JPH047399B2 - - Google Patents

Info

Publication number
JPH047399B2
JPH047399B2 JP58201932A JP20193283A JPH047399B2 JP H047399 B2 JPH047399 B2 JP H047399B2 JP 58201932 A JP58201932 A JP 58201932A JP 20193283 A JP20193283 A JP 20193283A JP H047399 B2 JPH047399 B2 JP H047399B2
Authority
JP
Japan
Prior art keywords
coal
oil
slurry
weight
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58201932A
Other languages
Japanese (ja)
Other versions
JPS59108087A (en
Inventor
Aaru De Bo Jooji
Jii Komorii Arufuretsudo
Jei Hitsuho Edoin
Eru Goorudoman Uiriamu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydrocarbon Research Inc
Original Assignee
Hydrocarbon Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydrocarbon Research Inc filed Critical Hydrocarbon Research Inc
Publication of JPS59108087A publication Critical patent/JPS59108087A/en
Publication of JPH047399B2 publication Critical patent/JPH047399B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

背景技術 この発明は石炭を熱スラリー化油中で加熱する
ことにより石炭を乾燥し且つ脱酸素することに関
するもので、とくに石炭スラリー中の石炭をスラ
リーを石炭液化工程に供給する前に177〜343℃
(350〜650〓)の温度で乾燥し且つ脱酸素する方
法に関するものである。 石炭液化方法において、最初に原料炭を粉砕し
乾燥して表面水分および含有水分を除き残存水分
を約3重量%未満まで低下させており、このさい
石炭を乾燥トンネル内を通過させるように顕熱を
利用するのが普通である。また、原料炭には若干
の望ましくない酸素が含まれるのが普通である。
液化工程への供給石炭が高酸素含量を有する場合
の主たる不利益は酸素が高価な水素と化合して商
業的に無価値の水を生成することである。また石
炭液化方法からの炭化水素液体生成物に含まれる
酸素化化合物は輸送用液体燃料として好ましくな
い。酸素化合物はまた逆行的反応に寄与して反応
しない不溶性有機物質を生成する。 シエイフアー(Schafer)はヒユーエルス
(Fuels)第59巻、5月号、1980年、第295〜304頁
において熱分解操作により乾燥する石炭は高温条
件下脱炭酸し、すなわちCOOH(カルボキシル
基)を分離して二酸化炭素、一酸化炭素および水
を生じる。生成二酸化炭素の各分子に対して1分
子の強固に結合した水もまた乾燥炭から失なわれ
る。結合水および二酸化炭素の影響は低級炭では
一層大きく、その理由は低級炭は高級炭より多量
のカルボキシル基を含み従つて一層多量の水を含
むからである。低級炭の物理的および化学的特
性、ならびに石炭液化方法に対する応答は、石炭
中に強固に保持された水およびカルボキシル基の
存在によつて逆の作用を受けると考えられる。こ
れらの酸素を含有する種類は石炭液化反応装置中
で水素分圧と石炭の転化を減少し、水素の消費を
増加し、拡散特性に影響し、分離と処分の必要を
増大し従つて石炭液化方法の経済に逆に作用する
ことが知られている。 直接石炭液化方法において温度制御混合槽を用
いて粒子状石炭と熱スラリー化油を配合する。ス
ラリー化油は通常工程から取り出し、次いでガ
ス、水分および軽いナフサの除去処理を行ない、
スラリー化段階に再循環する前に冷却する。ウエ
ーバー(Weber)は米国特許第4209911号明細書
において石炭液化前でのスラリー混合槽中におけ
る石炭乾燥方法を開示している。しかしウエーバ
ーはこの発明が提供するような、一層きびしい乾
燥条件における石炭の脱酸素またはスラリーの反
応性の増加を何ら開示しない。 発明の要約 この発明は高温に保つた、石炭−油スラリー混
合槽中で石炭を乾燥し且つ脱酸素する方法を提供
する。この発明は粒子状石炭を乾燥し且つ脱酸素
して中に含まれる水分と酸素を除く方法におい
て、供給粒子状石炭を炭化水素スラリー化油と混
合帯域中で混合して約1.2〜2.5の油/石炭重量比
を有する石炭−油スラリー混合物を与える段階;
前記石炭−油スラリー混合物を177〜343℃(350
〜650〓)の温度に加熱して水分と酸素の蒸気を
石炭から発生させる段階;および減少した水分お
よび酸素含量を有する乾燥石炭−油スラリー混合
物を回収する段階を備える、石炭スラリーの乾燥
および脱酸素方法である。この発明を用いること
により、石炭スラリーの水および酸素含量を低下
させ、れき青及び低級亜れき青炭並びに同様な有
機堆積物を含む石炭スラリーの相対的反応性をス
ラリー混合槽中の石炭−油スラリー温度を少なく
とも約177℃(350〓)で通常343℃(650〓)を超
えない範囲に上げることによつて増加させる。加
熱石炭−油スラリーに残存する水分は約3重量%
未満に減少し、酸素含量は約7重量%未満に減少
する。また、反応装置内で一層高い水素分圧を生
じ石炭の生成油への全転化を増加させる一層反応
性の高いスラリーが得られる。所定の全反応圧力
において、この発明により生成物の品質を向上さ
せ、再循環流を冷却するのに必要なエネルギーを
減少させることができる。 この石炭の乾燥と脱酸素段階は通常単一の混合
槽で行なうが、所要に応じて、温度と圧力を増加
する条件で2基または3基の段階混合槽を用いる
ことができる。この石炭乾燥および脱酸素段階は
燃料用乾燥石炭−油スラリー流を得るのに用いる
ことができるが、石炭液化方法への石炭供給流の
前処理段階として用いるのが好ましく、接触石炭
液化方法への供給流を得るのがさらに好ましい。 従つて、この石炭乾燥と脱酸素段階を石炭液化
方法に用いる場合、H2消費の減少、石炭転化の
増加、生成物品質の改善、再循環流の冷却に要す
るエネルギーの減少、かくて直接石炭液化または
リグニン品質改良の経済改善を意図する。同じよ
うな利益が一層高濃度のミネラル物質を含有しク
レー水を含有する石炭を処理する場合にもクレー
からのスチーム蒸気の発生により起こされる縮合
反応生成物を減少または無くすることによつて期
待される。 発明の説明 この発明についてさらに石炭液化方法の石炭前
処理段階として述べる。第1図にこの発明に従う
石炭−油スラリーの乾燥と脱酸素方法の工程図を
示す。第1図に示すように、10からの原料炭を
粉砕分粒段階12で粉砕または磨砕し篩別して粒
度範囲30〜375メツシユ(米国ふるい系列)を得
る。また所要に応じて、石炭を清浄化または選鉱
してミネラル物質を除くことができる。次いで1
3で粒子状石炭をスラリー混合槽14に供給し、
ここで標準沸点範囲約260〜399℃(500〜750〓)
を有する炭化水素スラリー化油16と混合する。
槽の圧力を工程から導いた再循環ガス流の一部に
より0〜10.5Kg/cm2ゲージ圧(0〜150psig)、好
ましくは0〜3.5Kg/cm2ゲージ圧(0〜50psig)
の圧力に維持する。13の粒子状石炭を混合槽1
4に従来の加圧ロツクホツパーを経てまたはスク
リユー形または星形フイーダー(図面に示してい
ない)を経て供給することができる。 粒子状石炭とスラリー化油との有効な混合を槽
14内において少なくとも約0.6m/sec(2ft/
sec)の液体速度を与えることにより行なう。大
気圧または加圧混合槽内の石炭と油を傾けて設け
たかき混ぜ機または混合機、じやま板および再循
環循環管路または良く混合された石炭−油スラリ
ーを与える同様の機械的装置を用いて混合するこ
とができる。このような混合を槽にとりつけた回
転混合機15によるか、スラリー流17の一部1
7aのポンプ18による槽への再循環によるかの
いずれか、または両方の装置を用いて有効に行な
うことができる。 混合槽14内のスラリー温度を通常約288〜371
℃(550〜700〓)の温度の熱スラリー化油16を
再循環することにより121〜343℃(250〜650〓)
に維持する。スラリー槽温度が177〜260℃(350
〜500〓)であるのが好ましい。槽14は通常外
側断熱部14aを備えて保熱し内部の所望するス
ラリー温度の維持を助ける。石炭の槽14内滞留
時間は供給石炭の水分含量および所望する乾燥度
によるが、通常343℃(650〓)という高乾燥温度
での約0.2時間から高水分炭で且つ約121℃(250
〓)という低乾燥温度での約3時間までの範囲で
ある。所望に応じて工程制御の目的のために一層
長い滞留時間を用いることができる。発生水分と
酸素を含む蒸気流を19で取り出す。17の得ら
れた石炭/油スラリー混合物は著しく水分および
酸素含量が減少しており、これを20で加圧し石
炭液化工程24に流れ21として送る。 直接石炭液化用石炭および再循環スラリー化油
の温度制御スラリー混合槽14を121〜343℃
(250〜650〓)の温度および0〜10.5Kg/cm2ゲー
ジ圧(0〜150psig)の圧力で運転する。所要に
応じて、水を除いたクレー固体のような、スラリ
ー混合槽内に沈降する任意の細かい無機固体を槽
14からドレレイン14bで独立に回収すること
ができる。テーパーをつけた底部を槽に設けてこ
の種の細かい沈積物を捕集し得るようにすること
によりこのような回収が容易となる。スラリー混
合槽14の圧力が大気圧かこれに近い場合は常
に、19で槽から発生した蒸気をエダクター装置
によつて除きガス、油及び水回収系(図示せず)
に送ることができる。 次いで、混合槽14からの乾燥し且つ脱酸素し
たスラリーを通常予熱器22を経て石炭液化工程
24、接触または非接触方法のいずれでもよい、
に送る。この工程では、反応した流出液物質を頂
部流れと底部流れに分け頂部物質を再循環ガス、
ナフサおよび留出油留分に分ける。ボトムスを等
温的に3.5〜10.5Kg/cm2ゲージ圧(50〜150psig)
の圧力にフラツシユし液体サイクロン装置による
ような液体−固体分離段階に送る。ガス流を25
で、軟質炭化水素液体生成物を26で、重質炭化
水素液体生成物を27で回収する。121〜343℃
(250〜650〓)の温度を有する液体流をスラリー
化槽14に石炭スラリー化油として再循環する。
石炭−油混合槽を通常液体サイクロンの熱いつ流
流れを流れ16として再循環することにより十分
に加熱することができるが、電熱器のようなもの
から追加の熱量を、工程始動の目的のような場合
に必要に応じて供給することができる。再循環ガ
スの一部を石炭ホツパーと混合槽を加圧する前に
混合槽の圧力でフラツシユする。 石炭乾燥および脱酸素段階は通常または好まし
くは単一の混合槽で行なうが、2基またはこれよ
り多い段階槽でさえそれぞれ温度および圧力の増
加する条件で操作して用いることができる。第一
の混合槽からの石炭−油スラリーを次の槽にさら
に加熱するために圧送し、槽から発生した蒸気流
を回収系(図示せず)に送る。 石炭−油スラリーの加熱乾燥段階は第2図に示
すように接触石炭液化方法において好適に用いら
れる。この好適例において、原料炭を第1図にお
けると同様に粉砕し分粒し熱スラリー混合槽14
に導入する。熱スラリー化混合槽14から、加熱
石炭−油スラリーをポンプ20により、35〜352
Kg/cm2(500〜5000psi)のような高圧に加圧し、
次いで予熱器22を経て触媒床32を有する反応
装置30に送る。28の再循環水素を29で再加
熱し、必要に応じて新たな補給水素と合して反応
装置30に供給することができ、または別に流れ
28bとして加熱器22に送ることができる。 次いで、石炭−油スラリーと水素流が触媒床3
2を有する反応装置30に入り、所望の水素化反
応を達成する流量および温度と圧力の条件で底部
から整流板31を経て上方に均一に流れる。床3
2にある触媒はコバルト、鉄、モリブデン、ニツ
ケル、スズ、および業界で知られる他の炭化水素
水素化触媒金属よりなる群の中から選ばれた金属
をアルミナ、マグネシア、シリカ、および類似物
質よりなる群の中から選ばれた基材上に析出させ
た触媒から選択しなければならない。さらに、粒
子状水素化触媒を処理石炭トン当り触媒約0.045
〜1.36Kg(0.1〜3.0ポンド)の割合で連絡33に
より反応装置30に加えることができる。 上記特定の触媒固体粒子の床を有する反応装置
を通つて液体とガス状物質を上方に並流で流し、
固体粒子床をその堆積高さ上少なくとも約10%だ
け、通常は20〜100%だけ膨張させることにより、
固体粒子を反応装置内で上方に流れる流れにより
ランダム沸騰運動にもたらす。特定の程度の体積
膨脹にある沸騰床の特徴は細かい、軽い方の固体
粒子が触媒床を通つて上方に移るので、沸騰床を
形成する接触粒子が反応装置に保持され一層細か
い、軽い方の物質が反応装置を通り過ぎることで
ある。それより上には接触粒子がほとんど上らな
い触媒床の上のレベル32aが沸騰の上のレベル
である。 一般に、触媒の塊の総密度は約400〜3204Kg/
m3(25〜200b/ft3)、液体の上方への流量は
反応装置の水平断面積m2(ft2)当り約204〜4889
/min(5〜120ガロン/min)であり、沸騰床
の膨脹体積は通常沈降塊の体積の2倍より大きく
ない。反応装置内における所望の空塔上昇液速度
を保つために、沸騰の上のレベル32aの上から
除き下降導管34とポンプ35を経て反応装置3
0の底部に、次いで整流板31を経て上方に再循
環させる液体のように、液体スラリーの一部を反
応装置に再循環させるのが普通である。反応帯域
内で所望の触媒活性を維持するように廃触媒を連
絡36で抜き取ることにより除くことができる。 反応装置の運転条件は371〜499℃(700〜930
〓)の温度と70〜352Kg/cm2(1000〜5000psi)の
水素分圧、好ましくは399〜482℃(750〜900〓)
と70〜281Kgcm2(1000〜4000psi)の水素分圧とい
う広い範囲に維持する。石炭処理量すなわち空間
速度は160〜2403Kgの石炭/時間/反応装置体積
m3(10〜150ポンドの石炭/時間/反応装置体積
ft3)の範囲として、チヤー(char)として得ら
れる未転化炭の収率が供給無水無灰炭の約4〜10
重量%であるようにする。石炭と触媒粒子の相対
的大きさおよび沸騰条件は触媒が反応装置に保持
される一方、灰および未転化炭すなわちチヤー粒
子は液体反応生成物とともに運び出されるような
条件である。 反応装置30から、事実上固体触媒粒子を含ま
ない流出液流37を回収し、38で冷却し、次い
で相分離器40に送る。分離器40から、軟質ガ
ス留分流を41で除き水素精製段階42に送る。
中純度の水素流43を精製段階42から回収し、
流れ28として加熱器29を経て反応装置30に
再循環してそこで加熱水素流29aとして必要な
水素の一部を供給する。 分離器40から液体立分流44を回収し、45
で減圧し相分離器46に送る。この分離器は大気
圧付近と260〜343℃(500〜650〓)の温度で作動
し47で軽質炭化水素液体流また48で重質炭化
水素液体流の除去を可能にする。流れ47はナフ
サと軽質留油留分を含み分留段階50に送り、こ
こで炭化水素ガス生成物を51で回収し軽質留出
油生成物を52で回収する。水素化石炭液化留分
48は通常約288℃(550〓)より高い、好ましく
は316〜510℃(600〜950〓)の標準沸点範囲を有
しアスフアルテン、プレアスフアルテン、未転化
炭および固体灰分を含むが、この留分48を多数
の液体サイクロンのような液体−固体分離段階5
4に送る。固体濃度を減じたいつ流260℃+(500〓
)液体流を56で除く。液体流56の一部57
を分留塔50に送り残りの58を59で反応装置
圧力に加圧しスラリー混合槽14で必要なスラリ
ー化油を供給する。 固体濃度を増加した、分離段階54の下降液体
流62を除き64の真空蒸留に送る。真空蒸留器
から得られる塔頂液65を流れ66と合して重質
留出油生成物流68を得る。所要に応じて、流れ
68の一部をスラリー化油16に用いることがで
きる。また所要に応じて、流れ66の少なくとも
一部67を真空蒸留器64に送ることができる。
若干のアスフアルテン、ブレアスフアルテンおよ
び未転化炭および固体灰分を含む重質真空ボトム
ス流69を油生成物を回収するようにコーキング
するか工程に必要な補給水素を製造するようにガ
ス化するかしてさらに処理することができる。 この発明をさらに以下の実施例によつて説明す
るが、範囲を限定するものでは決してない。 比較例 1 50〜325メツシユの粒度(米国ふるい系列)を
有し10〜25重量%の水分を含有するワイオダツク
(Wyodak)亜れき青粒子状石炭を石炭液化工程
装置から槽に再循環される熱炭化水素スラリー化
油によつて110〜121℃(230〜250〓)の温度範囲
に保たれたスラリー混合槽に供給した。供給石炭
中の最初の水分は11〜17.5重量%の間で変化し、
石炭のスラリー槽内滞留時間は約2時間で、供給
石炭に含まれる水はほとんど槽から蒸気として蒸
発した。数日間にわたるスラリー槽乾燥操作の平
均的結果を表1に示す。
BACKGROUND OF THE INVENTION This invention relates to drying and deoxidizing coal by heating the coal in hot slurry oil, and in particular to drying and deoxidizing coal in a coal slurry before feeding the slurry to a coal liquefaction process. ℃
It relates to a method of drying and deoxidizing at a temperature of (350-650〓). In the coal liquefaction method, the coking coal is first crushed and dried to remove surface moisture and contained moisture, reducing the residual moisture to less than 3% by weight. At this time, the coal is passed through a drying tunnel using sensible heat. It is common to use . Coking coal also typically contains some undesirable oxygen.
