JPH0474454B2 - - Google Patents

Info

Publication number
JPH0474454B2
JPH0474454B2 JP63274318A JP27431888A JPH0474454B2 JP H0474454 B2 JPH0474454 B2 JP H0474454B2 JP 63274318 A JP63274318 A JP 63274318A JP 27431888 A JP27431888 A JP 27431888A JP H0474454 B2 JPH0474454 B2 JP H0474454B2
Authority
JP
Japan
Prior art keywords
far
fine powder
infrared
weight
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63274318A
Other languages
Japanese (ja)
Other versions
JPH02127511A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP27431888A priority Critical patent/JPH02127511A/en
Publication of JPH02127511A publication Critical patent/JPH02127511A/en
Publication of JPH0474454B2 publication Critical patent/JPH0474454B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は優れた遠赤外線放射特性を有するアク
リル系合成繊維及びその製造方法に関するもので
ある。 (従来の技術) 電磁波の一種であり可視光線より長い波長の遠
赤外線は空気による吸収減衰が少なく、蛋白質、
脂肪、炭水化物などと多量の水分から成る人体は
遠赤外線の良い吸収体である。又、遠赤外線は短
波長の近赤外線よりも深達力が大きいとされ、ま
ろやかな温感を与える等の性質を有しており、最
近、健康、医療への応用が活発になつている。 遠赤外線を効果的に放射する粒子としては酸化
物セラミツクスが知られているが、セラミツクス
は優れた耐熱性も兼備しており、今日では遠赤外
線ヒーターや遠赤外線調理器などが商品化されて
いる。遠赤外線の繊維への応用としては保温性を
高めるためセラミツクスを含む樹脂を編織物にコ
ーテイングする事が試みられているが、このよう
な樹脂加工は保温という面では効果的であるが繊
維自体の風合を損うという欠点を有している。又
例えば特開昭63−42970号公報には樹脂加工の改
良として天然または化学繊維による原糸にセラミ
ツクスパウダーを含浸させる方法が提案されてい
る。しかし風合やソフト感など完全には改良され
ておらず、後加工のため耐洗濯性にも問題があつ
た。特開昭63−152413号公報、特開昭63−227828
号公報、特開昭63−203873号公報、特開昭63−
196710号公報、特開昭63−105107号公報等には紡
糸原料にセラミツクス粒子を配合することによ
り、遠赤外線放射性効果を有する合成繊維が提案
されているが、遠赤外線効果及び紡糸操業性が今
一つ充分ではない。 本発明者らは上記欠点を改善すべく鋭意研究の
結果、特公昭61−36866号公報に開示されたアル
ミナ−シリカ系樹脂配合剤が優れた遠赤外線放射
効果を有することを見出し、本発明を完成したの
である。 (発明が解決しようとする問題点) 本発明の目的は耐洗濯性を有しかつ繊維加工条
件の範囲が広い優れた遠赤外線放射特性を有する
アクリル系合成繊維を提供するものである。 更に他の目的は斯かる遠赤外線放射アクリル系
合成繊維を工業的容易に且つ安価に製造する方法
を提供するにある。 (問題点を解決するための手段) 本発明の遠赤外線放射アクリル系繊維は、アク
リル系合成繊維において優れた遠赤外線放射特性
を有するアルミナ−シリカ系立方体一次粒子から
成るX−線回析学的に実質上非晶質で且つアルカ
リ金属の含有量が結晶性ゼオライトに比して50%
以下である微粉末、又はそれをムライト系金属酸
化物で表面コーテイングした微粉末を3〜15重量
%含有している事を特徴とする。また本発明の製
造方法は、アクリル系合成繊維を湿式紡糸して製
造するに際し、優れた遠赤外線放射特性を有する
アルミナ−シリカ系立方体一次粒子から成るX−
線回析学的に実質上非晶質で且つアルカリ金属の
含有量が結晶性ゼオライトのそれよりも著しく少
ない微粉末、又はそれをムライト系金属酸化物で
表面コーテイングした微粉末3〜15重量%を有機
溶剤に均一分散させ次いでアクリロニトリルを含
む共重合体の有機溶剤溶液に添加し、これを紡糸
する事を特徴とする。 本発明に使用するアクリロニトリル共重合体成
分は少なくとも40重量%のアクリロニトリルを含
有するもので繊維形成能を有するものが好まし
い。すなわちアクリロニトリルを40重量%以上と
他のビニル系モノマー、例えばアクリル酸、メタ
クリル酸、或いはこれらのアルキルエステル類、
酢酸ビニル、塩化ビニル、塩化ビニリデン、アリ
ルスルホン酸ソーダ、メタリルスルホン酸ソー
ダ、ビニルスルホン酸ソーダ、スチレンスルホン
酸ソーダ、2−アクリルアミド−2−メチルプロ
パンスルホン酸ソーダなどを適宜組合せたものを
60重量%以下の割合で共重合せしめたものが挙げ
られる。特に、アクリロニトリル80重量%以上と
20重量%以下のビニル系モノマー及びスルホン酸
基含有モノマーの共重合体、又はアクリロニトリ
ルを40重量%以上と塩化ビニリデン及びスルホン
酸基含有モノマーを20〜60重量%含有する共重合
体が好ましい。 本発明で用いる優れた遠赤外線放射特性を有す
る微粉末とは特開昭58−213031号公報のアルミナ
−シリカ系樹脂配合剤Silton AMT〔水沢化学(株)
製〕又はSilton AMTをムライト系金属酸化物で
表面コーテイングしたSilton FI〔水沢化学(株)製〕
である。Silton AMTは、Al2O3:SiO2のモル比
が1:1.8乃至1:5の範囲にある組成を有する
辺の長さが5ミクロン以下の立方体一次粒子から
成り、該粒子はX−線回析学的に実質上非晶質で
且つ100m2/g以下のBET比表面積を有し、
Al2O3:SiO2のモル比が同じ範囲にある結晶性ゼ
オライトに比して、50%以下、特に30%以下のア
ルカリ金属分を含有するものであり、Silton FI
はSilton AMTをムライト系金属酸化物で表面コ
ーテイングしたものである。第1図から第3図は
遠赤外線放射率特性図であり、第1図はゼオライ
ト、第2図はSilton AMT、第3図はSilton FI
を放射体としたものである。 本発明で用いる微粉末の平均粒径は粒皮分布に
もよるが0.3〜2.0μm、好ましくは0.4〜1.0μm、
より好ましくは0.4〜0.7である。微粉末の平均粒
径が0.3μm未満では凝集が起りやすく分散装置を
用いても均一微分散が困難となり、また20μmを
超えると均一分散状態が得られても本発明の用途
としては繊維性能を考慮すると好ましくない。更
に10μm以上の凝集粒子が存在すると、紡糸濾過
圧が短時間で上昇したり糸切れが多発するため操
業上好ましくない。添加量は微粉末の種類にもよ
るが前記アクリル系共重合体に対して3〜15重量
%含有せしめる。微粉末の含有量が3重量%未満
では繊維に充分な遠赤外線放射効果を付与出来
ず、また15重量%を超えると繊維性能が低下する
と共に紡糸における可紡性及び紡績性が低下す
る。 本発明の方法は優れた遠赤外線放射特性を有す
る微粉末を分散装置を用いて有機溶剤に均一微分
散させ、次いでアクリロニトリル系共重合体の有
機溶剤溶液に添加し紡糸することによつて繊維中
に微粉末を均一に含有せしめるのである。本発明
の方法において使用する溶剤はジメチルホルムア
ミド、ジメチルアセトアミド、ジメチルスルホキ
シド、アセトン等の有機溶剤が挙げられる。分散
装置としては公知の湿式粉砕機ならば何でも良い
が、分散液を連続的に紡糸原液に添加せしめるた
めにはサンドグラインダー、パールミル、グレン
ミル、ダイノミルなどの流通管型粉砕機が好適で
