JPH0474770A - High-strength ceramics and production thereof - Google Patents

High-strength ceramics and production thereof

Info

Publication number
JPH0474770A
JPH0474770A JP2180158A JP18015890A JPH0474770A JP H0474770 A JPH0474770 A JP H0474770A JP 2180158 A JP2180158 A JP 2180158A JP 18015890 A JP18015890 A JP 18015890A JP H0474770 A JPH0474770 A JP H0474770A
Authority
JP
Japan
Prior art keywords
phase separation
solid solution
grain
phase
sintered compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2180158A
Other languages
Japanese (ja)
Inventor
Shinichi Hirano
眞一 平野
Hideo Iijima
飯島 英雄
Masatsugu Miura
正嗣 三浦
Shigeru Iida
茂 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inax Corp
Original Assignee
Inax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inax Corp filed Critical Inax Corp
Priority to JP2180158A priority Critical patent/JPH0474770A/en
Publication of JPH0474770A publication Critical patent/JPH0474770A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To easily obtain high-strength, high-toughness polycrystalline ceramics by heat treatment of a ceramic sintered compact, a solid solution comprising plural components to effect phase separation, i.e. precipitation of a phase differing in elastic constant from those of the surroundings inside each grain and grain boundaries making up the sintered compact. CONSTITUTION:Firstly, a mixture of plural kinds of raw material 20 (e.g. silicon carbide, aluminum nitride) is formed and sintered into a ceramic sintered compact or calcined form made up of plural components (at least part of it being a solid solution). Thence, this sintered compact or calcined form is heat-treated to effect phase separation, i.e. precipitation of a phase such as grains 16 or 18 differing in elastic constant from those of the surroundings inside each grain 22 and/or grain boundaries making up the sintered compact, thus obtaining the objective high-strength polycrystalline ceramics.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はセラミックスの製造方法及び高強度セラミッ
クスに関し、詳しくは多結晶質セラミックスの強化機構
に特徴を有するものに関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing ceramics and high-strength ceramics, and more particularly to a method for producing polycrystalline ceramics characterized by a strengthening mechanism.

(従来の技術) 多結晶質セラミックス、特に構造用セラミックスにおい
ては、従来よりこれを種々の方法で強化することが行わ
れている。その代表的なものは、(イ)原料物質の微粒
化或いは高純度化といった出発物質の制御による方法、 ((1)焼結助剤の選択ないし制御による方法、(ハ)
セラミックスのマトリックス中に微粒子を分散させたり
、或いは第5図に示しているようにマトリックス100
中にウィスカー、繊維、金属等補強材102を複合化す
る方法、 等である。
(Prior Art) Polycrystalline ceramics, particularly structural ceramics, have been strengthened by various methods. Typical examples are (a) a method by controlling the starting material such as atomization or high purity of the raw material, (a) a method by selecting or controlling the sintering aid, and (c) a method by controlling the sintering aid.
Fine particles are dispersed in a ceramic matrix, or as shown in FIG.
A method of compositing a reinforcing material 102 such as whiskers, fibers, metal, etc. therein.

(発明が解決しようとする課題) しかしながら上記(イ)の方法の場合、出発原料物質の
純物質特性が限界となり、その純物質のもつ物性以上の
特性向上を図ることは困難である。
(Problems to be Solved by the Invention) However, in the case of the method (a) above, the pure material properties of the starting material are the limit, and it is difficult to improve the properties beyond those of the pure material.

一方(a)の助剤による方法の場合、セラミックスにお
ける破壊が焼結体を構成する粒子の内部破壊に基づくも
のである場合には有効性が低い欠点がある。
On the other hand, in the case of the method (a) using an auxiliary agent, there is a drawback that the effectiveness is low if the fracture in the ceramic is based on internal fracture of particles constituting the sintered body.

更に(ハ)のウィスカー、繊維等補強材の複合化による
方法では、これら補強材とマトリックスとの親和性等の
問題によって、成形が困難であったり、緻密な焼結体が
得られなかったりし、場合により却って強度の低下を来
すといった問題がある。
Furthermore, in the method (c) of compositing reinforcing materials such as whiskers and fibers, it may be difficult to mold or it may not be possible to obtain a dense sintered body due to problems such as the affinity between these reinforcing materials and the matrix. However, there is a problem in that the strength may actually decrease in some cases.