The main disadvantage when the coal feed to the liquefaction process has a high oxygen content is that the oxygen combines with the expensive hydrogen to produce commercially worthless water. Oxygenated compounds contained in hydrocarbon liquid products from coal liquefaction processes are also undesirable as liquid transportation fuels. Oxygen compounds also contribute to retrograde reactions to produce insoluble organic materials that do not react. Schafer, in Fuels Vol. 59, May 1980, pp. 295-304, reports that coal dried by a pyrolysis operation is decarboxylated under high temperature conditions, that is, COOH (carboxyl groups) are separated. produces carbon dioxide, carbon monoxide and water. For each molecule of carbon dioxide produced, one molecule of tightly bound water is also lost from the drying coal. The effect of bound water and carbon dioxide is greater on lower grade coals because they contain more carboxyl groups and therefore more water than higher grade coals. The physical and chemical properties of lower grade coals and their response to coal liquefaction processes are believed to be adversely affected by the presence of tightly held water and carboxyl groups in the coal. These oxygen-containing species reduce the hydrogen partial pressure and coal conversion in the coal liquefaction reactor, increase hydrogen consumption, affect diffusion properties, and increase the need for separation and disposal, thus reducing coal liquefaction. It is known to have an adverse effect on the economy of the method. In the direct coal liquefaction process, particulate coal and hot slurry oil are blended using a temperature-controlled mixing tank. The slurried oil is normally removed from the process and then treated to remove gas, moisture and light naphtha.
Cool before recycling to slurry stage. Weber, in US Pat. No. 4,209,911, discloses a method for drying coal in a slurry mixing vessel prior to coal liquefaction. However, Weber does not disclose any deoxidation of the coal or increased reactivity of the slurry at more severe drying conditions as provided by this invention. SUMMARY OF THE INVENTION The present invention provides a method for drying and deoxidizing coal in a coal-oil slurry mixing tank maintained at an elevated temperature. The present invention provides a process for drying and deoxygenating granular coal to remove moisture and oxygen contained therein, by mixing a feed granular coal with a hydrocarbon slurry oil in a mixing zone to obtain an oil of about 1.2 to 2.5 ml. providing a coal-oil slurry mixture having a weight ratio of /coal;
The coal-oil slurry mixture was heated to 177-343°C (350°C
Drying and desorption of a coal slurry comprising heating to a temperature of ~650㎓) to generate moisture and oxygen vapor from the coal; and recovering a dry coal-oil slurry mixture having reduced moisture and oxygen content. Oxygen method. By using this invention, the water and oxygen content of a coal slurry is reduced and the relative reactivity of coal slurries containing bituminous and lower subbituminous coals and similar organic deposits is reduced. The slurry temperature is increased by increasing the temperature of the slurry to at least about 177°C (350°) and usually no more than 343°C (650°). The remaining moisture in the heated coal-oil slurry is approximately 3% by weight.
The oxygen content is reduced to less than about 7% by weight. A more reactive slurry is also obtained which produces a higher hydrogen partial pressure within the reactor and increases the total conversion of coal to product oil. For a given total reaction pressure, the present invention can improve product quality and reduce the energy required to cool the recycle stream. This drying and deoxygenation stage of the coal is usually carried out in a single mixing tank, but two or three stage mixing tanks can be used at increasing temperatures and pressures if desired. Although this coal drying and deoxygenation step can be used to obtain a dry coal-oil slurry stream for fuel use, it is preferably used as a pretreatment step for the coal feed stream to the coal liquefaction process, and is preferably used as a pretreatment step for the coal feed stream to the catalytic coal liquefaction process. It is further preferred to obtain a feed stream. Therefore, when this coal drying and deoxygenation step is used in a coal liquefaction process, it reduces H 2 consumption, increases coal conversion, improves product quality, reduces the energy required for cooling the recycle stream, and thus directly Intended to improve the economics of liquefaction or lignin quality improvement. Similar benefits may be expected when processing coal containing higher concentrations of mineral matter and clay water by reducing or eliminating condensation reaction products caused by the generation of steam vapor from the clay. be done. DESCRIPTION OF THE INVENTION The invention will be further described as a coal pretreatment step in a coal liquefaction process. FIG. 1 shows a process diagram of a method for drying and deoxidizing a coal-oil slurry according to the present invention. As shown in FIG. 1, raw coal from 10 is crushed or ground and sieved in a crushing and sizing stage 12 to obtain a particle size range of 30-375 mesh (US sieve series). If desired, the coal may also be cleaned or beneficent to remove mineral matter. then 1
3, supplying the granular coal to the slurry mixing tank 14,
Here the standard boiling point range is about 260~399℃ (500~750〓)
and a hydrocarbon slurry oil 16 having the following properties.
The pressure in the vessel is determined by a portion of the recirculated gas stream derived from the process from 0 to 10.5 Kg/ cm2 Gauge (0 to 150 psig), preferably from 0 to 3.5 Kg/ cm2 Gauge (0 to 50 psig).
Maintain pressure. Mixing tank 1 with 13 granular coals
4 can be fed via a conventional pressurized lock hopper or via a screw or star feeder (not shown in the drawings). Effective mixing of the granular coal and slurried oil is carried out in tank 14 at least about 0.6 m/sec (2 ft/sec).
This is done by giving a liquid velocity of sec). The coal and oil in an atmospheric or pressurized mixing tank are mixed using an agitator or mixer, a sill board and a recirculating circuit or similar mechanical device that provides a well-mixed coal-oil slurry. can be mixed together. Such mixing may be carried out by a rotary mixer 15 installed in a tank, or by a part 1 of the slurry flow 17.
7a by recirculation to the tank by pump 18, or by means of both devices. The temperature of the slurry in the mixing tank 14 is usually about 288 to 371.
121-343℃ (250-650〓) by recirculating the thermal slurry oil 16 at a temperature of ℃ (550-700〓)
maintain it. Slurry tank temperature is 177~260℃ (350℃)
~500〓) is preferable. The vessel 14 typically includes an outer insulation 14a to retain heat and help maintain the desired internal slurry temperature. The residence time of the coal in the tank 14 depends on the moisture content of the fed coal and the desired degree of dryness, but typically ranges from about 0.2 hours at a high drying temperature of 343°C (650°C) to about 121°C (250°C) with high moisture content.
〓) at a low drying temperature of up to about 3 hours. Longer residence times can be used for process control purposes if desired. A vapor stream containing evolved moisture and oxygen is removed at 19. The resulting coal/oil slurry mixture of 17, which has a significantly reduced moisture and oxygen content, is pressurized at 20 and sent as stream 21 to a coal liquefaction step 24. Temperature-controlled slurry mixing tank 14 for direct coal liquefaction coal and recirculated slurry oil at 121-343℃
It operates at temperatures of (250-650〓) and pressures of 0-10.5 Kg/ cm2 gauge pressure (0-150 psig). If desired, any fine inorganic solids that settle in the slurry mixing tank, such as clay solids minus water, can be recovered independently from the tank 14 at the drain line 14b. Such recovery is facilitated by providing the tank with a tapered bottom to allow collection of this type of fine sediment. Whenever the pressure in the slurry mixing vessel 14 is at or near atmospheric pressure, the steam generated from the vessel is removed at 19 by an eductor device and a gas, oil and water recovery system (not shown).
can be sent to. The dried and deoxygenated slurry from the mixing tank 14 is then typically passed through a preheater 22 to a coal liquefaction step 24, which can be either a contact or non-contact process.
