JPH0474372B2 - - Google Patents

Info

Publication number
JPH0474372B2
JPH0474372B2 JP62297243A JP29724387A JPH0474372B2 JP H0474372 B2 JPH0474372 B2 JP H0474372B2 JP 62297243 A JP62297243 A JP 62297243A JP 29724387 A JP29724387 A JP 29724387A JP H0474372 B2 JPH0474372 B2 JP H0474372B2
Authority
JP
Japan
Prior art keywords
discharge
film
electrode
polymer resin
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62297243A
Other languages
Japanese (ja)
Other versions
JPH01138242A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP29724387A priority Critical patent/JPH01138242A/en
Publication of JPH01138242A publication Critical patent/JPH01138242A/en
Publication of JPH0474372B2 publication Critical patent/JPH0474372B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/10Surface shaping of articles, e.g. embossing; Apparatus therefor by electric discharge treatment
    • B29C59/12Surface shaping of articles, e.g. embossing; Apparatus therefor by electric discharge treatment in an environment other than air

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明はプラスチツクフイルムなどの高分子樹
脂表面の改質方法に関するものであり、更に詳し
くは耐熱性高分子樹脂フイルムの表面改質方法に
関するものである。 [従来の技術] 今日、高分子樹脂は広範に使用されているが、
種々の用途において、高分子樹脂表面の接着性が
乏しいことが常に問題になつている。このためコ
ロナ放電処理、プラズマ処理、あるいはケミカル
エツチング処理、サンドブラスト処理など種々の
技術を用いて表面改質の検討がなされている。中
でも、耐熱性高分子樹脂は他の樹脂に比べて、成
形時の条件によつて表面特性、特に接着性が著し
く変化するうえ、同じ処理技術を用いても、改質
の効果が低く、極めて改質しにくい樹脂として知
られている。このことは逆に耐熱性高分子樹脂の
改質に有効な技術は他の樹脂の表面改質にも有効
な技術となるものと考えられる。 さて、このような表面改質しにくい耐熱性高分
子樹脂に対し、いくつかの改質技術が提案され、
あるいは実施されている。 特開昭61−141532および特開昭61−229388には
芳香族ポリイミドフイルムを低温プラズマで処理
により改質する技術が提案されている。一方、該
芳香族ポリイミドフイルムに対して、サントブラ
スト処理技術が開発され、従来より広く使用され
ている。さらに特開昭62−184842、特開昭62−
162542にはフイルム表面を機械的にふきとる方法
およびコロナ放電処理による方法が開示されてい
る。 しかしながら、これらの方法には各々次のよう
な問題点がある。 まず上記低温プラズマ処理による方法は、特開
昭61−141532にも記載されているように、3×
10-3〜30Torr、好ましくは0.01〜10Torrの低圧
力下において発生する放電によつて処理するもの
であり、この方法は、容易に安定した放電である
グロー放電が形成されるため、安定した品質の表
面改質がなされる利点がある。しかしながら、こ
の低温プラズマ処理による方法は、低圧力雰囲気
域を形成する必要があるため、真空容器および大
きな排気設備を必要とし、著しくコスト高になる
うえ、所定の圧力雰囲気の調節あるいは条件変更
などに長時間を要するなどの問題があるため、処
理費用がかさみむ等の難点がある。これに対し
て、サンドブラスト処理は比較的安価に処理でき
るため広く行なわれているが、この方法の場合、
処理フイルム表面や表層中に砂が残るため、処理
後洗浄処理が必要であり、その際どの程度洗浄す
ればよいか明確に規定できず、生産工程で品質管
理が極めて困難であるなどの問題がある。またサ
ンドブラスト処理は接着性のバラツキをなくし、
芳香族ポリイミドのもつ本来の接着力を回復させ
る点では効果があるが、接着力そのものの向上に
はそれ程効果がないという問題がある。さらにこ
の方法は、砂を強い力でふきつけるため、砂がフ
イルムにつきささり、薄いフイルムでは砂が貫通
し、ピンホールを生じたり、あるいはサンドブラ
スト処理のため表層が削られるため、フイルムの
強伸度が低下するなどの問題がある。特開昭62−
184842で開示された方法は、実用的であるが、改
質効果がかなり低く、たかだかサンドブラスト並
であるうえ、ふきとる際、静電気などによるゴミ
の付着、つまり再汚染が懸念され、生産工程での
品質管理が難しいという欠点がある。さらに特開
昭62−162542による方法は、20〜300W/m2/分
の放電電力密度でコロナ放電する方法法であり、
この方法では十分な改質効果が上げられないとい
う問題がある。 [発明が解決しようとする問題点] 本発明はかかる従来技術の諸欠点に鑑み創案さ
れたものであり、その目的は品質、コストおよび
生産性とも良好な実用性の高い高分子樹脂フイル
ムの表面処理技術、特に耐熱性高分子樹脂フイル
ムを低温プラズマ処理によつて改質されたと同
様の優れた接着性を有するに改質可能で、かつ
経時的に安定な改質面を得ることができ、しか
もブロツキングなどの問題のない表面改質方法を
得る方法を提供することにある。 [問題点を解決するための手段] かかる本発明の目的は、高分子樹脂フイルム表
面を改質するに際し、少なくとも20モル%以上の
希ガス類元素を含有する、100〜1000Torrのガス
雰囲気中において、表面が誘電体によつて被覆さ
れ、かつ10〜100℃に冷却された電極と、上記高
分子樹脂フイルムを支持する誘電体被覆電極との
間に印加された高電圧によつて形成される放電に
よつて、上記高分子樹脂フイルム表面を500w・
min/m2以上の処理強度で連続的に処理すること
を特徴とする高分子樹脂フイルムの表面改質方法
により達成される。 本発明において使用される高分子樹脂フイルム
としては、公知のものがすべて使用できるが、改
質効果の点からは耐熱性高分子樹脂フイルムであ
ることが好ましい。 ここで耐熱性高分子樹脂フイルムとしては、ガ
ラス転移点(Tg)が100℃以上のもの、また融点
(Tm)が300℃以上のもの、あるいはJISC4003で
規定される長期連続使用温度の最高許容温度が
121℃以上のもののいずれかの条件を満足する高
分子樹脂であればよい。 これらの高分子樹脂フイルムとしては、ビスフ
エノール類の芳香族ジカルボン酸の縮合物である
ポリアリレート、ポリスルホンまたはポリエーテ
ルスルホンに代表されるポリアリルスルホン、ベ
ンゾフエノンテトラカルボン酸と芳香族イソシア
ナートとの縮合物、あるいはビスフエノール類、
芳香族ジアミン、ニトロフタル酸の反応から得ら
れる熱硬化性ポリイミド、芳香族ポリイミド、芳
香族ポリアミド、芳香族ポリエーテルアミド、ポ
リフエニレンスルフアイド、ポリアリルエーテル
ケトン、液晶性ポリエステル、ポリアミドイミ
ド、ポリテトラフロロエチレン、四フツ化エチレ
ン−六フツ化プロピレン共重合体などのフツ素系
樹脂などが挙げられる。これら耐熱性高分子樹脂
については「最新・耐熱性高分子(三田進監修、
(株)総合技術センター出版、昭和62年発行)に詳細
に説明されている。 これらの耐熱性高分子樹脂の中でも、芳香族ポ
リイミド、芳香族ポリイミド、ポリフエニレンス
ルフアイド、およびフツ素系樹脂は成形時に高温
にさらすために表面特性が著しく変化したり、あ
るいは樹脂が本質的に接着性を有していないなど
のため、表面改質が困難であるが、これらの樹脂
は本発明の方法によつて優れた改質効果が得られ
る好ましい樹脂である。特にピロメリツト酸二無
水物、あるいはビフエニルテトラルカルボン酸二
無水物とジアミノジフエニルエーテルなどの芳香
族ジアミンとの縮合物である芳香族ポリイミド
は、本発明の方法によつて特に顕著な改質効果が
認められる好ましい樹脂である。 なお当然のことながらこれらの樹脂には無機フ
イラーなどの添加剤が加えられていてもよい。 本発明における放電は、内部に冷媒を流すこと
によつてその表面を10〜100℃に冷却された、金
属管などの導体の表面を誘電体で被覆した高電圧
印加電極と、該電極に対向して設けられ、放電が
形成される面が誘電体で被覆された、被処理物を
支持するための電極との間で形成される。 高電圧印加電極としては中空棒構造を有するも
のが好ましく、内部を流す冷媒としては空気、フ
レオンまたは水などが挙げられるが、水が好まし
い。導体の表面を覆う誘電体としてはゴム、ガラ
ス、セラミツクなどが挙げられるが、ガラスが好
ましく、その厚さは0.1〜5mmが好ましい。誘導
体の材質は印加される電圧に対し、十分な耐電を
もつものを選択するのがよい。 フイルムなどの長尺物の場合は被処理物は搬送
自在に支持できるドラム状電極であることが好ま
しく、その大きさは例えば前記棒状高電圧印加電
極の直径に対し、2倍以上の直径をもつように形
成するのがよい。ドラム状電極の少なくとも放電
が形成される面は同様に誘電体で被覆することが
重要であり、該誘電体の厚さ、材質など棒状電極
の場合と同様のものが使用される。 高電圧印加電極と被処理物を支持する電極とは
同数である必要はなく、被処理物を支持する電極
1個に対し、高電圧印加電極を2個以上設けるの
がよい。 高電圧印加電極と対向電極の距離は0.5mm以上
10mm以下にするのが好ましい。さらに好ましくは
0.5mm以上5mm以下である。この距離が10mmを越
えると放電が不安定となり、また0.5mm未満では
機械的な精度を出すのが困難なため、処理むら、
処理ぬけなどが起こりやすい。 高電圧印加電極に印加する高電圧の周波数は
20KHz〜100MHzの範囲で選択するが好ましい。
20KHz未満では放電が開始しにくく、100MHz以
上では整合をとることが困難である。より好まし
い周波数は50KHz〜500KHzである。 被処理物を支持する電極は設置していてもよい
し、あるいは該電極を大地より浮かし、高電圧電
源の高電圧電極との結線端子と対となる出力端子
と結線してもよい。 また当然のことながら、高電圧電源は整合回路
をもつていることが好ましい。 本発明においては、雰囲気のガス組成が極めて
重要であり、上記装置を用い、希ガス元素を少な
くとも20モル%以上含有する、100〜1000Torrの
ガス雰囲気中で放電すると、放電が通常の火花放
電(当業者間ではコロナ放電と呼ばれている)で
なく、真空下で起るグロー放電に似た放電にな
り、この放電は火花放電に比べ多くの電力を放電
に供給することができ、かつ耐熱性高分子に対し
処理効果が著しく、またブロツキングなどの欠点
が生じない利点がある。 本発明で使用される希ガス元素としてはHe、
Ne、Ar、Kr、Xe、Rnなどが挙げられるが、Ar
が最も好ましい。かかる希ガスは雰囲気ガス中に
少なくとも20モル%以上含まれている必要があ
る。希ガスが20モル%未満では放電が火花放電に
なり、通常のコロナ放電と同様処理効果が低く、
かつ裏うつりや、プロツキングや生じるため好ま
しくない。より好ましくは雰囲気ガス中に希ガス
を50モル%以上含有させるのがよい。希ガスと混
合して使用できるガスとしては、CO2、メタンな
どの有機物ガスが挙げられ、これらに限定されな
い。ただし、O2およびN2濃度は放電の安定性、
処理効果の点から極力小さいのがよく、好ましく
は1モル%未満、さらに好ましくは0.5モル%未
満にするのがよい。 雰囲気の圧力は100〜1000Torrの範囲で選択す
ることが重要であり、100torr未満では高度の真
空排気装置などを必要とする等の問題があり、ま
た1000Torr以上では放電が開始しにくくなる。
より好ましくは600〜900Torrの圧力範囲で選択
するのがよい。 高分子樹脂フイルムに対する処理強度は処理を
施すべき高分子樹脂フイルムに応じて選択するの
がよいが、耐熱性高分子樹脂フイルムの場合は、
200W・min/m2以上の処理電力密度で処理する
のがよく、より好ましくは500W・min/m2以上、
さらに好ましくは1000W・min/m2以上の処理電
力密度で処理するのがよい。通常のコロナ放電処
理では500W・min/m2以上の電力密度で処理す
ると放電がアーク放電になり、被処理高分子フイ
ルムやドラム状電極の被覆誘電体にピンホールが
生じるが、本発明の方法ではのそのような現象が
全く見られず、大電力を供給できる利点がある。
なおここでいう処理電力密度とは出力を放電部分
の幅(ドラム状電極の幅長方向)とフイルムの処
理速度で割つた値である。 次に本発明方法を実施装置の1例を用いて説明