帽lを解決するための手段) 本発明は以上の事情を背景としてなされたものであって
、その目的は、従来とは全く異なった新規な機構によっ
て強化を行うセラミックスの製造方法及びこれによって
強化されたセラミックスを提供することにあり、その要
旨は、少なくとも部分的に固溶させた複数成分から成る
セラミックス焼結体若しくは仮焼体を熱処理して分相せ
しめ、焼結体を構成する各粒内及び/又は粒界に弾性定
数の異なった相を析出せしめることにある。
The present invention has been made against the background of the above-mentioned circumstances, and its purpose is to provide a method for manufacturing ceramics that is reinforced by a novel mechanism that is completely different from conventional ones, and a method for manufacturing ceramics that is strengthened by this method. The purpose is to provide a ceramic sintered body or a calcined body consisting of a plurality of components that are at least partially dissolved in solid solution, and to heat-treat the ceramic sintered body or calcined body to phase separate the particles constituting the sintered body. The purpose is to precipitate phases with different elastic constants within the grains and/or at the grain boundaries.

(作用及び発明の効果) 以上のように本発明は、少なくとも部分的な均一相から
成る固溶体を熱処理によって相分離(分相)せしめ、焼
結体を構成する粒内及び/又は粒界に弾性定数の異なる
相を析出させるものである。
(Operations and Effects of the Invention) As described above, the present invention phase-separates (phase-separates) a solid solution consisting of at least a partially homogeneous phase by heat treatment, and provides elasticity within the grains and/or grain boundaries constituting the sintered body. This method precipitates phases with different constants.

ここで相分離の態様には幾つかの態様があり、これに伴
なって組成も異なったものが得られる。
Here, there are several modes of phase separation, and accordingly, different compositions can be obtained.

この点を第1図の相図に基づいて具体的に説明する。こ
の図において横軸は物質AとBとの成分比率を示してお
り、縦軸は温度を示している0図中実線10はへイノー
ダル線、破線12はスピノール線であり、このパイノー
ダル線10よりも一ヒ側のγ領域においてはA、!=B
とは固溶しており物質的、化学的に均一な相となってい
る。
This point will be specifically explained based on the phase diagram shown in FIG. In this figure, the horizontal axis shows the component ratio of substances A and B, and the vertical axis shows the temperature. In the figure, the solid line 10 is a heinodal line, and the broken line 12 is a spinol line, and from this pinodal line 10. In the γ region on the first side, A,! =B
It is in a solid solution with , forming a physically and chemically homogeneous phase.

一方実線のパイノーダル線10にて囲まれた内側の領域
は、Aを多く含むα相とBを多く含むβ相とに分相した
領域であり、このうち実線の/町イノーダル線lOと破
線のスピノーダル線12とで囲まれた領域は核の発生・
成長による分相域であり、またスピノーダル線12で囲
まれた領域はこのような核の発生・成長によらない拡散
のみによる所謂スピノーダル分解による分相域で、成分
濃度のゆらぎに基づ〈周期的な1度変動パターンで分相
を生じる。
On the other hand, the inner region surrounded by the solid pinodal line 10 is a region separated into an α phase containing a large amount of A and a β phase containing a large amount of B. The area surrounded by the spinodal line 12 is the area where nuclei are generated and
This is a phase separation region due to growth, and the region surrounded by the spinodal line 12 is a phase separation region due to so-called spinodal decomposition due to only diffusion without the generation and growth of nuclei. Phase separation occurs in a typical 1 degree fluctuation pattern.

そこでA成分とB成分との混合体をγ領域まで加熱して
単一相(固溶体)としく図中a1)、この固溶体を温度
Tzに所定時間保持すると(図中a2)、そこでスピノ
ーダル分解による分相が生じ、M42図(A)に示すよ
うに、当初均一であった粒14が、全面に波状(又は格
子状)を成すように分相した粒16となる(粒の大きさ
は一般にluLm以下)(実施例1参照)。
Therefore, a mixture of components A and B is heated to the γ region to form a single phase (solid solution) (a1 in the figure), and when this solid solution is held at temperature Tz for a predetermined time (a2 in the figure), spinodal decomposition occurs. Phase separation occurs, and as shown in Fig. M42 (A), the grains 14, which were initially uniform, become grains 16 whose phase is separated to form a wavy (or lattice) pattern on the entire surface (the grain size is generally luLm or less) (see Example 1).