send to In this process, the reacted effluent material is divided into a top stream and a bottom stream, with the top material being recycled into gas and
Separated into naphtha and distillate fractions. Bottoms isothermally 3.5-10.5Kg/cm 2 gauge pressure (50-150psig)
and sent to a liquid-solid separation stage, such as by a hydrocyclone device. 25 gas flow
A soft hydrocarbon liquid product is recovered at 26 and a heavy hydrocarbon liquid product is recovered at 27. 121~343℃
The liquid stream having a temperature of (250-650〓) is recycled to the slurry tank 14 as coal slurry oil.
Although the coal-oil mixing vessel can normally be sufficiently heated by recirculating the hot outflow of the hydrocyclone as stream 16, additional heat from such things as electric heaters may be used for process start-up purposes. It can be supplied as needed. A portion of the recirculated gas is flushed at the pressure of the mixing tank prior to pressurizing the coal hopper and mixing tank. Although the coal drying and deoxygenation stages are usually or preferably carried out in a single mixing vessel, two or even more stage vessels may be used, each operating at conditions of increasing temperature and pressure. The coal-oil slurry from the first mixing tank is pumped to the next tank for further heating, and the steam stream generated from the tank is sent to a recovery system (not shown). The thermal drying step of the coal-oil slurry is preferably used in the catalytic coal liquefaction process as shown in FIG. In this preferred embodiment, raw coal is pulverized and sized in the same manner as in FIG.
to be introduced. The heated coal-oil slurry is pumped from the thermal slurry mixing tank 14 by the pump 20 to 35 to 352
Pressurized to high pressure such as Kg/cm 2 (500~5000psi),
It then passes through a preheater 22 to a reactor 30 having a catalyst bed 32. Recycled hydrogen at 28 can be reheated at 29 and optionally combined with fresh make-up hydrogen and fed to reactor 30, or can be sent separately to heater 22 as stream 28b. The coal-oil slurry and hydrogen stream are then passed through the catalyst bed 3.
2, and uniformly flows upward from the bottom through the baffle plate 31 under flow rate, temperature and pressure conditions that achieve the desired hydrogenation reaction. floor 3
The catalyst in No. 2 comprises a metal selected from the group consisting of cobalt, iron, molybdenum, nickel, tin, and other hydrocarbon hydrogenation catalyst metals known in the industry, such as alumina, magnesia, silica, and similar materials. The catalyst must be selected from a group of catalysts deposited on a selected substrate. In addition, the particulate hydrogenation catalyst processes approximately 0.045 catalysts per ton of coal.
0.1 to 3.0 lbs. can be added to reactor 30 via connection 33. flowing a liquid and a gaseous substance in cocurrent upwardly through a reactor having a bed of said specific catalytic solid particles;
By expanding the solid particle bed by at least about 10% above its pile height, typically by 20-100%,
The solid particles are brought into random boiling motion by an upwardly flowing flow within the reactor. The characteristic of an ebullated bed at a certain degree of volumetric expansion is that as the finer, lighter solid particles move upward through the catalyst bed, the contact particles forming the effervescent bed are retained in the reactor and the finer, lighter solid particles move upward through the catalyst bed. The substance is passed through the reactor. The level 32a above the catalyst bed above which very few contact particles rise is the level above boiling. Generally, the total density of the catalyst mass is about 400~3204Kg/
m 3 (25-200 b/ft 3 ), the upward flow rate of liquid is approximately 204-4889 m 2 (ft 2 ) of the horizontal cross-sectional area of the reactor.
per minute (5 to 120 gallons per minute), and the expanded volume of the ebullated bed is usually no greater than twice the volume of the settled mass. In order to maintain the desired superficial rising liquid velocity in the reactor, the reactor 3 is removed from above the level 32a above the boil via a downconduit 34 and a pump 35.
It is common to recirculate a portion of the liquid slurry to the reactor, such as recirculating the liquid to the bottom of the reactor and then upwardly through the baffle plate 31. Spent catalyst can be removed by withdrawal in connection 36 to maintain the desired catalyst activity within the reaction zone. The operating conditions of the reactor are 371-499℃ (700-930℃
〓) temperature and hydrogen partial pressure of 70-352Kg/ cm2 (1000-5000psi), preferably 399-482℃ (750-900〓)
and maintain a wide range of hydrogen partial pressure from 70 to 281Kgcm2 (1000 to 4000psi). Coal throughput or space velocity is 160-2403Kg coal/hour/reactor volume
m 3 (10-150 lbs coal/hour/reactor volume
ft3 ), the yield of unconverted coal obtained as char is about 4 to 10% of the anhydrous ashless coal fed.
% by weight. The relative sizes of the coal and catalyst particles and the boiling conditions are such that the catalyst is retained in the reactor, while the ash and unconverted coal or coal particles are carried away with the liquid reaction products. An effluent stream 37 substantially free of solid catalyst particles is recovered from the reactor 30, cooled at 38, and then sent to a phase separator 40. From separator 40, a soft gas fraction stream is removed at 41 and sent to a hydrogen purification stage 42.
A medium purity hydrogen stream 43 is recovered from the purification stage 42;
It is recycled as stream 28 via heater 29 to reactor 30 where it supplies a portion of the required hydrogen as heated hydrogen stream 29a. A liquid vertical stream 44 is recovered from the separator 40 and 45
The pressure is reduced by , and the mixture is sent to a phase separator 46 . The separator operates at near atmospheric pressure and temperatures of 500-650°C to permit the removal of a light hydrocarbon liquid stream at 47 and a heavy hydrocarbon liquid stream at 48. Stream 47 contains naphtha and light distillate fractions and is sent to fractionation stage 50 where hydrocarbon gas products are recovered at 51 and light distillate products are recovered at 52. Hydrogenated coal liquefaction fraction 48 typically has a normal boiling point range above about 288°C (550°), preferably 316-510°C (600-950°) and contains asphaltenes, pre-asphaltenes, unconverted coal and solid ash. This fraction 48 is passed through a liquid-solid separation stage 5 such as a number of hydrocyclones.
Send to 4. Stream 260℃ + (500〓
+ ) Remove the liquid stream at 56. Portion 57 of liquid stream 56
is sent to the fractionating column 50, the remaining 58 is pressurized to the reactor pressure at 59, and the necessary slurry oil is supplied to the slurry mixing tank 14. The descending liquid stream 62 of separation stage 54, which has increased solids concentration, is removed and sent to vacuum distillation at 64. The overhead liquid 65 obtained from the vacuum still is combined with stream 66 to provide a heavy distillate product stream 68. If desired, a portion of stream 68 can be used for slurrying oil 16. Also, if desired, at least a portion 67 of stream 66 can be sent to vacuum distiller 64.
The heavy vacuum bottoms stream 69, which contains some asphaltenes, breasphaltenes, and unconverted coal and solid ash, is either coked to recover the oil product or gasified to produce make-up hydrogen required for the process. can be further processed. The invention will be further illustrated by the following examples, which are not intended to limit the scope in any way. Comparative Example 1 Wyodak sub-bituminous granular coal having a particle size of 50-325 mesh (US sieve series) and containing 10-25% water by weight was heat recycled from a coal liquefaction process unit to a tank. The slurry was fed into a slurry mixing vessel maintained at a temperature range of 110-121°C (230-250°) by hydrocarbon slurry oil. The initial moisture in the feed coal varies between 11 and 17.5% by weight;
The residence time of the coal in the slurry tank was approximately 2 hours, and most of the water contained in the supplied coal evaporated from the tank as steam. The average results of the slurry tank drying operation over several days are shown in Table 1.