する。 図において、高分子樹脂フイルム1は送り出し
ロール2により放電処理部9へ送り出される。放
電処理部9にはガス導入系8より、所定組成のガ
スが供給され、ここで図示していない簡単な排気
装置によつて所定のガスに維持させる。フイルム
1は放電処理部において、高圧印加電極3に高電
圧電源5より整合トランス6を介して印加された
高周波高電圧によつて、接地されたドラム状電極
4との間で形成される放電によつて処理された
後、巻き取りローラ7に巻き取られる。 [実施例] 以下実施例により本発明を具体的に説明する
が、実施中の物性はそれぞれ次の方法で測定した
ものである。 [物性の測定方法、評価基準] 処理フイルムの処理面へ熱硬化型のアクリル
系接着剤、またはポアミド系接着剤を塗布後、
ラミネーターで銅箔と張り合せた。 接着力の測定 万能引張り試験機(東洋ボールドウイン製、
テンシロン)を用い、フイルムと銀箔との間の
接着力を測定した。 ブロツキング性の評価 処理フイルムの処理面同志を合せ、その上に
500gの荷重をかけ、60℃90%の雰囲気下に1
週間放置後、このフイルムを取り出し、軽くふ
つてフイルム同志が剥げる場合を良、剥がれに
くい、また剥がれない場合を不良と判定した。 電極表面温度の測定 放射型表面温度計(横河電機製
MODEL2542)を用いて放電停止直後の表面温
度を測定した。 実施例1〜5、比較例1〜6 被処理高分子樹脂として、ピロメリツト酸二無
水物と4,4−ジアミノジフエニルエーテルの縮
合物から形成された厚さ25μm、幅508mmの芳香
族ポリイミドフイルム(東レ・デユポン(株)製“カ
プトン”)を、図の装置を用い、Arガス、
760Torrの雰囲気下で、15m/minのフイルム速
度で、処理電力密度を表1のごとく変えて処理を
行なつた。なお高電圧印加電極3としては約1mm
の厚さのガラスを被覆した鉄製の棒状電極を、ま
たドラム状電極4としてはドラム面と側面が約1
mmのゴムで被覆された鉄製電極を用い、冷媒はい
ずれも20〜30℃の水を用いた。このとき、電極表
面温度はいずれの実施例も30℃であつた。 比較例として空気を用いて通常のコロナ放電処
理(高電圧印加電極としてタングステンワイヤを
使用)(比較例1〜3)および空気の代りにArを
用いた以外は実施例1と同様にして処理した(比
較例4〜6)。 熱硬化性のアクリル系接着剤を用い、各々の処
理フイルムと銅箔との接着力を測定し、結果を表
1に示した。 なお実施例1〜5および比較例1〜6ともドラ
ム状の接地電極は面長600mmで、放電はこの面長
全域で形成されるため、放電部分の幅は0.6mと
して、放電電力密度を計算した。 表1のごとく、本発明の方法で処理したフイル
ムはいずれもフレキシブルプリント回路用とし
て、ポリイミドフイルムに要求される接着力レベ
ル(1.5Kg/cm)以上の接着力を示し、未処理フ
イルムに比べ著しい改質効果が認められた。 これに対して、比較例1〜3および比較例4〜
6のコロナ放電処理では、若干の改質効果が認め
られるものの、放電電力密度を大きくしても、そ
の向上は僅かであつた。なお500W・min/m2
電力を投入すると、放電がアーク放電になり、フ
イルムやドラム状電極の誘電体が絶縁破壊され、
ピンホールが生じた。 比較例1〜3で処理したフイルムは強くブロツ
キングし、比較例4〜6では比較例1〜3に比べ
やや弱いが、ブロツキングを示した。これに対し
て、本発明ではほとんどブロツキングは認められ
なかつた。 さらに本発明の処理フイルムを熱硬化性のポリ
アミド系接着剤を用い銅箔と貼合せたところ、表
1に示したものと同様の接着力が得られた。 比較例 7、8 実施例1で用いた芳香族ポリイミドフイルムを
図の装置を用い、Ar−N2(10モル%:90モル%)
(比較例7)、およびAr−N2(19モル%:81モル
%)(比較例8)の混合ガスをそれぞれ実施例1
と同一条件で1000W・min/m2の電力密度で処理
した。 各々の処理フイルムの接着力とブロツキング性
を調べたところ、比較例7では1.9Kg/cmの接着
力を有していたが、強いブロツキングを示した。
比較例8も2.0Kg/cmと良好な接着力を示したが、
比較例7に比べると程度は弱いがブロツキングを
示した。 比較例 9 冷媒として90℃の温水を用いた以外は実施例1
と同様にして処理した。フイルムにはすじが入
り、放電開始から数秒で高電圧印加電極を被覆す
るガラスが破損した。このときの電極表面温度は
120℃であつた。 比較例 10 実施例1において、高電圧印加電極に冷媒とし
ての水を流さない以外は同様にして処理を行つ
た。放電開始直後に電極を被覆しているガラスが
割れ、その割れた部分からアーク放電が発生し、
フイルムに穴があいた。この直後に放電を止めて
電極表面温度を測定したところ250℃であつた。 比較例 11〜13 冷媒として−20℃のグリコール系冷媒(日曹化
学工業(株)製、ナイブラインZ−1)を用いた以外
はそれぞれ実施例1、3、5と同様に処理した。
このときの電極表面温度は5℃であつた。表1の
ごとくいずれも十分な接着力は得られなかつた。 比較例 14 処理電力密度を300w・min/m2とした以外は
実施例1と同様にして処理した。接着力は1,4
Kg/cmで不十分であつた。 実施例 6 26μmの四フツ化エチレンと六フツ化プロピレ
ン共重合体のフイルムを低温プラズマ処理して、
光電子分光法(YGサイエンテイフイツク社製
ESCALAB−5使用)によりで測定した表面の
原子組成が、F/C=1.57、O/C=0.040の改
質表面をもつフツ素フイルムを作つた。 次いで実施例1で用いたものと同じポリイミド
フイルムを実施例1と同様にして、Ar−CO2(90
モル%:10モル%)の混合ガス中で1000W・
min/m2の電力密度で処理した。このときの電極
表面温度は30℃であつた。 次に得られた両方のフイルムの処理面同志を合
せ、ロール温度260℃に調製したロールラミネー
タを用い、ラミネート速度0.5m/min、線圧10
Kg/cmで貼り合せた。このフイルムのフイルム間
の接着力を測定したところ、0.4Kg/cm以上の接
着力を示し、フツ素フイルムがネツキングを起し
た。 なお未処理のポリイミドフイルムを用いた場
合、260℃のロール温度でのラミネートでは数10
g以下の極めて弱し接着力しか得られなかつた。
[Industrial Field of Application] The present invention relates to a method for modifying the surface of a polymer resin such as a plastic film, and more particularly to a method for modifying the surface of a heat-resistant polymer resin film. [Prior Art] Today, polymer resins are widely used;
In various applications, poor adhesion of polymer resin surfaces has always been a problem. For this reason, surface modification is being investigated using various techniques such as corona discharge treatment, plasma treatment, chemical etching treatment, and sandblasting treatment. Among these, heat-resistant polymer resins have a marked change in surface properties, especially adhesiveness, depending on the molding conditions compared to other resins, and even if the same processing technology is used, the modification effect is low, making it extremely difficult to use. It is known as a resin that is difficult to modify. This means that, conversely, techniques that are effective for modifying heat-resistant polymer resins are also considered to be effective techniques for surface modification of other resins. Now, several modification technologies have been proposed for heat-resistant polymer resins that are difficult to surface modify.
Or it is being implemented. JP-A-61-141532 and JP-A-61-229388 propose a technique for modifying an aromatic polyimide film by treating it with low-temperature plasma. On the other hand, a sunblasting technique has been developed for the aromatic polyimide film and has been widely used. Furthermore, JP-A-62-184842, JP-A-62-
No. 162542 discloses a method of mechanically wiping the film surface and a method of corona discharge treatment. However, each of these methods has the following problems. First, the method using low-temperature plasma treatment is as described in JP-A-61-141532.
10 -3 ~ 30 Torr, preferably 0.01 ~ 10 Torr, this method is a process that generates a low pressure. This method easily forms a glow discharge, which is a stable discharge, so it has stable quality. It has the advantage of surface modification. However, this low-temperature plasma treatment method requires the creation of a low-pressure atmosphere region, which requires a vacuum container and large exhaust equipment, resulting in a significant increase in cost. There are problems such as the need for a long time, resulting in high processing costs. On the other hand, sandblasting is widely used because it is relatively inexpensive, but in the case of this method,
Because sand remains on the surface of the treated film or in its surface layer, cleaning is required after treatment, and it is not possible to clearly specify how much cleaning should be done, leading to problems such as extremely difficult quality control during the production process. be. In addition, sandblasting eliminates variations in adhesiveness,
Although it is effective in restoring the original adhesive strength of aromatic polyimide, there is a problem in that it is not very effective in improving the adhesive strength itself. Furthermore, since this method blows the sand with a strong force, the sand sticks to the film, and if the film is thin, the sand may penetrate and create pinholes, or the surface layer is scraped due to sandblasting, which reduces the strength and elongation of the film. There are problems such as a decrease in Unexamined Japanese Patent Publication 1986-