ある。本発明において優れた遠赤外線特性を有す
る微粉末の有機溶剤溶液の分散濃度は5〜40重量
%、好ましくは15〜30重量%である。この濃度が
5重量%未満では、微粉末の添加量にもよるが紡
糸原液の濃度が下がり可紡性が低下するとともに
繊維物性が低下する。また40重量%を越えると、
良好な均一微分散状態が得られず工業的容易に製
造する事が困難となる。 紡糸は通常のアクリル系合成繊維と同様な条件
で行えば良く数段の浴槽を通し、順次延伸、水
洗、乾燥、後処理を行なう。 (発明の効果) 本発明の遠赤外線放射アクリル系合成繊維は優
れた遠赤外線放射効果を有し、かつ通常のアクリ
ル系合成繊維の繊維性能をそのまま有すると共に
耐洗濯性、耐ドライクリーニング性による放射効
果の低下もほとんど無いのである。また本発明の
アルカリ系合成繊維の製造方法は斯かる繊維を通
常のアクリル系合成繊維の製造条件及び装置で工
業的容易にかつ安価に製造出来るものである。 本発明によつて得られた繊維は、通常のアクリ
ル系合成繊維、ポリエステル、ナイロン、木綿、
レーヨン、羊毛等他の繊維と混合して使用する事
も可能で、遠赤外線放射性能を有する健康衣料、
毛布、カーペツト、マツト、靴下、シーツ、ふと
ん綿等幅広い用途に使用する事が出来るため、産
業上極めて有意義なものである。 (実施例) 以下、実施例によつて本発明を具体的に説明す
る。実施例中(%)とあるのは「重量%」を意味
する。 実施例1〜4、比較例1〜8 アクリロニトリル(AN)/メチルアクリレー
ト(MA)/メタクリルスルホン酸ソーダ
(SMAS)=91.2/8.0/0.8からなるアクリル系重
合体のジメチルホルムアミド(DMF)を溶液を
準備した。そしてアクリル系共重合体に対して優
れた遠赤外線放射特性を有する微粉末をホモミキ
サーでDMFに分散した後、第1表記載の量で上
記アクリル系共重合体溶液に添加したホモミキサ
ーで充分攪拌し紡糸原液とした。 上記原液を20℃、60%DMF水溶液中に紡出し、
脱溶媒をさせながら延伸水洗後油剤を付与して乾
燥緻密化を行つた。この繊維にクリンプを付与
後、湿熱120℃にて湿熱処理を行つた。得られた
繊維をカツトし紡績した後丸編みを作製した。こ
の編物で遠赤外線放射密度を測定し評価した。 尚比較例は、サンドグラインダーを使用しなか
つたもの(比較例1)と前記記載の添加量と異な
るものをアクリロニトリル系共重合体に添加した
もの(比較例2、3、4)及び従来のセラミツク
ス粒子をアクリロニトリル系共重合体に添加した
もの(比較例5、6、7、8)である。 〔遠赤外線放射密度の測定条件〕 丸編物を底辺10cm×5cm高さ30cmの直方体状の
スチーム式加熱器にかぶせ編物表面を100℃に温
調し、1m離れた位置でパワーメーター(オプテ
ツクス製)で7〜20μmの遠赤外線放射密度
(W/m2)を測定した。 また、紡糸操業性の判定は実施例記載の条件で
製造した際の濾過圧、単糸切れ、ローラー捲き付
きなどを総合して「◎」、「〇」、「△」、「×」の4
段階で行つた。 実施例 5 AN/塩化ビニリデン(VCl2)/アリルスルホ
ン酸ソーダ(SAS)=57/40/3からなるアクリル
系共重合体のDMF溶液を準備した。そのアクリ
ル系共重合体に対してSiltonFI−80、10.0%をサ
ンドグラインダーで処理して均一分散後、アクリ
ル系共重合体溶液に添加し充分攪拌紡糸原液とし
た。 上記紡糸原液を25℃、55%DMF水溶液中に紡
出し、脱溶媒をさせながら延伸水洗後油剤を付与
して乾燥緻密化を行つた。この繊維にクリンプを
付与後湿熱115℃にて温熱処理を行つた。 得られた繊維を丸編にして、家庭洗濯0、5、
10、20回後の遠赤外線放射密度を測定した。第2
表に示すごとく20回の洗濯後でも良好な放射密度
を示した。 〔洗濯条件〕 市販小型電機洗濯機使用 中性洗剤 1g/ 浴 化 1:100 温度×時間 40℃×5分間 水 洗 10分間 乾 燥 80℃×1時間 【表】
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an acrylic synthetic fiber having excellent far-infrared radiation properties and a method for producing the same. (Prior technology) Far infrared rays, which are a type of electromagnetic waves and have a longer wavelength than visible light, are absorbed by air and are not attenuated by much.
The human body, which consists of fats, carbohydrates, and a large amount of water, is a good absorber of far-infrared rays. Further, far-infrared rays are said to have a deeper penetration power than near-infrared rays with short wavelengths, and have properties such as giving a mellow sense of warmth, and have recently been increasingly applied to health and medical care. Oxide ceramics are known as particles that effectively emit far-infrared rays, but ceramics also have excellent heat resistance, and products such as far-infrared heaters and far-infrared cookers have been commercialized today. . As for the application of far-infrared rays to textiles, attempts have been made to coat knitted fabrics with resins containing ceramics to increase heat retention, but although such resin treatments are effective in terms of heat retention, they also damage the fibers themselves. It has the disadvantage of impairing the texture. For example, Japanese Patent Application Laid-Open No. 63-42970 proposes a method of impregnating ceramic powder into yarn made of natural or chemical fibers as an improvement in resin processing. However, the texture and softness were not completely improved, and there were also problems with washing resistance due to post-processing. JP-A-63-152413, JP-A-63-227828
No. 63-203873, JP-A-63-203873