一方図中b1で示される組成を有するγ相の固溶体を温
度T3に所定時間保持すると、そこでは核発生・成長に
よる分相が生じ、第2図(B)に示しているように当初
均一であったセラミックス粒14内が、核発生・成長に
基づく異相が散点状に分相析出した粒18となる(実施
例2参照)。
On the other hand, when a γ-phase solid solution having the composition indicated by b1 in the figure is kept at temperature T3 for a predetermined period of time, phase separation occurs due to nucleation and growth, and as shown in Figure 2 (B), it is initially uniform. The inside of the ceramic grains 14, which were previously present, become grains 18 in which different phases due to nucleation and growth are separated and precipitated in scattered dots (see Example 2).

この外第3図に示す相関係を有する物質系においても類
似の分相・析出反応が生ずる。即ち同図中COの固溶体
を温度T1で分相析出処理すると、上記第2図(A)に
示す分相が生じ、またCIの固溶体を温度T2で分相析
出処理すると同図(B)に示す分相が発生する(実施例
5参照)。
Similar phase separation/precipitation reactions also occur in material systems having the phase relationship shown in FIG. That is, in the figure, when a solid solution of CO is subjected to phase separation precipitation at temperature T1, the phase separation shown in Fig. 2 (A) occurs, and when a solid solution of CI is subjected to phase separation precipitation at temperature T2, the phase separation shown in the same figure (B) occurs The phase separation shown occurs (see Example 5).

さて本発明に従って第4図に示しているように原料粉体
20を成形して焼結し、その焼結体(又は仮焼体)を分
相析出処理してセラミックス多結晶体を構成している各
粒22内に、粒16(粒16は格子状に分相したものも
含む)又は18で示すような分相を生ぜしめると、セラ
ミックス焼結体の靭性1強度が効果的に向上することが
確認されている。その理由は以下の点によるものと考え
られる。即ち上記処理によって粒内に分相な析出させた
場合、粒内に弾性定数の異なる相が隣接するようにして
発生するため、例えば粒内をクラックが走るようにして
破壊が起こる場合1粒内で発生し進行して来たクラック
が分相の境界域に当たってそこで進行方向を曲げられ、
その際に破壊エネルギーの吸収が起こることによるもの
と考えられる。
Now, according to the present invention, as shown in FIG. 4, the raw material powder 20 is shaped and sintered, and the sintered body (or calcined body) is subjected to phase separation precipitation treatment to form a ceramic polycrystalline body. When a phase separation as shown by grains 16 (grains 16 include those having a lattice-like phase separation) or 18 is produced in each grain 22, the toughness and strength of the ceramic sintered body are effectively improved. This has been confirmed. The reason is considered to be due to the following points. In other words, when separated phases are precipitated within grains by the above treatment, phases with different elastic constants are generated adjacent to each other within the grains. The cracks that occurred and progressed hit the phase separation boundary area and were bent in their direction of propagation.
This is thought to be due to the absorption of fracture energy at that time.

このことは粒界に分相を生ぜしめた場合にも同様に言え
、これによってセラミックスの靭性1強度が向上する。
The same can be said when phase separation is produced at grain boundaries, and this improves the toughness and strength of the ceramic.

尚上記分相の現象は、ある種ガラスや金属の分野(時効
硬化)で利用されているが、本発明はこの分相をこれら
とは全く異なった対象に異なった目的で利用するもので
あって、かかる本発明により高靭性且つ高強度のセラミ
ックスが得られる。
The above phenomenon of phase separation is used in certain fields of glass and metals (age hardening), but the present invention utilizes this phase separation for a completely different object and for a different purpose. Therefore, according to the present invention, a ceramic having high toughness and high strength can be obtained.