【表】 水、重量%
これらの結果は111〜119℃(232〜246〓)とい
う中程度のスラリー混合槽温度でさえ、最初に11
〜17.5重量%の水分を含有した供給石炭から42〜
52%の水分が除去され水分約4.4〜6.2重量%の乾
燥石炭になつたことを示す。この乾燥石炭−油ス
ラリー原料は石炭液化方法の供給流として好適で
ある。 実施例 1 石炭脱酸素の類似スラリー混合槽による研究を
行なつたが、この場合スラリーは17〜20重量%の
酸素を含有するワイオダツク炭をワイオダツク炭
から得た再循環油と混合したものからなる。石炭
−油スラリーをオートクレーブ中で177〜260℃
(350〜500〓)の間の若干の温度で処理し次いで
分析した。石炭脱酸素の結果および転化とスラリ
ー槽温度の関係を第3図に示す。スラリー槽温度
が約121℃(250〓)から260℃(500〓)に増加す
るとともに、石炭の脱酸素と脱炭酸の増加が起こ
り処理スラリーは石炭転化の増加が得られること
で分かるように、比較的に一層反応性が高くなつ
たのが注目される。石炭中に含まれるカルボキシ
ル基と水分子が失なわれたため一層反応性の高い
スラリーが生成したと考えられる。直接石炭液化
に対し一層反応性の高いスラリーは石炭の転化を
増加させるだけでなく、一層低沸点の炭化水素液
体留分を生成するように収率分布をも有利に変化
させると考えられる。また、水素化反応装置内の
水素分圧は二酸化炭素と水分子が反応装置供給流
中に残存する代りにスラリー混合槽で失なわれる
ことによつて増加することになる。 実施例 2 最初に約10重量%の水分を含有し50〜200メツ
シユ(米国ふるい系列)の粒度範囲を有するイリ
ノイNo.6れき青炭を石炭より得た再循環油と油/
石炭重量比1.6〜1.8の範囲で混合した。再循環油
温度は232〜316℃(450〜600〓)であつた。石炭
と油の最初の混合は槽中71〜93℃(160〜200〓)
の温度で3時間の平均滞留時間で行ないスラリー
源を生成し、石炭からほとんどの割合の水分を除
いた。次いで得られる石炭/油スラリーを一定ス
ラリー高さに保ち、平均滞留時間1.9時間の、電
熱器により232℃(450〓)に保つた第2混合槽に
移した。石炭中に含まれる残存酸素を第2混合槽
で発生させ水分および酸素を含む蒸気流を除去し
た。得られる水分および酸素の含量の減少した石
炭/油スラリー流を槽の下端部から回収した。 加熱石炭−油スラリーの反応性をミクロオート
クレーブ分析により測定した。石炭−油スラリー
試料を熱スラリー混合槽内処理の前後に採取し、
次いでスラリー物質をミクロオートクレーブ中で
454℃(850〓)に30分間熱反応させた。次いで得
られる反応物質を独立にシクロヘキサン、トルエ
ン、およびテトラヒドラフラン(THF)で抽出
した。結果を表2に示す。
[Table] Water, weight%
These results show that even at a moderate slurry mixing tank temperature of 111-119°C (232-246°C), the initial
~42~ from feed coal containing ~17.5% moisture by weight
This indicates that 52% of water was removed, resulting in dry coal with a water content of approximately 4.4 to 6.2% by weight. This dry coal-oil slurry feedstock is suitable as a feed stream for a coal liquefaction process. Example 1 A similar slurry mixing vessel study of coal deoxidation was conducted, where the slurry consisted of Wyodac coal containing 17-20% by weight oxygen mixed with recirculated oil obtained from Wyodash coal. . Coal-oil slurry in autoclave at 177-260℃
(350-500〓) and then analyzed. Figure 3 shows the results of coal deoxidation and the relationship between conversion and slurry tank temperature. As the slurry bath temperature increases from approximately 121°C (250〓) to 260°C (500〓), an increase in coal deoxidation and decarboxylation occurs and the treated slurry obtains an increase in coal conversion. It is noteworthy that the reactivity was relatively higher. It is thought that a more reactive slurry was produced due to the loss of carboxyl groups and water molecules contained in the coal. It is believed that a more reactive slurry for direct coal liquefaction not only increases coal conversion, but also favorably changes the yield distribution to produce a lower boiling hydrocarbon liquid fraction. Also, the hydrogen partial pressure within the hydrogenation reactor will increase due to carbon dioxide and water molecules being lost in the slurry mixing tank instead of remaining in the reactor feed stream. Example 2 Recycled oil and oil/oil obtained from Illinois No. 6 bituminous coal initially containing about 10% water by weight and having a particle size range of 50 to 200 mesh (US sieve series)
The coal weight ratio was mixed in the range of 1.6 to 1.8. The recirculating oil temperature was 232-316°C (450-600°C). The initial mixing of coal and oil is at 71~93℃ (160~200〓) in the tank.
at a temperature of 3 hours with an average residence time of 3 hours to produce a slurry source and remove most of the moisture from the coal. The resulting coal/oil slurry was then transferred to a second mixing vessel maintained at a constant slurry height and maintained at 232°C (450°C) by an electric heater with an average residence time of 1.9 hours. Residual oxygen contained in the coal was generated in a second mixing vessel and the steam stream containing moisture and oxygen was removed. The resulting coal/oil slurry stream with reduced moisture and oxygen content was collected from the lower end of the vessel. The reactivity of the heated coal-oil slurry was determined by microautoclave analysis. Coal-oil slurry samples were taken before and after treatment in the thermal slurry mixing tank,
The slurry material is then placed in a micro autoclave.
Thermal reaction was carried out at 454°C (850°C) for 30 minutes. The resulting reactants were then extracted independently with cyclohexane, toluene, and tetrahydrofuran (THF). The results are shown in Table 2.