No. 196710, Japanese Patent Application Laid-open No. 105107/1983, etc., have proposed synthetic fibers that have a far-infrared emitting effect by blending ceramic particles into spinning raw materials, but the far-infrared effect and spinning operability are not good enough. Not enough. As a result of intensive research to improve the above-mentioned drawbacks, the present inventors discovered that the alumina-silica resin compound disclosed in Japanese Patent Publication No. 61-36866 has an excellent far-infrared radiation effect, and developed the present invention. It was completed. (Problems to be Solved by the Invention) An object of the present invention is to provide an acrylic synthetic fiber that is wash resistant and has excellent far-infrared radiation properties that can be applied over a wide range of fiber processing conditions. Still another object is to provide a method for manufacturing such far-infrared emitting acrylic synthetic fibers industrially easily and at low cost. (Means for Solving the Problems) The far-infrared emitting acrylic fiber of the present invention is an acrylic synthetic fiber composed of alumina-silica cubic primary particles having excellent far-infrared radiation characteristics. It is substantially amorphous and has an alkali metal content of 50% compared to crystalline zeolite.
It is characterized by containing 3 to 15% by weight of the following fine powder, or a fine powder whose surface is coated with a mullite metal oxide. In addition, the production method of the present invention provides an X-
A fine powder that is substantially amorphous in line diffraction and has an alkali metal content significantly lower than that of crystalline zeolite, or a fine powder whose surface is coated with a mullite metal oxide, 3 to 15% by weight. It is characterized in that it is uniformly dispersed in an organic solvent, then added to an organic solvent solution of a copolymer containing acrylonitrile, and this is spun. The acrylonitrile copolymer component used in the present invention preferably contains at least 40% by weight of acrylonitrile and has fiber-forming ability. That is, 40% by weight or more of acrylonitrile and other vinyl monomers, such as acrylic acid, methacrylic acid, or alkyl esters thereof,
An appropriate combination of vinyl acetate, vinyl chloride, vinylidene chloride, sodium allylsulfonate, sodium methallylsulfonate, sodium vinylsulfonate, sodium styrenesulfonate, sodium 2-acrylamido-2-methylpropanesulfonate, etc.
Examples include those copolymerized at a ratio of 60% by weight or less. In particular, 80% by weight or more of acrylonitrile
A copolymer containing 20% by weight or less of a vinyl monomer and a monomer containing a sulfonic acid group, or a copolymer containing 40% by weight or more of acrylonitrile and 20 to 60% by weight of vinylidene chloride and a monomer containing a sulfonic acid group is preferred. The fine powder having excellent far-infrared radiation properties used in the present invention is Silton AMT, an alumina-silica resin compound disclosed in JP-A No. 58-213031 [Mizusawa Chemical Co., Ltd.]
[manufactured by Mizusawa Chemical Co., Ltd.] or Silton FI [manufactured by Mizusawa Chemical Co., Ltd.], which is a surface coating of Silton AMT with mullite metal oxide.
It is. Silton AMT consists of cubic primary particles with a side length of 5 microns or less, having a composition with a molar ratio of Al 2 O 3 :SiO 2 in the range of 1:1.8 to 1:5, and the particles are is diffractically substantially amorphous and has a BET specific surface area of 100 m 2 /g or less,
Compared to crystalline zeolite with a molar ratio of Al 2 O 3 :SiO 2 in the same range, it contains an alkali metal content of 50% or less, especially 30% or less, and Silton FI