本発明の方法は、通常のセラミックスの製造方法と同様
にして焼結体(又は仮焼体)を得、その後に熱処理によ
って強化機構を発現させるものであるため、上記ウィス
カー等補強材自体による強化の場合と異なって、成形性
、焼結体の緻密性の点で特に問題を生ずるといったこと
がなく、所望の密度、形状の焼結体を得ることができる
。但し本発明は、補強材を複合して成るセラミックスに
対しても適用可能なものであり、この場合には補強材に
よる補強効果と、マトリ−、クス粒子自身の強化とによ
る両方の効果が得られる。
In the method of the present invention, a sintered body (or calcined body) is obtained in the same manner as a normal ceramic manufacturing method, and then a strengthening mechanism is developed by heat treatment. Unlike the above case, there are no particular problems in terms of formability and compactness of the sintered body, and it is possible to obtain a sintered body with a desired density and shape. However, the present invention can also be applied to ceramics made of a composite of reinforcing materials, and in this case, both the reinforcing effect of the reinforcing material and the strengthening of the matrix and particle particles themselves can be obtained. It will be done.

(実施例) 次に本発明の特徴を更に明確にすへく、以下にその実施
例を詳述する。
(Example) Next, in order to further clarify the characteristics of the present invention, examples thereof will be described in detail below.

[実施例1] 市販の微粒炭化珪素50部と市販の微粒窒化アルミニウ
ム50部とをインプロパツールを分散媒としてよく混合
した。これより成る混合粉末を内径40X30mmの黒
鉛ダイスを用いて非酸化性雰囲気中、2200℃で12
時間ホットプレスした。その際の圧力は100 kg/
cm2とした。この試料をX線回折(XRD)したとこ
ろ、完全固溶体となっていることが確認された。
[Example 1] 50 parts of commercially available fine grain silicon carbide and 50 parts of commercially available fine grain aluminum nitride were thoroughly mixed using Improper Tool as a dispersion medium. A mixed powder consisting of this was heated at 2200°C for 12 hours in a non-oxidizing atmosphere using a graphite die with an inner diameter of 40 x 30 mm.
Hot pressed for an hour. The pressure at that time is 100 kg/
cm2. When this sample was subjected to X-ray diffraction (XRD), it was confirmed that it was a complete solid solution.

上記試料を非酸化性雰囲気中、1800℃で50時間分
相析出反応処理した。処理終了冷却後に表面を研磨し、
圧子圧入法(IF法)によって破壊靭性値の測定を行っ
た。また試料を4×3×40厘層のサイズに加工し、3
点曲げによる抗折強度試験を行った。この結果、分相析
出処理を行っていない固溶体セラミ−/クスの破壊靭性
値が3.4MN/m3/2 、抗折強度が420 M 
P aであったのに対して、同処理を行うことにより破
壊靭性値が4.5MN/m312.抗折強度が490M
Paに向上していた。
The above sample was subjected to phase separation reaction treatment at 1800° C. for 50 hours in a non-oxidizing atmosphere. After finishing the process and cooling, the surface is polished.
Fracture toughness values were measured by the indentation method (IF method). In addition, the sample was processed into a size of 4 × 3 × 40 layers, and 3
A bending strength test was conducted using point bending. As a result, the fracture toughness value of solid solution ceramic/gloss without phase separation precipitation treatment was 3.4 MN/m3/2, and the bending strength was 420 M.
By performing the same treatment, the fracture toughness value was 4.5 MN/m312. Transverse bending strength is 490M
Pa had improved.

尚、上記分相析出処理した試料のX線回折を行ったとこ
ろ、炭化珪素を多く含有する5iC−AIN固溶体相と
、窒化アルミニウムを多く含有する5iC−^IN固溶
体相への分相が検出された。この分相は、第1図のa1
→a2の分相析出反応によるものである。また同処理体
の吸水率は0.05%以内であり、緻密体であった。
When X-ray diffraction was performed on the sample subjected to the phase separation precipitation treatment, phase separation into a 5iC-AIN solid solution phase containing a large amount of silicon carbide and a 5iC-^IN solid solution phase containing a large amount of aluminum nitride was detected. Ta. This phase separation is a1 in Figure 1.
→This is due to the phase separation precipitation reaction of a2. Further, the water absorption rate of the treated body was within 0.05%, and it was a dense body.