【表】 上記結果において、スラリー混合槽温度の232
℃(450〓)への上昇によつてスラリー反応性の
増加が起こつたことが注目される。このように、
それ以外は同一反応条件で石炭の転化の増加が得
られたことで分かるように、石炭/油スラリーの
溶解性と反応性が増加した。 実施例 3 実施例2と同様のイリノイNo.6れき青炭を石炭
から得られた炭化水素液体すなわちスラリー化油
と油/石炭重量比1.6〜1.8の範囲で混合した。再
循環油の温度は232〜316℃(450〜600〓)であつ
た。粒子状石炭と油の最初の混合を71〜93℃
(160〜200〓)の温度で石炭の平均滞留時間3時
間の槽で行なつた。次いで得られる混合石炭/油
スラリーを、内部の混合温度を電熱器により232
℃(450〓)に保ち、石炭の内部平均滞留時間を
1.9時間とした第2混合槽に移した。石炭中に初
めから含まれる水分および酸素を第2スラリー混
合槽で発生させ水分および酸素を含む蒸気流を除
去した。得られる水分と酸素の含量の減少した石
炭/油スラリーを槽から回収しベンチスケールの
石炭接触水素化工程に送つた。工程の運転条件と
得られた結果を表3および第4図にも示す。
[Table] In the above results, the temperature of the slurry mixing tank is 232
It is noted that an increase in slurry reactivity occurred with an increase in temperature to 450 °C. in this way,
The solubility and reactivity of the coal/oil slurry was increased as evidenced by the increased conversion of coal obtained under otherwise identical reaction conditions. Example 3 Illinois No. 6 bituminous coal as in Example 2 was mixed with a hydrocarbon liquid obtained from coal, ie, slurried oil, at an oil/coal weight ratio ranging from 1.6 to 1.8. The temperature of the recirculated oil was 232-316°C (450-600°C). Initial mixing of granular coal and oil at 71~93℃
The experiment was carried out in a tank at a temperature of (160 to 200 °C) and an average residence time of 3 hours for the coal. The resulting mixed coal/oil slurry is then heated to an internal mixing temperature of 232°C using an electric heater.
℃ (450〓), and the average internal residence time of the coal is
The mixture was transferred to a second mixing tank for 1.9 hours. The moisture and oxygen originally contained in the coal were generated in a second slurry mixing vessel and the steam stream containing moisture and oxygen was removed. The resulting coal/oil slurry with reduced moisture and oxygen content was recovered from the vessel and sent to a bench scale coal catalytic hydrogenation process. The operating conditions of the process and the results obtained are also shown in Table 3 and FIG.