The method disclosed in No. 184842 is practical, but its reforming effect is quite low, at most comparable to sandblasting, and when wiping, there is a concern that dirt may adhere due to static electricity, that is, re-contamination, and the quality during the production process may be affected. The disadvantage is that it is difficult to manage. Furthermore, the method disclosed in JP-A-62-162542 is a method in which corona discharge is performed at a discharge power density of 20 to 300 W/m 2 /min.
This method has a problem in that a sufficient reforming effect cannot be achieved. [Problems to be Solved by the Invention] The present invention was devised in view of the various drawbacks of the prior art, and its purpose is to provide a surface of a highly practical polymer resin film with good quality, cost, and productivity. Processing technology, in particular, it is possible to modify a heat-resistant polymer resin film to have the same excellent adhesion as that modified by low-temperature plasma treatment, and to obtain a modified surface that is stable over time, Moreover, it is an object of the present invention to provide a method for obtaining a surface modification method free from problems such as blocking. [Means for Solving the Problems] The object of the present invention is to modify the surface of a polymer resin film in a gas atmosphere of 100 to 1000 Torr containing at least 20 mol% or more of a rare gas element. is coated with a dielectric and cooled to 10 to 100°C, and the dielectric-covered electrode supporting the polymer resin film is applied to a discharge formed by a high voltage. Therefore, the surface of the above polymer resin film was heated at 500w.
This is achieved by a method for surface modification of polymer resin films characterized by continuous treatment at a treatment intensity of min/m 2 or more. All known polymer resin films can be used as the polymer resin film used in the present invention, but heat-resistant polymer resin films are preferred from the viewpoint of modification effects. Here, the heat-resistant polymer resin film is one with a glass transition point (Tg) of 100℃ or higher, a melting point (Tm) of 300℃ or higher, or the maximum allowable long-term continuous use temperature specified by JISC4003. but
Any polymer resin that satisfies any of the conditions of 121°C or higher may be used. These polymer resin films include polyarylate which is a condensation product of aromatic dicarboxylic acids of bisphenols, polyarylsulfone represented by polysulfone or polyethersulfone, benzophenone tetracarboxylic acid and aromatic isocyanate, and condensates, or bisphenols,
Thermosetting polyimide obtained from the reaction of aromatic diamine and nitrophthalic acid, aromatic polyimide, aromatic polyamide, aromatic polyether amide, polyphenylene sulfide, polyallyl ether ketone, liquid crystalline polyester, polyamideimide, polytetra Examples include fluorocarbon resins such as fluoroethylene and tetrafluoroethylene-hexafluoropropylene copolymers. Regarding these heat-resistant polymer resins, please refer to “Latest Heat-resistant Polymers” (supervised by Susumu Mita,
It is explained in detail in Sogo Gijutsu Center Publishing Co., Ltd., published in 1986). Among these heat-resistant polymer resins, aromatic polyimide, aromatic polyimide, polyphenylene sulfide, and fluorine-based resins are exposed to high temperatures during molding, resulting in significant changes in surface properties or changes in the essential properties of the resin. Although it is difficult to modify the surface of these resins because they do not have adhesive properties, these resins are preferred resins from which excellent modification effects can be obtained by the method of the present invention. In particular, aromatic polyimides which are condensates of pyromellitic dianhydride or biphenyl tetracarboxylic dianhydride with aromatic diamines such as diaminodiphenyl ether have been particularly significantly modified by the method of the present invention. This is a preferred resin with recognized effects. Note that, as a matter of course, additives such as inorganic fillers may be added to these resins. Discharge in the present invention involves a high-voltage applying electrode made of a conductor such as a metal tube whose surface is cooled to 10 to 100 degrees Celsius by flowing a refrigerant inside and coated with a dielectric material, and an electrode facing the electrode. The surface on which discharge is formed is coated with a dielectric material and is formed between the electrode for supporting the object to be processed. The high voltage applying electrode preferably has a hollow rod structure, and the coolant flowing inside the electrode includes air, Freon, water, etc., and water is preferable. Examples of the dielectric material covering the surface of the conductor include rubber, glass, and ceramic, but glass is preferred, and its thickness is preferably 0.1 to 5 mm. It is preferable to select a material for the dielectric that has sufficient electrical resistance against the applied voltage. In the case of a long object such as a film, the object to be processed is preferably a drum-shaped electrode that can be supported while being conveyed freely, and its size is, for example, twice or more the diameter of the rod-shaped high voltage application electrode. It is best to form it like this. It is also important to cover at least the surface of the drum-shaped electrode with a dielectric material, and the thickness and material of the dielectric material are the same as in the case of the rod-shaped electrode. The number of high voltage applying electrodes and the electrodes supporting the object to be processed does not need to be the same, and it is preferable to provide two or more high voltage applying electrodes for one electrode supporting the object to be processed. The distance between the high voltage applying electrode and the counter electrode is 0.5 mm or more