is a Silton AMT whose surface is coated with mullite metal oxide. Figures 1 to 3 are far-infrared emissivity characteristic diagrams; Figure 1 is for zeolite, Figure 2 is for Silton AMT, and Figure 3 is for Silton FI.
is used as a radiator. The average particle size of the fine powder used in the present invention is 0.3 to 2.0 μm, preferably 0.4 to 1.0 μm, although it depends on the grain distribution.
More preferably it is 0.4 to 0.7. If the average particle size of the fine powder is less than 0.3 μm, agglomeration tends to occur, making it difficult to achieve uniform fine dispersion even when using a dispersion device, and if it exceeds 20 μm, even if a uniform dispersion state is obtained, the fiber performance is insufficient for the purpose of the present invention. Considering this, it is not desirable. Furthermore, the presence of aggregated particles of 10 μm or more is unfavorable for operation because the spinning filtration pressure increases in a short period of time and yarn breakage occurs frequently. The amount added depends on the type of fine powder, but the content is 3 to 15% by weight based on the acrylic copolymer. If the content of the fine powder is less than 3% by weight, a sufficient far-infrared radiation effect cannot be imparted to the fiber, and if it exceeds 15% by weight, the fiber performance deteriorates and the spinnability and spinnability in spinning decrease. The method of the present invention involves uniformly and finely dispersing a fine powder with excellent far-infrared radiation properties in an organic solvent using a dispersion device, and then adding it to an organic solvent solution of an acrylonitrile copolymer and spinning it into a fiber. The fine powder is uniformly contained in the powder. Examples of the solvent used in the method of the present invention include organic solvents such as dimethylformamide, dimethylacetamide, dimethylsulfoxide, and acetone. Any known wet grinder may be used as the dispersion device, but a flow tube type grinder such as a sand grinder, pearl mill, grain mill, or dyno mill is suitable for continuously adding the dispersion liquid to the spinning dope. In the present invention, the dispersion concentration of the organic solvent solution of fine powder having excellent far-infrared properties is 5 to 40% by weight, preferably 15 to 30% by weight. If this concentration is less than 5% by weight, the concentration of the spinning stock solution decreases, and the spinnability and fiber properties decrease, although it depends on the amount of fine powder added. Also, if it exceeds 40% by weight,
A good uniform and finely dispersed state cannot be obtained, making it difficult to easily produce it industrially. Spinning can be carried out under the same conditions as for ordinary acrylic synthetic fibers, and the fibers are passed through several stages of baths, followed by sequential stretching, washing, drying, and post-treatment. (Effects of the Invention) The far-infrared ray-emitting acrylic synthetic fiber of the present invention has an excellent far-infrared ray radiating effect, has the same fiber performance as ordinary acrylic synthetic fiber, and has radiation resistance due to washing resistance and dry cleaning resistance. There is almost no decrease in effectiveness. Furthermore, the method for producing alkaline synthetic fibers of the present invention allows such fibers to be produced industrially easily and at low cost using the usual manufacturing conditions and equipment for acrylic synthetic fibers. The fibers obtained by the present invention include ordinary acrylic synthetic fibers, polyester, nylon, cotton,
