JPH0473555A - Absorption type heat pump - Google Patents
Absorption type heat pumpInfo
- Publication number
- JPH0473555A JPH0473555A JP18061890A JP18061890A JPH0473555A JP H0473555 A JPH0473555 A JP H0473555A JP 18061890 A JP18061890 A JP 18061890A JP 18061890 A JP18061890 A JP 18061890A JP H0473555 A JPH0473555 A JP H0473555A
- Authority
- JP
- Japan
- Prior art keywords
- evaporator
- heat
- pipe
- temperature
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010521 absorption reaction Methods 0.000 title claims abstract description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 54
- 239000012530 fluid Substances 0.000 claims abstract description 27
- 239000003507 refrigerant Substances 0.000 claims abstract description 25
- 239000006096 absorbing agent Substances 0.000 claims description 18
- 239000000284 extract Substances 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 abstract description 10
- 238000000034 method Methods 0.000 abstract description 9
- 239000007921 spray Substances 0.000 abstract description 9
- 238000005507 spraying Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 5
- 230000009977 dual effect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、吸収ヒートポンプに係り、特に凝縮器に複数
の伝熱部を設けた吸収ヒートポンプに関するものである
。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an absorption heat pump, and particularly to an absorption heat pump in which a condenser is provided with a plurality of heat transfer parts.
従来、吸収ヒートポンプは、蒸発器で、低温を利用する
冷水を冷却し、この熱を昇温して温水を得る方式では、
冷水負荷・温水負荷がヒトポンプの創出力と合致してい
る場合、効率が高く、望ましい運転である。Conventionally, absorption heat pumps use an evaporator to cool cold water using low temperature, and then raise the temperature of this heat to obtain hot water.
If the cold water load and hot water load match the production capacity of the human pump, the efficiency is high and the operation is desirable.
ヒートポンプの創出力が合致していない場合で、温水負
荷が多い場合の対応には次の2つがある。There are two ways to deal with cases where the heat pump's production capabilities do not match and the hot water load is large.
(a) 冷媒系統から溶液系統に冷媒を混入し、冷水
効率を悪くする。この方式は、第3図に示すように、凝
縮器で凝縮した冷媒を発生器に戻すものであるが、温水
負荷の多い分だけ、発生器への熱源の増加が必要である
。(a) Mixing refrigerant from the refrigerant system into the solution system, reducing chilled water efficiency. In this method, as shown in FIG. 3, the refrigerant condensed in the condenser is returned to the generator, but it is necessary to increase the heat source to the generator due to the large hot water load.
ら)別の低熱源でバックアップし、冷水負荷を多くする
。この方法では、冷水効率はほとんど変化せず、温水負
荷の多い分は、冷水効率分だけ発生器への熱源の増加は
少なくてすむ。) Back up with another low heat source and increase the chilled water load. In this method, the chilled water efficiency hardly changes, and when the hot water load is large, the increase in the heat source to the generator is reduced by the amount of chilled water efficiency.
そして、この(b)のバックアップ方法としては、従来
、第4図に示すように、蒸発器への冷水温度を上昇させ
る方式が用いられている。しかし、この方式は、冷媒温
度の上昇に対しては間接的であり温度ロスがある。また
、冷水系の圧力損失も増大する。As the backup method (b), conventionally, as shown in FIG. 4, a method has been used in which the temperature of the cold water fed to the evaporator is increased. However, this method indirectly deals with the rise in refrigerant temperature, and there is a temperature loss. Moreover, the pressure loss in the cold water system also increases.
本発明は、上記のバックアップ方法を採用して、前記の
ような欠点のない、熱量を有効利用でき、しかも冷水系
の圧力損失のない吸収ヒートポンプを提供することを目
的とする。An object of the present invention is to provide an absorption heat pump which does not have the above-mentioned drawbacks, can effectively utilize the amount of heat, and has no pressure loss in the cold water system by employing the above-mentioned backup method.