It is preferable to make it 10 mm or less. More preferably
It is 0.5 mm or more and 5 mm or less. If this distance exceeds 10 mm, the discharge becomes unstable, and if it is less than 0.5 mm, it is difficult to achieve mechanical precision, resulting in uneven processing,
Processing omissions are likely to occur. The frequency of the high voltage applied to the high voltage application electrode is
It is preferable to select within the range of 20KHz to 100MHz.
Below 20KHz, it is difficult to start discharging, and above 100MHz, it is difficult to achieve matching. A more preferred frequency is 50KHz to 500KHz. The electrode supporting the object to be processed may be installed, or the electrode may be floated above the ground and connected to an output terminal that is paired with a connection terminal for the high voltage electrode of the high voltage power source. Naturally, it is also preferable that the high voltage power supply has a matching circuit. In the present invention, the gas composition of the atmosphere is extremely important, and when the above device is used to discharge in a gas atmosphere of 100 to 1000 Torr containing at least 20 mol% of rare gas elements, the discharge will be a normal spark discharge ( This discharge is similar to a glow discharge that occurs in a vacuum, rather than a corona discharge (known to those skilled in the art as a corona discharge), and this discharge can supply more power than a spark discharge, and is heat resistant. It has the advantage that it has a remarkable treatment effect on polymers and does not cause drawbacks such as blocking. The rare gas elements used in the present invention include He,
Examples include Ne, Ar, Kr, Xe, Rn, etc., but Ar
is most preferred. Such rare gas must be contained in the atmospheric gas in an amount of at least 20 mol %. If the rare gas content is less than 20 mol%, the discharge becomes a spark discharge, and the treatment effect is low like normal corona discharge.
It is also undesirable because it causes back-up and plotting. More preferably, the atmospheric gas contains 50 mol% or more of the rare gas. Gases that can be used in combination with the rare gas include, but are not limited to, organic gases such as CO 2 and methane. However, the O 2 and N 2 concentrations depend on the stability of the discharge,
From the viewpoint of treatment effects, the amount should be as small as possible, preferably less than 1 mol%, more preferably less than 0.5 mol%. It is important to select the pressure of the atmosphere in the range of 100 to 1000 Torr; if it is less than 100 Torr, there will be problems such as the need for a sophisticated vacuum evacuation device, and if it is more than 1000 Torr, it will be difficult to start discharge.
More preferably, the pressure is selected in the range of 600 to 900 Torr. The treatment strength for polymer resin films should be selected depending on the polymer resin film to be treated, but in the case of heat-resistant polymer resin films,
It is preferable to process with a processing power density of 200W・min/m 2 or more, more preferably 500W・min/m 2 or more,
More preferably, processing is performed at a processing power density of 1000 W·min/m 2 or more. In normal corona discharge treatment, if the treatment is performed at a power density of 500 W min/m2 or more , the discharge becomes an arc discharge, and pinholes occur in the polymer film to be treated and the coating dielectric of the drum-shaped electrode, but the method of the present invention Such a phenomenon is not seen at all, and it has the advantage of being able to supply large amounts of power.
Note that the processing power density here is a value obtained by dividing the output by the width of the discharge portion (in the width direction of the drum-shaped electrode) and the processing speed of the film. Next, the method of the present invention will be explained using an example of an implementation apparatus. In the figure, a polymer resin film 1 is sent out to a discharge treatment section 9 by a delivery roll 2. A gas having a predetermined composition is supplied to the discharge treatment section 9 from a gas introduction system 8, and is maintained at a predetermined gas level by a simple exhaust device (not shown). In the discharge processing section, the film 1 is subjected to a discharge formed between it and the grounded drum-shaped electrode 4 by a high frequency high voltage applied to the high voltage application electrode 3 from a high voltage power source 5 via a matching transformer 6. After being twisted and processed, it is wound up on a winding roller 7. [Example] The present invention will be specifically explained below with reference to Examples, in which the physical properties during the implementation were measured by the following methods. [Measurement method and evaluation criteria for physical properties] After applying thermosetting acrylic adhesive or poamide adhesive to the treated surface of the treated film,
Laminated with copper foil using a laminator. Measurement of adhesive strength Universal tensile testing machine (manufactured by Toyo Baldwin,
The adhesion between the film and the silver foil was measured using a tensilon (Tensilon). Evaluation of blocking property Put the treated sides of the treated film together, and then
1 in an atmosphere of 60℃90% with a load of 500g
After being left for a week, the film was taken out, and when the film peeled off gently, it was judged as good, if it did not peel off easily, and if it did not peel off, it was judged as poor. Measurement of electrode surface temperature Radiation type surface thermometer (manufactured by Yokogawa Electric