It can also be used in combination with other fibers such as rayon and wool, and can be used for health clothing that has far-infrared radiation performance.
It is extremely meaningful industrially because it can be used for a wide range of purposes such as blankets, carpets, mats, socks, sheets, and futon cotton. (Examples) Hereinafter, the present invention will be specifically explained using Examples. In the examples, (%) means "% by weight". Examples 1 to 4, Comparative Examples 1 to 8 A solution of dimethylformamide (DMF), an acrylic polymer consisting of acrylonitrile (AN)/methyl acrylate (MA)/sodium methacrylsulfonate (SMAS) = 91.2/8.0/0.8, was added. Got ready. Then, after dispersing the fine powder that has far-infrared radiation characteristics superior to the acrylic copolymer in DMF using a homomixer, the homomixer added to the above acrylic copolymer solution in the amount listed in Table 1 is sufficient. The mixture was stirred to obtain a spinning stock solution. The above stock solution was spun into a 60% DMF aqueous solution at 20°C,
After stretching and washing with water while removing the solvent, an oil agent was applied to perform drying and densification. After crimping this fiber, it was subjected to a wet heat treatment at 120°C. The resulting fibers were cut and spun to produce circular knitting. The far-infrared radiation density of this knitted fabric was measured and evaluated. Comparative examples include one in which no sand grinder was used (Comparative Example 1), one in which a different amount than the above-mentioned amount was added to the acrylonitrile copolymer (Comparative Examples 2, 3, and 4), and conventional ceramics. The particles were added to an acrylonitrile copolymer (Comparative Examples 5, 6, 7, and 8). [Measurement conditions for far-infrared radiation density] Place the circular knitted fabric over a rectangular steam heater with a base size of 10cm x 5cm and a height of 30cm to control the temperature of the knitted fabric surface to 100℃, and use a power meter (manufactured by Optex) at a distance of 1m. The far-infrared radiation density (W/m 2 ) of 7 to 20 μm was measured. In addition, the spinning operability is judged by taking into account the filtration pressure, single yarn breakage, roller winding, etc. when manufactured under the conditions described in the examples, and is evaluated as ``◎'', ``〇'', ``△'', or ``×''.
I went in stages. Example 5 A DMF solution of an acrylic copolymer consisting of AN/vinylidene chloride (VCl 2 )/sodium allylsulfonate (SAS) = 57/40/3 was prepared. The acrylic copolymer was treated with 10.0% Silton FI-80 using a sand grinder to uniformly disperse it, and then added to the acrylic copolymer solution to obtain a spinning stock solution with sufficient stirring. The above-mentioned spinning stock solution was spun into a 55% DMF aqueous solution at 25° C., and after stretching and washing with water, an oil agent was applied to dry and densify it while removing the solvent. After applying a crimp to this fiber, it was subjected to a heat treatment at 115°C with moist heat. The obtained fibers are circularly knitted and washed at home for 0 to 5 minutes.
The far-infrared radiation density was measured after 10 and 20 times. Second
As shown in the table, it showed good radiation density even after washing 20 times. [Washing conditions] Using a commercially available small electric washing machine Neutral detergent 1g / Bathing 1:100 Temperature x time 40℃ x 5 minutes Washing with water 10 minutes Drying 80℃ x 1 hour [Table]