上記目的を達成するために、本発明では、発生器、凝縮
器、吸収器、蒸発器及び熱交換器とそれらを結ぶ配管で
構成され、蒸発器を通る外部流体を低温熱源とし、この
熱を昇温して吸収器及び/又は凝縮器から、温水として
取り出すヒートポンプにおいて、蒸発器には、2種類以
上の外部流体が流通可能な伝熱部を設け、該伝熱部を通
る少なくとも1種類の外部流体が、冷水であり、他の流
体が低温熱源流体であることを特徴とする吸収ヒートポ
ンプとしたものである。In order to achieve the above object, the present invention consists of a generator, a condenser, an absorber, an evaporator, a heat exchanger, and piping connecting them.The external fluid passing through the evaporator is used as a low-temperature heat source, and this heat is In a heat pump that raises the temperature and extracts hot water from an absorber and/or condenser, the evaporator is provided with a heat transfer section through which two or more types of external fluids can flow, and at least one type of external fluid passes through the heat transfer section. The absorption heat pump is characterized in that the external fluid is cold water and the other fluid is a low-temperature heat source fluid.
前記吸収ヒートポンプにおいて、低温熱源流体としては
、河川水、下水等があり、これでバックアップをする場
合、バックアップをかけすぎると冷水温度が上昇しすぎ
てしまう。そこで、本発明では、温水負荷が多い場合、
温水負荷(または、温水温度)をもとに、駆動熱源の量
(発生器への熱量)を調節し、冷水出力または冷水温度
を制御するように、低温熱源からの熱量を調節する。熱
量調節の方法として、低温熱源への冷媒スプレー量の調
節が容易である。In the absorption heat pump, the low-temperature heat source fluid includes river water, sewage, etc., and when backup is performed using this fluid, if the backup is applied too much, the temperature of the cold water will rise too much. Therefore, in the present invention, when the hot water load is large,
Based on the hot water load (or hot water temperature), the amount of driving heat source (the amount of heat to the generator) is adjusted, and the amount of heat from the low temperature heat source is adjusted so as to control the chilled water output or chilled water temperature. As a method of adjusting the amount of heat, it is easy to adjust the amount of refrigerant sprayed to the low-temperature heat source.
すなわち、本発明では、蒸発器には、低温熱源流体の通
る伝熱部に対する冷媒の供給手段を有し、該供給手段に
は供給量を調節する手段を有し、冷水負荷または冷水温
度をもとに、該冷媒供給量を調節する構成とするのがよ
い。That is, in the present invention, the evaporator has means for supplying refrigerant to the heat transfer section through which the low-temperature heat source fluid passes, and the supply means has means for adjusting the amount of supply, and the supply means has means for adjusting the amount of supply, and the evaporator has a means for adjusting the amount of supply, and the evaporator has means for supplying refrigerant to the heat transfer section through which the low-temperature heat source fluid passes. In particular, it is preferable that the refrigerant supply amount be adjusted.
本発明の吸収ヒートポンプは、あらゆる形式のヒートポ
ンプに適用でき、例えば二重効用等多重効用の吸収ヒー
トポンプ、二段昇温・二重効用の吸収ヒートポンプ等に
適用できる。The absorption heat pump of the present invention can be applied to all types of heat pumps, such as multi-effect absorption heat pumps such as dual-effect absorption heat pumps, dual-effect absorption heat pumps with two-stage temperature rise, and the like.
また、冷温水負荷が合致していない場合で、温水負荷が
少ない場合の対応は、余分な温水出力を、凝縮器で放出
することにより行なうことができる。In addition, if the cold and hot water loads do not match, and the hot water load is small, this can be handled by discharging the excess hot water output from the condenser.
蒸発器で、目的のある冷水(低温を利用する)を冷却し
、この熱を昇温して温水を得るヒートポンプでは、冷水
負荷、温水負荷がヒートポンプの百出力と合致していれ
ば、効率が高く、望ましい運転である。In a heat pump that uses an evaporator to cool cold water for a purpose (using low temperature) and heats up the heat to produce hot water, the efficiency is high if the cold water load and hot water load match the heat pump's output. High and desirable driving.
QG二発生器熱量、QE:蒸発器熱量、Q^:吸収器熱
量、Qc:凝縮器熱量、Qw:冷却水熱量(QA十QC
) ΔQ:変化量、とすれば、熱量バランスしている
ときは、
Q c + Q p= = Q A十Q c冷水効率は
COP H= Q E/ Q c
温水負荷が多い場合(温水負荷が△Q、多い)の対応と
して、本発明では冷水負荷を多くしている。すなわち、
別の低熱源でバックアップしている。この場合COP、
はほとんど変化しない。QG2 generator calorific value, QE: Evaporator calorific value, Q^: Absorber calorific value, Qc: Condenser calorific value, Qw: Cooling water calorific value (QA + QC
) If ΔQ is the amount of change, then when the heat quantity is balanced, Q c + Q p = = Q A + Q c The cold water efficiency is COP H = Q E / Q c When the hot water load is large (the hot water load is In order to deal with the problem (ΔQ, large), the present invention increases the chilled water load. That is,
Backed up with another low heat source. In this case COP,
remains almost unchanged.