MODEL2542) was used to measure the surface temperature immediately after the discharge stopped. Examples 1 to 5, Comparative Examples 1 to 6 The polymer resin to be treated was an aromatic polyimide film with a thickness of 25 μm and a width of 508 mm formed from a condensate of pyromellitic dianhydride and 4,4-diaminodiphenyl ether. (“Kapton” manufactured by Toray Dupont Co., Ltd.) using Ar gas,
Processing was carried out in an atmosphere of 760 Torr, at a film speed of 15 m/min, and with the processing power density changed as shown in Table 1. In addition, the high voltage application electrode 3 is approximately 1 mm.
The drum-shaped electrode 4 is made of iron rod-shaped electrode coated with glass with a thickness of approximately 1.
Iron electrodes coated with 20 mm rubber were used, and water at 20 to 30°C was used as the coolant. At this time, the electrode surface temperature was 30° C. in all Examples. As a comparative example, ordinary corona discharge treatment was performed using air (tungsten wire was used as a high voltage application electrode) (Comparative Examples 1 to 3), and treatment was performed in the same manner as in Example 1 except that Ar was used instead of air. (Comparative Examples 4 to 6). The adhesive strength between each treated film and copper foil was measured using a thermosetting acrylic adhesive, and the results are shown in Table 1. In addition, in both Examples 1 to 5 and Comparative Examples 1 to 6, the drum-shaped ground electrode has a surface length of 600 mm, and the discharge is formed over the entire surface length, so the discharge power density was calculated assuming the width of the discharge portion to be 0.6 m. did. As shown in Table 1, all of the films treated by the method of the present invention exhibit adhesive strength exceeding the adhesive strength level (1.5 kg/cm) required for polyimide films for use in flexible printed circuits, which is significantly greater than that of untreated films. A reforming effect was observed. On the other hand, Comparative Examples 1 to 3 and Comparative Examples 4 to
In the corona discharge treatment No. 6, although a slight modification effect was observed, the improvement was slight even when the discharge power density was increased. Note that when a power of 500W min/ m2 is applied, the discharge becomes an arc discharge, and the dielectric material of the film or drum-shaped electrode breaks down.
A pinhole occurred. The films treated in Comparative Examples 1 to 3 showed strong blocking, and Comparative Examples 4 to 6 showed blocking, although slightly weaker than Comparative Examples 1 to 3. In contrast, almost no blocking was observed in the present invention. Furthermore, when the treated film of the present invention was bonded to copper foil using a thermosetting polyamide adhesive, adhesive strength similar to that shown in Table 1 was obtained. Comparative Examples 7 and 8 The aromatic polyimide film used in Example 1 was treated with Ar-N 2 (10 mol%: 90 mol%) using the apparatus shown in the figure.
(Comparative Example 7) and a mixed gas of Ar-N 2 (19 mol%: 81 mol%) (Comparative Example 8) were used in Example 1, respectively.
The treatment was carried out under the same conditions as above and at a power density of 1000 W min/m 2 . When the adhesive strength and blocking properties of each treated film were examined, Comparative Example 7 had an adhesive strength of 1.9 kg/cm, but showed strong blocking.
Comparative Example 8 also showed good adhesive strength of 2.0 Kg/cm, but
Blocking was shown although the degree was weaker than in Comparative Example 7. Comparative Example 9 Example 1 except that 90°C hot water was used as the refrigerant
It was processed in the same way. The film had streaks, and the glass covering the high voltage application electrode broke within a few seconds after the discharge started. The electrode surface temperature at this time is
It was 120℃. Comparative Example 10 The same treatment as in Example 1 was carried out except that water as a refrigerant was not flowed through the high voltage application electrode. Immediately after the discharge starts, the glass covering the electrode breaks, and an arc discharge occurs from the broken part.
There was a hole in the film. Immediately after this, the discharge was stopped and the electrode surface temperature was measured and found to be 250°C. Comparative Examples 11 to 13 The treatments were carried out in the same manner as in Examples 1, 3, and 5, except that a -20°C glycol refrigerant (manufactured by Nisso Chemical Industry Co., Ltd., Nibline Z-1) was used as the refrigerant.
The electrode surface temperature at this time was 5°C. As shown in Table 1, sufficient adhesive strength could not be obtained in any case. Comparative Example 14 Processing was carried out in the same manner as in Example 1, except that the processing power density was 300 w·min/m 2 . Adhesion strength is 1.4
Kg/cm was insufficient. Example 6 A 26 μm film of tetrafluoroethylene and hexafluoropropylene copolymer was treated with low temperature plasma,
Photoelectron spectroscopy (manufactured by YG Scientific Corporation)
A fluorine film having a modified surface with a surface atomic composition of F/C=1.57 and O/C=0.040 as measured by ESCALAB-5 was prepared. Next, the same polyimide film used in Example 1 was treated with Ar-CO 2 (90
1000W in a mixed gas of (mol%: 10mol%)
The treatment was performed at a power density of min/m 2 . The electrode surface temperature at this time was 30°C. Next, the treated surfaces of both of the obtained films were placed together, and using a roll laminator adjusted to a roll temperature of 260°C, the lamination speed was 0.5 m/min, and the linear pressure was 10
Bonded at Kg/cm. When the adhesive strength between the films of this film was measured, it was found that the adhesive strength was 0.4 kg/cm or more, and the fluorine film caused netting. In addition, when using untreated polyimide film, lamination at a roll temperature of 260°C will result in a
Only an extremely weak adhesion force of less than g was obtained.