【図面の簡単な説明】[Brief explanation of drawings]

第1図はゼオライトの遠赤外線放射率特性図で
あり、第2図はSilton AMT、第3図はSilton
FIの遠赤外線放射率特性図である。
Figure 1 is a far-infrared emissivity characteristic diagram of zeolite, Figure 2 is Silton AMT, Figure 3 is Silton
FIG. 3 is a far-infrared emissivity characteristic diagram of FI.

Claims (1)

【特許請求の範囲】 1 アクリル系合成繊維において優れた遠赤外線
放射特性を有するアルミナ−シリカ系立方体一次
粒子から成るX−線回析学的に実質上非晶質で且
つアルカリ金属の含有量が結晶性ゼオライトに比
して50%以下である微粉末、又はそれをムライト
系金属酸化物で表面コーテイングした微粉末を3
〜15重量%含有している事を特徴とする遠赤外線
放射アクリル系繊維。 2 アクリル系合成繊維を湿式紡糸して製造する
に際し、優れた遠赤外線放射特性を有するアルミ
ナ−シリカ系立方体一次粒子から成るX−線回析
学的に実質上非晶質で且つアルカリ金属の含有量
が結晶性ゼオライトのそれよりも著しく少ない微
粉末、又はそれをムライト系金属酸化物で表面コ
ーテイングした微粉末3〜15重量%を有機溶剤に
均一分散させ次いでアクリロニトリルを含む共重
合体の有機溶剤溶液に添加し、これを紡糸する事
を特徴とする遠赤外線放射アクリル系繊維の製造
方法。
[Claims] 1. An acrylic synthetic fiber that is substantially amorphous in terms of X-ray diffraction and is composed of alumina-silica cubic primary particles that have excellent far-infrared radiation characteristics and has a low alkali metal content. 3. Fine powder that is 50% or less compared to crystalline zeolite, or fine powder whose surface is coated with mullite metal oxide.
A far-infrared emitting acrylic fiber characterized by containing ~15% by weight. 2. When manufacturing acrylic synthetic fiber by wet spinning, it is made of alumina-silica cubic primary particles that have excellent far-infrared radiation characteristics, is substantially amorphous in terms of X-ray diffraction, and contains alkali metals. A fine powder whose amount is significantly smaller than that of crystalline zeolite, or a fine powder whose surface is coated with a mullite-based metal oxide (3 to 15% by weight) is uniformly dispersed in an organic solvent, and then an organic solvent of a copolymer containing acrylonitrile is prepared. A method for producing far-infrared emitting acrylic fiber, which comprises adding it to a solution and spinning it.
JP27431888A 1988-10-28 1988-10-28 Far infrared radiating acrylic yarn and production thereof Granted JPH02127511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27431888A JPH02127511A (en) 1988-10-28 1988-10-28 Far infrared radiating acrylic yarn and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27431888A JPH02127511A (en) 1988-10-28 1988-10-28 Far infrared radiating acrylic yarn and production thereof