[実施例2] 市販の微粒炭化珪素80部と市販の微粒窒化アルミニウ
ム20部とを、実施例1と同様の方法により混合してホ
ットプレスを行い、固溶体を合成した。この試料は、x
m回折(XRD)にて完全固溶体となっていることが確
認された。
[Example 2] 80 parts of commercially available fine grain silicon carbide and 20 parts of commercially available fine grain aluminum nitride were mixed and hot pressed in the same manner as in Example 1 to synthesize a solid solution. This sample is x
It was confirmed by m-diffraction (XRD) that it was a complete solid solution.

この試料を非酸化性雰囲気中、1800℃で50蒔間分
相析出反応処理を行った。処理終了冷却後に表面を研磨
し、圧子圧入法(IF法)によって破壊靭性値測定を行
った。また試料を4×3X40msのサイズに加工し、
3点曲げによる抗折強度試験を行った。
This sample was subjected to a separation phase precipitation reaction treatment at 1800° C. for 50 minutes in a non-oxidizing atmosphere. After completion of the treatment and cooling, the surface was polished and the fracture toughness value was measured by the indentation method (IF method). In addition, the sample was processed into a size of 4 x 3 x 40 ms,
A bending strength test was conducted using three-point bending.

この結果、同じ組成の分相析出処理を行っていない固溶
体セラミックスの破壊@性値が3.3MN/m3/2 
、抗折強度が430MPaであったのに対して、同処理
を行うことにより破壊靭性値が4.8MN/m”7 、
抗折強度が510MPaに向上していた。
As a result, the fracture strength value of solid solution ceramics with the same composition but not subjected to phase separation precipitation treatment was 3.3 MN/m3/2.
, the bending strength was 430 MPa, but by performing the same treatment, the fracture toughness value was 4.8 MN/m"7,
The bending strength was improved to 510 MPa.

尚この分相析出処理した試料のX線回折を行ったところ
、炭化珪素を多く含有するSiC−AIN固溶体相と、
窒化アルミニウムを多く含有する5iC−AIN固溶体
相への分相が認められた。この分相は、第1図中b1→
b2に示す分相析出反応によるものである。また同処理
体の吸水率は0.05%以内であり緻密体であった。
When X-ray diffraction was performed on the sample subjected to phase separation precipitation treatment, it was found that a SiC-AIN solid solution phase containing a large amount of silicon carbide,
Phase separation into a 5iC-AIN solid solution phase containing a large amount of aluminum nitride was observed. This phase separation is b1→ in Figure 1.
This is due to the phase separation precipitation reaction shown in b2. Moreover, the water absorption rate of the treated body was within 0.05%, and it was a dense body.

[実施例3] 市販の微粒アルミナ55部と市販の微粒クロミア45部
との混合粉末をIt/c層2で一輌成形した後、大気中
1650℃で20時間焼成をした。
[Example 3] A mixed powder of 55 parts of commercially available fine-grain alumina and 45 parts of commercially available fine-grain chromia was molded into It/c layer 2 in one machine, and then fired in the atmosphere at 1650°C for 20 hours.

この試料は、X線回折(XRD)にて完全固溶体となっ
ていることが確認された。
It was confirmed by X-ray diffraction (XRD) that this sample was a complete solid solution.

本試料を大気中800℃で60時間分相析出反応処理を
行った。処理終了冷却後に表面を研磨し、圧子圧入法(
IF法)によって破壊靭性値測定を行った。また試料を
4X3X40■諺のサイズに加工し、3点曲げによる抗
折強度試験を行った。この結果同じ組成の分相析出反応
を行っていない固溶体セラミックスの破壊靭性値が2.
2MN/+n3/2 、抗折強度が220MPaであっ
たのに対して、同処理を行うことにより破壊靭性値が3
.3MN/m3/2 、抗折強度が290MPaに向上
していた。
This sample was subjected to phase separation precipitation reaction treatment at 800° C. for 60 hours in the air. After the process is completed and cooled, the surface is polished and the indentation method (
The fracture toughness value was measured using the IF method. In addition, the sample was processed to a size of 4×3×40 cm, and a bending strength test was conducted by three-point bending. As a result, the fracture toughness value of solid solution ceramics with the same composition but not subjected to phase separation precipitation reaction is 2.
2MN/+n3/2, the bending strength was 220MPa, but by performing the same treatment, the fracture toughness value was 3.
.. 3MN/m3/2, and the bending strength was improved to 290MPa.