【表】 [発明の効果] 本発明は上述のごとく構成したので、耐熱性高
分子のごとき、表面改質しにくい樹脂フイルムに
対しても顕著な改質効果を達成することができる
うえ、従来の方法に比べて経時的安定性に優れ、
ブロツキングなどの欠点のない表面処理を可能と
することができる。また本発明は常圧または常圧
に近い雰囲気下で処理することができるため、装
置的に簡単かつ安価であり、極めて実用効果の高
い表面処理技術ということができる。
[Table] [Effects of the Invention] Since the present invention is constructed as described above, it is possible to achieve a remarkable modification effect even on resin films that are difficult to surface modify, such as heat-resistant polymers, and It has superior stability over time compared to the method of
It is possible to perform surface treatment without defects such as blocking. Furthermore, since the present invention can be treated under normal pressure or an atmosphere close to normal pressure, it is simple and inexpensive in terms of equipment, and can be said to be a surface treatment technique with extremely high practical effects.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施する際に使用する装置の1例
を示すものである。 1:被処理高分子樹脂、3:高電圧印加電極、
4:被処理高分子樹脂支持電極、9:放電処理
部。
The figure shows one example of an apparatus used in carrying out the present invention. 1: Polymer resin to be treated, 3: High voltage application electrode,
4: Polymer resin support electrode to be treated, 9: Discharge treatment section.

