃、lhr時効処理を行し\ 形状記憶合金を得九 この形状記憶合金の変態温度?t  Ms=I5菰Mf
12℃、 As=25℃、 Af=37℃であり、電気
抵抗率ρ(戴ρ=l x 10−’[Ω・cm]であっ
旭通電によるマルテンサイト相から母相への逆変態(形
状回復)に(よ 30[Alの電流が必要であったまた
 通電による形状回復応力(0〜30[kg/mm2]
)の正確なコントロールは困難であったまたCu−Al
−Ni合金およびCu−Zn−A1合金においても電気
抵抗率が約2X10−’[Ω・cm]と低いために上記
比較例と同様の問題か生じた このように上記実施例によれは マルテンサイト変態を
する合金粒子の表面を高電気抵抗の物質で被覆して焼結
することにより、高電気抵抗の形状記憶材料が形成され
るため通電による形状回復制御が容易になる。
When Af = 40°C, the R phase transformation temperature is around 35°C, and the electrical resistivity ρ (ρ = 3X 10' [Ω cm]) is used as a shape memory element using only the R phase transformation. Case method Strain recovery with current flow of 5 [V] and 1 [mAl
0.5%) was observed, and the repeated life characteristic was 104 times or more.When martensitic reverse transformation was used, the shape recovery stress could be increased to 20 [kg/mm2] with the same amount of current as in Examples 1 and 2. Comparative Example 44, an ingot of 34 wt% Ti-55, 66 wt% Ni alloy was solution-treated in vacuum at 1000°C for lhr, and then placed in ice water and baked. Insert further 400 min in vacuum
℃, lhr aging treatment to obtain a shape memory alloy.9 What is the transformation temperature of this shape memory alloy? t Ms=I5Mf
12°C, As = 25°C, Af = 37°C, and the electrical resistivity ρ (Dai = l x 10-' [Ω cm]). A current of 30 [aluminum] was required for shape recovery stress (0 to 30 [kg/mm2]
) was difficult to accurately control.
-Ni alloy and Cu-Zn-A1 alloy also have a low electrical resistivity of about 2X10-' [Ωcm], so the same problem as the above comparative example occurred.As shown in the above example, martensite By coating the surface of the alloy particles undergoing transformation with a material having high electrical resistance and sintering the material, a shape memory material having high electrical resistance is formed, which facilitates control of shape recovery by energization.

発明の効果 上記実施例より明らかなように本発明(表 マルテンサ
イト変態をする合金母相粒子(mlの物質)が高電気抵
抗の物質(第2の物質)と、第1の物質および第2の物
質とは異なる高電気抵抗の物質(第3の物質)とで表面
が覆われて焼結されてなることにより、通電による自己
加熱の制御か容易になり、動作速度の高速化および形状
回復の制御を精密に行うことができるなどの効果が得ら
れるものである。
Effects of the Invention As is clear from the above examples, the present invention (Table 1) The alloy matrix particles (ml substance) that undergo martensitic transformation are composed of a high electrical resistance substance (second substance), a first substance and a second substance. By covering the surface with a material (third material) that has high electrical resistance and is sintered, it becomes easier to control self-heating due to energization, increasing operating speed and shape recovery. This provides advantages such as being able to control accurately.

Claims (3)