Publications (2)

Publication Number Publication Date
JPH02127511A JPH02127511A (en) 1990-05-16
JPH0474454B2 true JPH0474454B2 (en) 1992-11-26

Family

ID=17539980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27431888A Granted JPH02127511A (en) 1988-10-28 1988-10-28 Far infrared radiating acrylic yarn and production thereof

Country Status (1)

Country Link
JP (1) JPH02127511A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4531281B2 (en) * 2001-03-21 2010-08-25 株式会社カネカ Far-infrared radiation raised fiber structure
JP2014012919A (en) * 2005-11-30 2014-01-23 Dow Global Technologies Llc Surface modified binary polymer fiber

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4882699B2 (en) * 2005-12-20 2012-02-22 株式会社デンソー Waste heat recovery device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105107A (en) * 1986-10-17 1988-05-10 Kensen Kk Production of textile product
JPS63196710A (en) * 1987-02-09 1988-08-15 Kuraray Co Ltd Far infrared-radiation synthetic fiber
JPS63203873A (en) * 1987-02-16 1988-08-23 前田 信秀 Far infrared ray radiant composite fiber
JPS63227828A (en) * 1987-03-13 1988-09-22 株式会社クラレ Warm cloth

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105107A (en) * 1986-10-17 1988-05-10 Kensen Kk Production of textile product
JPS63196710A (en) * 1987-02-09 1988-08-15 Kuraray Co Ltd Far infrared-radiation synthetic fiber
JPS63203873A (en) * 1987-02-16 1988-08-23 前田 信秀 Far infrared ray radiant composite fiber
JPS63227828A (en) * 1987-03-13 1988-09-22 株式会社クラレ Warm cloth

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4531281B2 (en) * 2001-03-21 2010-08-25 株式会社カネカ Far-infrared radiation raised fiber structure
JP2014012919A (en) * 2005-11-30 2014-01-23 Dow Global Technologies Llc Surface modified binary polymer fiber

Also Published As

Publication number Publication date
JPH02127511A (en) 1990-05-16

Similar Documents

Publication Publication Date Title
JP4962619B2 (en) Antistatic acrylic fiber and method for producing the same
JPH11279830A (en) Fiber with excellent thermic ray radiation
JPH11124729A (en) Antimicrobial fiber and its production
JPH0474454B2 (en)
TWI739033B (en) Moisture-absorptive acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
US6528162B1 (en) Acrylic synthetic fiber, use thereof, and process for producing acrylic synthetic fiber
JP2945264B2 (en) Antimicrobial fiber and method for producing the same
JP7177982B2 (en) Hygroscopic acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP5696944B2 (en) Antistatic acrylic fiber excellent in color development and production method thereof
JP3349028B2 (en) Textile products made of deodorant and antibacterial acrylic synthetic fibers
JP7177986B2 (en) Shrinkable, moisture-absorbing acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP3968611B2 (en) Heat storage and heat insulating material and textiles using the same
JP2580715B2 (en) Far infrared radiation acrylic fiber
JP7177988B2 (en) Water-repellent and moisture-absorbing acrylonitrile-based fiber, method for producing said fiber, and fiber structure containing said fiber
KR102446659B1 (en) A heating and heat-storage fabrics having permanent antibacterial property
JP4531281B2 (en) Far-infrared radiation raised fiber structure
JP7219418B2 (en) Crimped moisture-absorbing acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP2004270083A (en) Fiber structure and method for producing the same
JP7177987B2 (en) Easily de-crimpable and moisture-absorbing acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP3048434B2 (en) Acrylic synthetic fiber
JPH0340810A (en) Far infrared ray emitting acrylic synthetic fiber and production thereof
JPH07324220A (en) Light absorbing and thermal energy storing far infrared radiating fiber and its production
JP3805704B2 (en) Highly hygroscopic black formal fabric
JP4063962B2 (en) Manufacturing method of long and short composite spun yarn knitted fabric
JPH026611A (en) Flame-retardant fiber and composition therefor

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 16

EXPY Cancellation because of completion of term