Claims (1)

【特許請求の範囲】[Claims] 1 高分子樹脂フイルムの表面を改質するに際
し、少なくとも20モル%以上の希ガス類元素を含
有する、100〜1000Torrのガス雰囲気中におい
て、表面が誘電体によつて被覆され、かつ10〜
100℃に冷却された電極と、上記高分子樹脂フイ
ルムを支持する誘電体被覆電極との間に印加され
た高電圧によつて形成される放電によつて、上記
高分子樹脂フイルム表面を500w・min/m2以上
の処理強度で連続的に処理することを特徴とする
高分子樹脂フイルムの表面改質方法。
1. When modifying the surface of a polymer resin film, the surface is coated with a dielectric material in a gas atmosphere of 100 to 1000 Torr containing at least 20 mol% or more of a rare gas element, and
The surface of the polymer resin film is heated to 500W by the discharge formed by the high voltage applied between the electrode cooled to 100°C and the dielectric covered electrode supporting the polymer resin film. A method for surface modification of a polymer resin film characterized by continuous treatment at a treatment intensity of min/m 2 or more.
JP29724387A 1987-11-24 1987-11-24 Surface modification of polymer resin Granted JPH01138242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29724387A JPH01138242A (en) 1987-11-24 1987-11-24 Surface modification of polymer resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29724387A JPH01138242A (en) 1987-11-24 1987-11-24 Surface modification of polymer resin