【表】【table】

【表】 炭に対する重量%
スラリー混合槽温度を8日間の運転の間121℃
(250〓)から232℃(450〓)に上昇した場合、
204〜524℃(400〜975〓)留分の収率が表3に示
すように31.6から35.8重量%に増加したことが注
目される。またこの間に、残留油生成物収率
(524℃+(975〓+)留分)がそれ以外は同一の運転
条件で供給乾燥石炭の14.6から10.8重量%に減少
した。また、一層高いスラリー混合槽温度を経て
液化して得られる生成物収率中COおよびCO2
減少していることは熱スラリー混合槽で石炭から
の酸素除去量が増加したことを示す。スラリー混
合槽温度の上昇による残留油収率のこのような減
少をさらに第4図に示す。 実施例 4 最初に約14〜17重量%の水分と17〜19重量%の
酸素を含み50〜200メツシユ(米国ふるい系列)
の粒度を有するワイオダツク亜れき青炭を液化と
水素化方法において石炭から得た油と混合した。
用いた油の温度は232〜316℃(450〜600〓)で油
対石炭の重量比は1.5〜1.6であつた。石炭/油混
合物を電熱器により約232℃(450〓)の温度に保
ち平均石炭滞留時間を1.9時間とした。 石炭中に含まれる水分および酸素を混合槽で発
生させ水分および酸素を含む蒸気流を除去した。
得られる水分と酸素の両方の濃度が著しく減少し
た石炭/油スラリーを熱スラリー混合槽から回収
し炭化水素液体生成物を製造する石炭液化工程に
供給したところ従来のスラリー混合槽温度93〜
121℃(200〜250〓)を有する液化方法に比較し
て必要な水素消費が減少した。
[Table] Weight% of charcoal
The slurry mixing tank temperature was kept at 121℃ during 8 days of operation.
(250〓) to 232℃ (450〓),
It is noted that the yield of the 204-524°C (400-975〓) fraction increased from 31.6 to 35.8% by weight as shown in Table 3. Also during this time, the residual oil product yield (524°C + (975〓 + ) fraction) decreased from 14.6 to 10.8% by weight of the dry coal feed under otherwise identical operating conditions. Also, the decrease in CO and CO 2 in the product yield obtained by liquefaction through higher slurry mixing tank temperatures indicates that the amount of oxygen removed from the coal in the hot slurry mixing tank has increased. This decrease in residual oil yield with increasing slurry mixing tank temperature is further illustrated in FIG. Example 4 Initially containing about 14-17% water and 17-19% oxygen by weight, 50-200 mesh (US sieve series)
Wyodak subbituminous coal with particle size of was mixed with oil obtained from the coal in liquefaction and hydrogenation process.
The temperature of the oil used was 232-316°C (450-600°C) and the oil to coal weight ratio was 1.5-1.6. The coal/oil mixture was kept at a temperature of approximately 232°C (450°C) using an electric heater, giving an average coal residence time of 1.9 hours. The moisture and oxygen contained in the coal were generated in a mixing tank and the steam stream containing moisture and oxygen was removed.
The resulting coal/oil slurry with significantly reduced concentrations of both moisture and oxygen was recovered from the thermal slurry mixing tank and fed to a coal liquefaction process for producing hydrocarbon liquid products, where the temperature of the conventional slurry mixing tank was 93°C.
The required hydrogen consumption is reduced compared to the liquefaction method with 121°C (200-250〓).