[実施例4] 市販の微粒アルミナ70部と市販の微粒クロミア30部
の混合粉末を実施例3と同様の方法により成形、焼成を
行い、固溶体を合成した。この試料は、X線回折(XR
D)にて完全固溶体となっていることが確認された。
[Example 4] A mixed powder of 70 parts of commercially available fine alumina and 30 parts of commercially available fine chromia was molded and fired in the same manner as in Example 3 to synthesize a solid solution. This sample was subjected to X-ray diffraction (XR
It was confirmed that a complete solid solution was formed in D).

この試料を大気中700℃で80時間分相析出反応処理
を行った。処理終了冷却後に表面を研磨し、圧子圧入法
(IF法)によって破壊靭性値測定を行った。また試料
を4X3X40曹諺のサイズに加工し、3点曲げによる
抗折強度試験を行った。この結果、同じ組成の分相析出
処理を行っていない固溶体セラミックスの破壊靭性値が
2.3MN/m3/2.抗折強度が210MPaであっ
たのに対して、同処理を行うことにより破壊靭性値が3
.5MN/m3ハ゛ 、抗折強度が300MPaに向上
していた。
This sample was subjected to phase separation precipitation reaction treatment at 700° C. for 80 hours in the air. After completion of the treatment and cooling, the surface was polished and the fracture toughness value was measured by the indentation method (IF method). In addition, the sample was processed into a size of 4×3×40, and a bending strength test was conducted by three-point bending. As a result, the fracture toughness value of solid solution ceramics with the same composition but not subjected to phase separation precipitation treatment was 2.3 MN/m3/2. While the bending strength was 210 MPa, the fracture toughness value was reduced to 3 by performing the same treatment.
.. At 5 MN/m3, the bending strength was improved to 300 MPa.

[実施例5] 溶液法にて合成した。マグネシア35部とアルミナ65
部と奢含む固溶体の非晶質原料を約1250℃で仮焼し
た。この粉体をIt/c■2で一軸成形した後、大気中
1650℃で2時間焼成をした。この試料は、X線回折
(XRD)にてスピネル単相となっていることが確認さ
れた。
[Example 5] Synthesis was performed using a solution method. 35 parts magnesia and 65 parts alumina
The amorphous raw material in solid solution containing 30% of the total weight was calcined at about 1250°C. This powder was uniaxially molded at It/c 2 and then fired at 1650° C. for 2 hours in the air. This sample was confirmed to have a spinel single phase by X-ray diffraction (XRD).

本試料を大気中1000℃で20時間分相析出反応処理
を行った。処理終了冷却後に表面を研磨し、圧子圧入法
(IF法)によって破壊靭性値測定を行った。また試料
を4X3X4Om口のサイズに加工し、3点曲げによる
抗折強度試験を行った。この結果、同じ組成の分相析出
処理を行つていないスピネルセラミックスの破壊靭性値
が1.1MN/m” 、抗折強度が80MPaであった
のに対して、同処理を行うことにより破壊靭性値が1.
9MN/m312 、抗折強度が100MPaに向上し
ていた。
This sample was subjected to phase separation precipitation reaction treatment at 1000° C. for 20 hours in the air. After completion of the treatment and cooling, the surface was polished and the fracture toughness value was measured by the indentation method (IF method). Further, the sample was processed into a size of 4×3×4 Om, and a bending strength test was conducted by three-point bending. As a result, the fracture toughness value of spinel ceramics with the same composition but not subjected to split phase precipitation treatment was 1.1 MN/m" and the bending strength was 80 MPa, whereas The value is 1.
9MN/m312, and the bending strength was improved to 100MPa.