Publications (2)

Publication Number Publication Date
JPH01138242A JPH01138242A (en) 1989-05-31
JPH0474372B2 true JPH0474372B2 (en) 1992-11-26

Family

ID=17844016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29724387A Granted JPH01138242A (en) 1987-11-24 1987-11-24 Surface modification of polymer resin

Country Status (1)

Country Link
JP (1) JPH01138242A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672308B2 (en) * 1988-07-04 1994-09-14 新技術事業団 Atmospheric pressure plasma reaction method
JP2589599B2 (en) * 1989-11-30 1997-03-12 住友精密工業株式会社 Blow-out type surface treatment device
DE19732901C1 (en) * 1997-07-30 1998-11-26 Tdz Ges Fuer Innovative Oberfl Surface treatment of plastics by corona discharge
JP2002361667A (en) * 2001-06-06 2002-12-18 Nipro Corp Method for manufacturing laminate rubber plug
JP6715461B2 (en) 2014-09-05 2020-07-01 国立大学法人大阪大学 Method for producing surface-modified molded body, and method for producing composite using the surface-modified molded body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53101069A (en) * 1977-02-16 1978-09-04 Ebauches Sa Preparation of plastic base plate for plating
JPS57164132A (en) * 1981-01-23 1982-10-08 Uop Inc Increase of metal-coated polymer peeling strength
JPS5846340A (en) * 1981-09-01 1983-03-17 アグフア−ゲヴエルト・アクチエンゲゼルシヤフト Method and apparatus for pretreating photographic substrate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55131087U (en) * 1979-03-12 1980-09-17
JPS56147590U (en) * 1980-04-07 1981-11-06

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53101069A (en) * 1977-02-16 1978-09-04 Ebauches Sa Preparation of plastic base plate for plating
JPS57164132A (en) * 1981-01-23 1982-10-08 Uop Inc Increase of metal-coated polymer peeling strength
JPS5846340A (en) * 1981-09-01 1983-03-17 アグフア−ゲヴエルト・アクチエンゲゼルシヤフト Method and apparatus for pretreating photographic substrate

Also Published As

Publication number Publication date
JPH01138242A (en) 1989-05-31

Similar Documents

Publication Publication Date Title
JP2019519062A (en) Insulated conductor
US3627624A (en) Laminar structures of polyimides and method of manufacture
JP2017136755A (en) Low dielectric multilayer polyimide film
JPH0474372B2 (en)
JP4029732B2 (en) Low dielectric constant polyimide substrate manufacturing method
JP2016183224A (en) Polyimide film and method for producing the same
JP7461622B2 (en) Polyimide Film
JP5046703B2 (en) Polyimide film and method for producing the same
JPH08276547A (en) Modified polyimide/fluoroplastic laminated film
JP2007197696A (en) Low heat-shrinking and highly adhesive polyimide film
JPS63311794A (en) Manufacture of flexible wiring board
US6106949A (en) Reformed polyimide fluorocarbon resin laminated film
JP2007197697A (en) Low heat-shrinking and highly adhesive polyimide film
JPH115264A (en) Spiral tubular product and its manufacture
JP3209511B2 (en) Dielectric roll for corona discharge treatment
JPH1174066A (en) Spiral-pipe-shaped heater and manufacture thereof
JPH01214096A (en) Manufacture of flexible printed circuit board
KR20070066989A (en) Highly-adhesive polyimide film and method of manufacturing the same
JP6603021B2 (en) Polyimide film
JP5871291B2 (en) Polyimide film
JP2004051712A (en) Polyimide film and method for producing the same
EP0764520B1 (en) Modified polyimide-fluororesin laminate film
JPH11176562A (en) Spiral tubular heater and manufacture thereof
JPH1158543A (en) Spiral tubular article with good insulating characteristics and its manufacture
KR20070066990A (en) Highly-adhesive polyimide film and method of manufacturing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term