熱バランスは QG十△qc+Qp、+△QE=QA+Qo+ΔQ。The heat balance is QG ten △qc+Qp, +△QE=QA+Qo+ΔQ.
COP x” Q r=/ Q c= (Q E十Δ
Q、)/(QG+△QG)
ΔQ、増加のためには、
ΔQc−ΔQ、/ (1+C0PE)
の増加でよい。COP x”Q r=/Q c= (Q E+Δ
Q, )/(QG+ΔQG) To increase ΔQ, it is sufficient to increase ΔQc−ΔQ,/(1+C0PE).
以下、本発明を図面を用いて具体的に説明するが、本発
明はこれらに限定されるものではない。Hereinafter, the present invention will be specifically explained using drawings, but the present invention is not limited thereto.
実施例1
第1図に本発明の一例である吸収ヒートポンプの系統図
を示す。Example 1 FIG. 1 shows a system diagram of an absorption heat pump that is an example of the present invention.
第1図において、Gは発生器、Cは凝縮器、Aは吸収器
、Eは蒸発器、Hは熱交換器をそれぞれ示し、各機器は
配管で接続されている。In FIG. 1, G is a generator, C is a condenser, A is an absorber, E is an evaporator, and H is a heat exchanger, and each device is connected by piping.
第1図では、溶液サイクルは、吸収器Aを出た溶液をま
す管1から、熱交換器Hの被加熱側を通した後、管2か
ら発生器Gに導入する。発生器Gにおいて、熱源27で
濃縮された溶液は、管3から熱交換器Hの加熱側を通り
、管4から吸収器Aに導入されて循環する。In FIG. 1, the solution cycle is such that the solution leaving the absorber A is passed through a square tube 1 to the heated side of a heat exchanger H, and then introduced into a generator G through a tube 2. In the generator G, the solution concentrated in the heat source 27 passes through the heating side of the heat exchanger H through the tube 3 and is introduced into the absorber A through the tube 4 for circulation.
一方、冷媒サイクルは、発生器Gで発生した冷媒蒸気は
凝縮器Cで凝縮されて、管11から蒸発器Eに導入され
る。蒸発器Eには、冷水25の通る伝熱管21と、低温
熱源流体26の通る伝熱管22とが設けられており、該
伝熱管21及び22の上部にはスプレー23及び24が
設置されている。そして、蒸発器E内の冷媒が管12か
ら管13及び管14に分岐されて、スプレー23及び2
4でスプレーされて循環されている。On the other hand, in the refrigerant cycle, refrigerant vapor generated in a generator G is condensed in a condenser C and introduced into an evaporator E through a pipe 11. The evaporator E is provided with a heat exchanger tube 21 through which cold water 25 passes and a heat exchanger tube 22 through which a low-temperature heat source fluid 26 passes, and sprays 23 and 24 are installed above the heat exchanger tubes 21 and 22. . Then, the refrigerant in the evaporator E is branched from the pipe 12 into the pipes 13 and 14, and the sprays 23 and 2
4 is sprayed and circulated.
また、低温熱源流体用の伝熱管22にスプレーする管1
3には、バルブ20が設けられており、スプレー量を調
節することができるようになっている。このようにする
ことにより、温水負荷が多い場合、駆動熱源の量の調整
による冷水温度(冷水出力)の低下を制御することがで
きる。In addition, the tube 1 sprayed onto the heat transfer tube 22 for low-temperature heat source fluid
3 is provided with a valve 20 so that the amount of spray can be adjusted. By doing so, when the hot water load is large, it is possible to control the decrease in the cold water temperature (chilled water output) by adjusting the amount of the drive heat source.
実施例2
第2図に、本発明の他の例である吸収ヒートポンプの系
統図を示す。Embodiment 2 FIG. 2 shows a system diagram of an absorption heat pump which is another example of the present invention.