以上本発明の実施例を詳述したが、これはあくまで−例
であって、本発明はその主旨を逸脱しない範囲において
当業者の知識に基づき様々な変更を加えた態様において
実施可能である。
Although the embodiments of the present invention have been described in detail above, these are merely examples, and the present invention can be implemented with various modifications based on the knowledge of those skilled in the art without departing from the spirit thereof.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における分相の態様を説明するために示
した相図であり、第2図は粒内における分相の状態を示
す説明図、第3図は第1図とは異なった物質系の相図、
第4図は本発明の一実施例に従うセラミックスの製造方
法の説明図、第5図は従来のセラミックスの製造方法の
説明図である。 第1図 組成 14.16..18:粒 第 図
FIG. 1 is a phase diagram shown to explain the aspect of phase separation in the present invention, FIG. phase diagram of material systems,
FIG. 4 is an explanatory diagram of a ceramic manufacturing method according to an embodiment of the present invention, and FIG. 5 is an explanatory diagram of a conventional ceramic manufacturing method. Figure 1 Composition 14.16. .. 18: Grain diagram

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも部分的に固溶させた複数成分から成る
セラミックス焼結体若しくは仮焼体を熱処理して分相せ
しめ、焼結体を構成する各粒内及び/又は粒界に弾性定
数の異なった相を析出せしめることを特徴とする多結晶
質の高強度セラミックスの製造方法。
(1) A ceramic sintered body or calcined body consisting of multiple components that are at least partially dissolved in solid solution is heat-treated to cause phase separation, so that the elastic constants are different within each grain and/or at the grain boundary constituting the sintered body. A method for producing polycrystalline high-strength ceramics characterized by precipitating a phase.
(2)少なくとも部分的に固溶させた複数成分から成る
セラミックス焼結体若しくは仮焼体を熱処理して分相せ
しめ、焼結体を構成する各粒内及び/又は粒界に弾性定
数の異なった相を析出せしめて成る多結晶質の高強度セ
ラミックス。
(2) A ceramic sintered body or calcined body consisting of multiple components that are at least partially dissolved in solid solution is heat-treated to cause phase separation, so that the elastic constants are different within each grain and/or at the grain boundary making up the sintered body. A polycrystalline high-strength ceramic made of precipitated phases.
JP2180158A 1990-07-06 1990-07-06 High-strength ceramics and production thereof Pending JPH0474770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2180158A JPH0474770A (en) 1990-07-06 1990-07-06 High-strength ceramics and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2180158A JPH0474770A (en) 1990-07-06 1990-07-06 High-strength ceramics and production thereof

Publications (1)

Publication Number Publication Date
JPH0474770A true JPH0474770A (en) 1992-03-10

Family

ID=16078414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2180158A Pending JPH0474770A (en) 1990-07-06 1990-07-06 High-strength ceramics and production thereof

Country Status (1)

Country Link
JP (1) JPH0474770A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10101432A (en) * 1996-08-05 1998-04-21 Bridgestone Corp Part for dry etching device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10101432A (en) * 1996-08-05 1998-04-21 Bridgestone Corp Part for dry etching device

Similar Documents

Publication Publication Date Title
US4067745A (en) Ceramic materials
US4659680A (en) Stabilized zirconia bodies of improved toughness
JPH08209263A (en) Compacted article and its production
JP4836263B2 (en) High-strength titanium silicon carbide based composite material and method for producing the same
JPS5964530A (en) Production of ferrite powder
JPS63139062A (en) Ceramic abrasive particle, manufacture and surface abrading method
JPH0474770A (en) High-strength ceramics and production thereof
US5585314A (en) Method of making in-situ grown whisker reinforced ceramics
JPH0578762A (en) Tial-based composite material having excellent strength and its production
JP2002513374A (en) Gas pressure sintered silicon nitride with high strength and stress rupture resistance
US3321322A (en) Refractory composition and body
US2418496A (en) Alumina solid solution
JP3268020B2 (en) Method for producing silicon nitride powder
JPS63239104A (en) Production of fine silicon nitride powder containing beta-phase
JPS58204875A (en) Ceramic material and manufacture
JPH0222169A (en) Ceramic material and production thereof
JPH0987009A (en) Alumina-mullite combined sintered compact and its production
JPH08217530A (en) Aluminous sintered compact and its production
JPS59217608A (en) Method for synthesizing cubic boron nitride
JPH06228603A (en) Raw iron powder for sintered metal and its production
JPH08198664A (en) Alumina-base sintered body and its production
Karaulov et al. Zirconia-base ceramics for drawing tools
JPH02208253A (en) Production of cordierite ceramics composite
JP2510251B2 (en) Method for manufacturing silicon carbide sintered body
CN115595463A (en) High-entropy hard alloy cutter material and preparation method and application thereof