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に従う石炭−油スラリーの乾
燥と脱酸素方法の工程図、第2図は接触石炭液化
方法の上流で運転する石炭−スラリー乾燥段階の
工程図、第3図はスラリー槽温度の上昇による石
炭脱酸素と転化の変化を示すグラフ、第4図はス
ラリー混合槽温度の上昇による石炭水素化方法か
らの残留油(524℃+(975〓+)留分)の収率の減
少を示すグラフである。 12……粉砕分粒段階、14……スラリー混合
槽、14a……外側断熱部、15……回転混合
機、18……ポンプ、20……ポンプ、22……
予熱器、24……石炭液化工程、29……加熱
器、30……反応装置、31……整流板、32…
…触媒床、33……連絡、34……下降導管、3
5……ポンプ、36……連絡、38……冷却器、
40……相分離器、42……水素精製段階、46
……相分離器、50……分留段階、54……液体
−固体分離段階、64……真空蒸留器。
Figure 1 is a process diagram of the coal-oil slurry drying and deoxidizing method according to the present invention, Figure 2 is a process diagram of the coal-slurry drying stage operated upstream of the catalytic coal liquefaction process, and Figure 3 is the slurry tank temperature. Figure 4 shows the decrease in the yield of residual oil (524°C + (975〓 + ) fraction) from the coal hydrogenation process as the slurry mixing tank temperature increases. This is a graph showing. 12... Grinding and sizing stage, 14... Slurry mixing tank, 14a... Outer heat insulation part, 15... Rotating mixer, 18... Pump, 20... Pump, 22...
Preheater, 24... Coal liquefaction process, 29... Heater, 30... Reactor, 31... Straightening plate, 32...
...Catalyst bed, 33...Connection, 34...Down conduit, 3
5...Pump, 36...Communication, 38...Cooler,
40... Phase separator, 42... Hydrogen purification stage, 46
... Phase separator, 50 ... Fractionation stage, 54 ... Liquid-solid separation stage, 64 ... Vacuum distiller.

Claims (1)

【特許請求の範囲】 1 粒子状石炭を乾燥し且つ脱酸素して中に含ま
れる水分と酸素を除く方法において、 (a) 最初に5〜30重量%の水分を含有する供給粒
子状石炭を炭化水素スラリー化油と0〜10.5
Kg/cm2ゲージ圧(0〜150psig)の圧力に保た
れた混合帯域内で混合して油/石炭重量比約
1.2〜2.5を有する石炭−油スラリー混合物を生
成する段階; (b) 前記石炭−油スラリー混合物を、石炭液化工
程から得られた260〜357℃(500〜675〓)の温
度を有するスラリー化油で、177〜343℃(350
〜650〓)に加熱して水分と酸素を石炭から発
生させる段階;および (c) 約3.0重量%未満の水分と約7重量%未満の
酸素を含む乾燥し、脱酸素した石炭−油スラリ
ー混合物を回収する段階 からなることを特徴とする石炭スラリーの乾燥お
よび脱酸素方法。 2 前記供給石炭が30〜375メツシユ(米国ふる
い系列)の粒度を有する特許請求の範囲第1項記
載の方法。 3 スラリー化油が本質的に未転化炭とミネラル
物質からなる少なくとも約10重量%の粒子状固体
を含む特許請求の範囲第1項記載の方法。 4 無機固体を混合帯域から独立に回収する特許
請求の範囲第1項記載の方法。 5 供給炭が5〜15重量%の水分を含むれき青炭
である特許請求の範囲第1項記載の方法。 6 供給炭が10〜30重量%の水分を含む亜れき青
炭である特許請求の範囲第1項記載の方法。 7 供給炭が15〜35重量%の水分を含む亜炭であ
る特許請求の範囲第1項記載の方法。 8 前記石炭−油混合が前記混合帯域内液体速度
として少なくとも約0.6m/sec(2ft/sec)を生
むのに十分である特許請求の範囲第1項記載の方
法。 9 前記混合帯域内石炭滞留時間が約1〜3時間
である特許請求の範囲第1項記載の方法。 10 炭化水素スラリー化油が少なくとも一部は
前記石炭液化工程から再循環された液体サイクロ
ン塔頂液である特許請求の範囲第1項記載の方
法。 11 前記加熱した石炭−油スラリー混合物を石
炭液化工程に供給し、この場合石炭−油スラリー
混合物の温度を約110〜121℃(230〜250〓)から
約177〜343℃(350〜650〓)に上げることにより
石炭液化工程における供給石炭の炭化水素液体お
よびガス生成物への転化を増加させる特許請求の
範囲第1項記載の方法。
[Claims] 1. A method for drying and deoxidizing granular coal to remove moisture and oxygen contained therein, including: (a) first supplying granular coal containing 5 to 30% by weight of moisture; Hydrocarbon slurry oil and 0-10.5
Kg/cm 2 Gauge pressure (0 to 150 psig) by mixing in a mixing zone maintained at a pressure of approximately
(b) converting the coal-oil slurry mixture into a slurried oil having a temperature of 260-357°C (500-675〓) obtained from a coal liquefaction process; and 177 to 343℃ (350
~650〓) to generate moisture and oxygen from the coal; and (c) a dry, deoxygenated coal-oil slurry mixture containing less than about 3.0% moisture and less than about 7% oxygen by weight. A method for drying and deoxidizing coal slurry, comprising the steps of recovering. 2. The method of claim 1, wherein the feed coal has a particle size of 30 to 375 mesh (US sieve series). 3. The method of claim 1, wherein the slurried oil contains at least about 10% by weight particulate solids consisting essentially of unconverted coal and mineral matter. 4. The method of claim 1, wherein the inorganic solids are recovered independently from the mixing zone. 5. The method according to claim 1, wherein the feed coal is bituminous coal containing 5 to 15% by weight of water. 6. The method according to claim 1, wherein the feed coal is subbituminous coal containing 10 to 30% by weight of water. 7. The method according to claim 1, wherein the feed coal is lignite containing 15 to 35% by weight of water. 8. The method of claim 1, wherein the coal-oil mixing is sufficient to produce a liquid velocity within the mixing zone of at least about 2 ft/sec. 9. The method of claim 1, wherein the coal residence time in the mixing zone is about 1 to 3 hours. 10. The method of claim 1, wherein the hydrocarbon slurried oil is at least in part hydrocyclone overhead liquid recycled from the coal liquefaction step. 11. Feeding the heated coal-oil slurry mixture to a coal liquefaction process, where the temperature of the coal-oil slurry mixture is from about 110-121°C (230-250〓) to about 177-343°C (350-650〓). 2. The method of claim 1 for increasing the conversion of feed coal to hydrocarbon liquids and gaseous products in a coal liquefaction process by increasing the liquefaction rate.
JP58201932A 1982-10-29 1983-10-29 Coal slurry drying and deoxygenating method Granted JPS59108087A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US43759482A 1982-10-29 1982-10-29
US437594 1999-11-10

Publications (2)

Publication Number Publication Date
JPS59108087A JPS59108087A (en) 1984-06-22
JPH047399B2 true JPH047399B2 (en) 1992-02-10

Family

ID=23737086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58201932A Granted JPS59108087A (en) 1982-10-29 1983-10-29 Coal slurry drying and deoxygenating method

Country Status (6)

Country Link
JP (1) JPS59108087A (en)
AU (1) AU569480B2 (en)
CA (1) CA1214419A (en)
DE (1) DE3339139A1 (en)
GB (1) GB2129438B (en)
ZA (1) ZA837887B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4586783B2 (en) * 2006-09-22 2010-11-24 東洋インキ製造株式会社 Photosensitive coloring composition and color filter

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1183349A (en) * 1983-02-22 1985-03-05 Brian Y. Wong Beneficiation of low-rank coals by immersion in residuum
JPH04122934U (en) * 1991-04-18 1992-11-05 株式会社富士通ゼネラル oil hot water boiler
AU668328B2 (en) * 1993-12-27 1996-04-26 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd) Solid fuel made from porous coal and production process and production apparatus therefore
CN101987962B (en) * 2010-11-12 2014-01-15 煤炭科学研究总院 Method for liquefying high-oxygen content coal by adopting direct hydrogenation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543037A (en) * 1978-09-25 1980-03-26 Nisshinbo Ind Inc Concentrated lime sulfur mixture
US4209911A (en) * 1978-09-22 1980-07-01 Hydrocarbon Research, Inc. Method and apparatus for drying a moisture-containing particulate material
JPS56147888A (en) * 1980-04-18 1981-11-17 Mitsui Cokes Kogyo Kk Liquefaction of water-containing coals
JPS5755991A (en) * 1980-09-19 1982-04-03 Electric Power Dev Co Ltd Liquefaction of brown coal

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1925005A (en) * 1926-03-25 1933-08-29 Koppers Co Inc Coal treatment process
GB309231A (en) * 1928-08-13 1929-04-11 William Mcintyre Cranston Improvements relating to the low temperature carbonisation of coal
GB407360A (en) * 1932-07-09 1934-03-09 John Lloyd Strevens Improvements in or relating to the extraction of oil from solid fuels, shales, torbanites and the like
GB449619A (en) * 1934-12-31 1936-06-30 Nelson Consitt Improvements in or relating to distilling and coking mixtures of solid carbonaceous materials and hydrocarbon oils
GB446357A (en) * 1935-01-21 1936-04-29 Erwin Bluemner Process of and apparatus for the production of a truly colloidal fuel
GB547029A (en) * 1940-10-16 1942-08-11 Reginald Percy Fraser Improvements relating to combustible mixtures of liquid and pulverized solid materials
GB779901A (en) * 1954-08-06 1957-07-24 Erwin Bluemner Improvements relating to the cracking of coal oil mixtures
GB975687A (en) * 1962-04-27 1964-11-18 British Petroleum Co Improvements relating to the preparation of coal-oil slurries
US4400261A (en) * 1981-10-05 1983-08-23 International Coal Refining Company Process for coal liquefaction by separation of entrained gases from slurry exiting staged dissolvers
GB2114591B (en) * 1982-02-08 1985-10-23 Pittsburgh Midway Coal Mining Method for coal feed slurry preparation
US4397732A (en) * 1982-02-11 1983-08-09 International Coal Refining Company Process for coal liquefaction employing selective coal feed

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4209911A (en) * 1978-09-22 1980-07-01 Hydrocarbon Research, Inc. Method and apparatus for drying a moisture-containing particulate material
JPS5543037A (en) * 1978-09-25 1980-03-26 Nisshinbo Ind Inc Concentrated lime sulfur mixture
JPS56147888A (en) * 1980-04-18 1981-11-17 Mitsui Cokes Kogyo Kk Liquefaction of water-containing coals
JPS5755991A (en) * 1980-09-19 1982-04-03 Electric Power Dev Co Ltd Liquefaction of brown coal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4586783B2 (en) * 2006-09-22 2010-11-24 東洋インキ製造株式会社 Photosensitive coloring composition and color filter

Also Published As

Publication number Publication date
GB8328089D0 (en) 1983-11-23
AU2054583A (en) 1984-05-03
AU569480B2 (en) 1988-02-04
ZA837887B (en) 1984-06-27
DE3339139A1 (en) 1984-05-03
GB2129438B (en) 1987-04-29
JPS59108087A (en) 1984-06-22
CA1214419A (en) 1986-11-25
GB2129438A (en) 1984-05-16

Similar Documents

Publication Publication Date Title
EP0067580B1 (en) An integrated catalytic coal devolatilisation and steam gasification process
US4085030A (en) Pyrolysis of carbonaceous materials with solvent quench recovery
US4166786A (en) Pyrolysis and hydrogenation process
AU2005266712B2 (en) A process for direct liquefaction of coal
US3488279A (en) Two-stage conversion of coal to liquid hydrocarbons
US5200063A (en) Coal hydroconversion process comprising solvent enhanced pretreatment with carbon monoxide
US4839030A (en) Coal liquefaction process utilizing coal/CO2 slurry feedstream
US6319395B1 (en) Process and apparatus for converting oil shale or tar sands to oil
US3841991A (en) Coal conversion process
US4485003A (en) Supercritical extraction and simultaneous catalytic hydrogenation of coal
US5151173A (en) Conversion of coal with promoted carbon monoxide pretreatment
JPH026853A (en) Method for producing a catalyst for hydrogenation and method for hydrogenating conversion with use of the catalyst
JPH04502340A (en) Improved method for producing coal by short residence time hydrogen disproportionation
US4587006A (en) Process for recovering shale oil from raw oil shale
JPH01161088A (en) Two-step catalytic hydrogenation of coal
US5789636A (en) Process for recovering synthetic raw materials and fuel components from used or waste plastics
JPH08269459A (en) Coal liquefaction method
US4437973A (en) Coal hydrogenation process with direct coal feed and improved residuum conversion
US4495055A (en) Coal catalytic hydrogenation process using direct coal slurry feed to reactor with controlled mixing conditions
US4510037A (en) Hydrogenation process for solid carbonaceous feed materials using thermal countercurrent flow reaction zone
CA1108544A (en) Coal liquefaction
JPH047399B2 (en)
US3663420A (en) Coal processing
US4523986A (en) Liquefaction of coal
US4764270A (en) Simultaneous upgrading of tar sand bitumen and coal by corefining