第2図は1、二段昇温、二重効用の吸収ヒートポンプに
本発明を適用した例である。FIG. 2 shows an example in which the present invention is applied to a one- and two-stage temperature-raising, dual-effect absorption heat pump.
第2図において、GHは高温発生器、GLは低温発生器
、CLは低温凝縮器、AHは高温吸収器、ALは低温吸
収器、EHは高温蒸発器、ELは低温蒸発器、HHは高
温溶液熱交換器、HMは中温溶液熱交換器、HLは低温
溶液熱交換器をそれぞれ示す。そして、各機器は配管で
接続されている。In Figure 2, GH is a high temperature generator, GL is a low temperature generator, CL is a low temperature condenser, AH is a high temperature absorber, AL is a low temperature absorber, EH is a high temperature evaporator, EL is a low temperature evaporator, and HH is a high temperature The solution heat exchanger, HM indicates a medium temperature solution heat exchanger, and HL indicates a low temperature solution heat exchanger. Each device is connected with piping.
第2図では、溶液サイクルは、次のようになる。In FIG. 2, the solution cycle is as follows.
(a) 低温吸収器ALを出た溶液をまず管1から低
温溶液熱交換器HLの被加熱側に通し、ついで中温溶液
熱交換器HMの被加熱側に導き、その後、管2から一部
の溶液を管3を通して低温発生器GLに分岐し、残部を
高温溶液熱交換器HHの被加熱側を経由して管4から高
温発生器GHに導き、
(b) 高温発生器GHを出た溶液をまず管6から高
温溶液熱交換器HHの加熱側に通し、ついで、低温発生
器GLからの溶液を管5から管7で合流して、中温溶液
熱交換器HMの加熱側に導き、その後、管8から高温吸
収器AHに導き、
(C) 高温吸収器AHを出た溶液は管9を通り低温
溶液熱交換器HLの加熱側を経由して管10から低温吸
収器ALに導く、サイクルを形成する。(a) The solution exiting the low-temperature absorber AL is first passed through tube 1 to the heated side of the low-temperature solution heat exchanger HL, then guided to the heated side of the medium-temperature solution heat exchanger HM, and then partially passed through tube 2. The solution is branched to the low-temperature generator GL through tube 3, and the remainder is led to the high-temperature generator GH from tube 4 via the heated side of the high-temperature solution heat exchanger HH, and (b) exits the high-temperature generator GH. The solution is first passed through tube 6 to the heating side of the hot solution heat exchanger HH, and then the solution from the low temperature generator GL is combined in tubes 5 to 7 and led to the heating side of the medium temperature solution heat exchanger HM. Thereafter, the solution is guided from tube 8 to high temperature absorber AH, and (C) The solution leaving high temperature absorber AH passes through tube 9, passes through the heating side of low temperature solution heat exchanger HL, and is guided from tube 10 to low temperature absorber AL. , forming a cycle.
一方、冷媒サイクルは、高温発生器GHで発生し管11
を通り低温発生器GLの加熱側を通って凝縮した冷媒、
及び低温凝縮器CLで凝縮した冷媒を管12を通して、
まず高温蒸発器EHに導き、高温蒸発器EHをオーバフ
ローシた冷媒を管14から低温蒸発器ELに導く。高温
蒸発器EH及び低温蒸発器ELでは、冷媒は管13及び
管15で循環されている。また、高温蒸発器EHと低温
吸収器ALは、管28、管29で接続されて、蒸発熱と
吸収熱の授受が行なわれる。On the other hand, the refrigerant cycle is generated by the high temperature generator GH and is generated by the pipe 11.
refrigerant condensed through the heating side of the low temperature generator GL,
and the refrigerant condensed in the low temperature condenser CL through the pipe 12,
First, the refrigerant is led to the high temperature evaporator EH, and the refrigerant that has overflowed the high temperature evaporator EH is led from the pipe 14 to the low temperature evaporator EL. In the high temperature evaporator EH and the low temperature evaporator EL, the refrigerant is circulated through pipes 13 and 15. Further, the high temperature evaporator EH and the low temperature absorber AL are connected by a pipe 28 and a pipe 29, and exchange heat of evaporation and absorption heat.
そして、低温蒸発器EL内には、冷水25の通る伝熱管
21と低温熱源流体26の通る伝熱管22とが設けられ
ており、該伝熱管21及び22の上部にはスプレー23
及び24が設置されており、低温蒸発器EL内の冷媒が
管15から管16と管17に分岐されて、スプレー23
及び24でスプレーされている。In the low temperature evaporator EL, there are provided a heat transfer tube 21 through which cold water 25 passes and a heat transfer tube 22 through which a low temperature heat source fluid 26 passes.
and 24 are installed, and the refrigerant in the low temperature evaporator EL is branched from the pipe 15 into a pipe 16 and a pipe 17, and a spray 23 is installed.
and sprayed with 24.
また、低温熱源流体用の伝熱管22にスプレーする管1
7には、バルブ20が設けられており、スプレー量を調
節できるようになっている。In addition, the tube 1 sprayed onto the heat transfer tube 22 for low-temperature heat source fluid
7 is provided with a valve 20 so that the amount of spray can be adjusted.
本発明によれば、上記のような構成にしたことにより、
温水負荷が多い場合の運転が効率的にでき、冷水温度の
調整も容易にできる。According to the present invention, by having the above configuration,
Efficient operation is possible when there is a large hot water load, and the cold water temperature can be easily adjusted.
また、バックアップ方式として、低熱源温度は、冷水温
度とほぼ同等まで利用でき、冷水系の圧力損失の増加も
ない。Furthermore, as a backup method, the low heat source temperature can be used up to almost the same temperature as the chilled water, and there is no increase in pressure loss in the chilled water system.
第1図は、本発明の一例を示す吸収ヒートポンプの系統
図、第2図は、本発明の他の例である二重昇温、二重効
用の吸収ヒートポンプの系統図、第3図と第4図は、従
来の方式を示す吸収ヒートポンプの部分系統図である。
G・・・発生器、C・・・凝縮器、A・・・吸収器、E
・・・蒸発器、H・・・熱交換器、GH・・・高温発生
器、GL・・・低温発生器、CL・・・低温凝縮器、A
H・・・高温吸収器、AL・・・低温吸収器、EH−・
・高温蒸発器、EL・・・低温蒸発器、HH・・・高温
溶液熱交換器、HM・・・中温溶液熱交換器、HL・・
・低温溶液熱交換器、1〜10・・・溶液サイクル配管
、11〜17−・・冷媒サイクル配管、20・・・バル
ブ、21・・・冷水用伝熱管、22 、、。
低温熱源流体用伝熱管、23.24・・・スプレ25・
・・冷水、26・・・低温熱源流体、27・・・駆動熱
源、28.29・・・接続配管特許出願人 株式会社
荏原製作所
代 理 人 吉 嶺 桂同
松 1) 大第1図Fig. 1 is a system diagram of an absorption heat pump showing an example of the present invention, Fig. 2 is a system diagram of a double heating, dual effect absorption heat pump which is another example of the invention, and Figs. FIG. 4 is a partial system diagram of an absorption heat pump showing a conventional system. G... Generator, C... Condenser, A... Absorber, E
...evaporator, H...heat exchanger, GH...high temperature generator, GL...low temperature generator, CL...low temperature condenser, A
H...High temperature absorber, AL...Low temperature absorber, EH-・
・High temperature evaporator, EL...Low temperature evaporator, HH...High temperature solution heat exchanger, HM...Medium temperature solution heat exchanger, HL...
- Low temperature solution heat exchanger, 1-10... Solution cycle piping, 11-17-... Refrigerant cycle piping, 20... Valve, 21... Cold water heat transfer tube, 22. Heat transfer tube for low temperature heat source fluid, 23.24...Spray 25.
...Cold water, 26.Low-temperature heat source fluid, 27.Driving heat source, 28.29.Connection piping patent applicant Keito Yoshimine, representative of Ebara Corporation.
Pine 1) Large Figure 1
Claims (1)
れらを結ぶ配管で構成され、蒸発器を通る外部流体を低
温熱源とし、この熱を昇温して吸収器及び/又は凝縮器
から、温水として取り出すヒートポンプにおいて、蒸発
器には、2種類以上の外部流体が流通可能な伝熱部を設
け、該伝熱部を通る少なくとも1種類の外部流体が、冷
水であり、他の流体が低温熱源流体であることを特徴と
する吸収ヒートポンプ。 2、前記蒸発器には、低温熱源流体の通る伝熱部に対す
る冷媒の供給手段を有し、該供給手段には供給量を調節
する手段を有し、冷水負荷または冷水温度をもとに、該
冷媒供給量を調節する構成としたことを特徴とする請求
項1記載の吸収ヒートポンプ。[Claims] 1. It is composed of a generator, a condenser, an absorber, an evaporator, a heat exchanger, and piping that connects them, and uses the external fluid passing through the evaporator as a low-temperature heat source and raises the temperature of this heat. In a heat pump that extracts hot water from an absorber and/or a condenser, the evaporator is provided with a heat transfer part through which two or more types of external fluids can flow, and at least one type of external fluid passing through the heat transfer part is An absorption heat pump characterized in that the cold water is cold water and the other fluid is a low temperature heat source fluid. 2. The evaporator has means for supplying refrigerant to the heat transfer section through which the low-temperature heat source fluid passes, and the supply means has means for adjusting the supply amount, and based on the chilled water load or the chilled water temperature, The absorption heat pump according to claim 1, characterized in that the absorption heat pump is configured to adjust the amount of refrigerant supplied.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18061890A JPH0473555A (en) | 1990-07-10 | 1990-07-10 | Absorption type heat pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18061890A JPH0473555A (en) | 1990-07-10 | 1990-07-10 | Absorption type heat pump |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0473555A true JPH0473555A (en) | 1992-03-09 |
Family
ID=16086372
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18061890A Pending JPH0473555A (en) | 1990-07-10 | 1990-07-10 | Absorption type heat pump |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0473555A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017053610A (en) * | 2015-09-11 | 2017-03-16 | 荏原冷熱システム株式会社 | Absorption heat pump system |
JP2017058063A (en) * | 2015-09-16 | 2017-03-23 | 荏原冷熱システム株式会社 | Absorption heat pump system utilizing earth thermal |
JP2017058049A (en) * | 2015-09-15 | 2017-03-23 | 荏原冷熱システム株式会社 | Absorption heat pump system |
-
1990
- 1990-07-10 JP JP18061890A patent/JPH0473555A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017053610A (en) * | 2015-09-11 | 2017-03-16 | 荏原冷熱システム株式会社 | Absorption heat pump system |
JP2017058049A (en) * | 2015-09-15 | 2017-03-23 | 荏原冷熱システム株式会社 | Absorption heat pump system |
JP2017058063A (en) * | 2015-09-16 | 2017-03-23 | 荏原冷熱システム株式会社 | Absorption heat pump system utilizing earth thermal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4475361A (en) | Multi-effect heat-pump for heating and cooling | |
JPS5818574B2 (en) | heat pump | |
JP2782555B2 (en) | Absorption heat pump | |
WO2021052331A1 (en) | Small-sized refrigeration apparatus with heat recovery function | |
JPS5849781B2 (en) | Absorption heat pump | |
JPH0473555A (en) | Absorption type heat pump | |
US5673569A (en) | Double effect absorption cold or hot water generating machine | |
CN108139126B (en) | Absorption refrigerator | |
US6116047A (en) | Double effect absorbtion cold or hot water generating machine | |
CN109442804A (en) | A kind of two-stage compression heat pump circulatory system of deep condensation steam exhaust | |
CN108534570A (en) | A kind of absorption big temperature difference heat-exchange unit | |
JPH07218016A (en) | Absorption type chilled and warm water machine | |
CN209230074U (en) | A kind of two-stage compression heat pump circulatory system of deep condensation steam exhaust | |
EP1321728A1 (en) | Absorption refrigerating machine | |
JPS5812507B2 (en) | Hybrid type absorption heat pump | |
CN205349448U (en) | Cascade organic rankine cycle system | |
CN106813390B (en) | A kind of fast heating type waste water source heat pump water heater and its control method with injector | |
CN205349447U (en) | Cascade type organic rankine cycle system | |
JP2009287805A (en) | Absorption refrigerator | |
JP2006112686A (en) | Two stage temperature rising type absorption heat pump | |
CN205349446U (en) | Cascade type organic rankine cycle system | |
WO2018150516A1 (en) | Absorption refrigerator | |
RU2037109C1 (en) | Thermocompressor plant | |
CN219868597U (en) | Multi-heat source second-class absorption heat pump | |
JP2677876B2 (en) | Absorption refrigerator capacity control device |