【特許請求の範囲】[Claims] (1)マルテンサイト変態をする合金母相粒子(第1の
物質)が高電気抵抗の物質(第2の物質)と第1の物質
および第2の物質とは異なる高電気抵抗の物質(第3の
物質)とでその表面が覆われて焼結されてなるナノコン
ポジット形状記憶材料。
(1) The alloy matrix particles (first substance) that undergo martensitic transformation are formed into a high electrical resistance substance (second substance) and a high electrical resistance substance (second substance) different from the first substance and second substance. A nanocomposite shape memory material whose surface is covered with and sintered with (substance 3).
(2)第2の物質および第3の物質が第1の物質を構成
する物質の少なくとも一種以上の酸化物または窒化物を
主成分とする薄層である請求項1記載のナノコンポジッ
ト形状記憶材料。
(2) The nanocomposite shape memory material according to claim 1, wherein the second substance and the third substance are thin layers mainly containing at least one oxide or nitride of the substances constituting the first substance. .
(3)第2の物質および第3の物質が第1の物質を構成
する物質の少なくとも一種以上の酸化物または窒化物を
主成分とする粉末で、第1の物質に付着されてなる請求
項1記載のナノコンポジット形状記憶材料。
(3) A claim in which the second substance and the third substance are powders whose main component is at least one oxide or nitride of the substances constituting the first substance, and are attached to the first substance. 1. Nanocomposite shape memory material according to 1.
JP2189063A 1990-07-16 1990-07-16 Nanocomposite shape memory material Expired - Fee Related JPH076012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2189063A JPH076012B2 (en) 1990-07-16 1990-07-16 Nanocomposite shape memory material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2189063A JPH076012B2 (en) 1990-07-16 1990-07-16 Nanocomposite shape memory material

Publications (2)

Publication Number Publication Date
JPH0474833A true JPH0474833A (en) 1992-03-10
JPH076012B2 JPH076012B2 (en) 1995-01-25

Family

ID=16234677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2189063A Expired - Fee Related JPH076012B2 (en) 1990-07-16 1990-07-16 Nanocomposite shape memory material

Country Status (1)

Country Link
JP (1) JPH076012B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110983152A (en) * 2019-12-27 2020-04-10 燕山大学 Fe-Mn-Si-Cr-Ni based shape memory alloy and preparation method thereof
CN116024449A (en) * 2022-12-14 2023-04-28 中国石油大学(北京) Preparation method of functionally graded shape memory alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110983152A (en) * 2019-12-27 2020-04-10 燕山大学 Fe-Mn-Si-Cr-Ni based shape memory alloy and preparation method thereof
CN110983152B (en) * 2019-12-27 2020-10-30 燕山大学 Fe-Mn-Si-Cr-Ni based shape memory alloy and preparation method thereof
CN116024449A (en) * 2022-12-14 2023-04-28 中国石油大学(北京) Preparation method of functionally graded shape memory alloy

Also Published As

Publication number Publication date
JPH076012B2 (en) 1995-01-25

Similar Documents

Publication Publication Date Title
JPH0474833A (en) Nanocomposite shape memory material
US2703354A (en) Alkaline earth manganate ceramics
JPS5814721B2 (en) Method for manufacturing thick film type positive temperature semiconductor device
JPH02120624A (en) Production of detection element
US4010119A (en) High temperature hot conductors
US4010121A (en) High temperature hot conductors
JP2949500B2 (en) Manufacturing method of superconducting ceramics
Takabayashi et al. Functionally gradient NiTi films fabricated by sputtering
US4010122A (en) High temperature hot conductors
JPS6149833B2 (en)
JP2537606B2 (en) Ceramic Heater
DE1646747A1 (en) Circuit element for microwaves with a ferrite body
JPH04325462A (en) Paste for heating resistor for aln ceramic heater
JPS6147894B2 (en)
JPS59177041A (en) Functional alloy member, body implant comprising same and production of functional alloy
JPS6113975A (en) Production of adhesion instrument contacted with hole of living body
JP7228227B2 (en) Crack repairable composite material and non-heating electrochemical crack repair method using the same
JP2017092163A (en) Thermoelectric conversion element
JP2000307158A (en) Manufacture of thermoelectric material
JPS59169104A (en) Method of producing metal oxide nonlinear resistor
JP3121967B2 (en) Ceramic heating element
JPH04365830A (en) Shape memory alloy element
JPS6149828B2 (en)
JPH04209588A (en) Metallic substrate
JPH06181102A (en) Manufacture of ptc resistor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees