JPH0473056A - Root point position detector - Google Patents

Root point position detector

Info

Publication number
JPH0473056A
JPH0473056A JP18633090A JP18633090A JPH0473056A JP H0473056 A JPH0473056 A JP H0473056A JP 18633090 A JP18633090 A JP 18633090A JP 18633090 A JP18633090 A JP 18633090A JP H0473056 A JPH0473056 A JP H0473056A
Authority
JP
Japan
Prior art keywords
waveform
electrode
voltage
load current
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18633090A
Other languages
Japanese (ja)
Other versions
JP2873726B2 (en
Inventor
Chihiro Kobayashi
千尋 小林
Kazunari Matoba
一成 的場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
J Morita Manufaturing Corp
Original Assignee
J Morita Manufaturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by J Morita Manufaturing Corp filed Critical J Morita Manufaturing Corp
Priority to JP2186330A priority Critical patent/JP2873726B2/en
Publication of JPH0473056A publication Critical patent/JPH0473056A/en
Application granted granted Critical
Publication of JP2873726B2 publication Critical patent/JP2873726B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C19/00Dental auxiliary appliances
    • A61C19/04Measuring instruments specially adapted for dentistry
    • A61C19/042Measuring instruments specially adapted for dentistry for determining the position of a root apex

Abstract

PURPOSE:To dispense with complicated calibration while enabling accurate detection of a position of a root point by detecting the position of the root point depending on a deviation in phase or waveform between a voltage waveform and a current waveform. CONSTITUTION:Load current flowing between a measuring electrode 2 and a oral cavity electrode 3 is detected in the form of a voltage of a measuring electrode 2 and an equivalent circuit between both the electrodes 2 and 3 is considered as parallel circuit of a resistance and capacitor. So, when a measuring voltage waveform A is a sine wave, phase of load current waveforms B1 and B2 vary with a capacity of a capacitor though becoming the same sine waves. As a result, when a capacity component of an equivalent impedance increases as the tip 2a of the electrode 2 approaches near a root point, a deviation in phase of the load current waveform grows with respect to a waveform A and a current waveform C2 of a phase comparator circuit 6 becomes larger than the C1 according to a phase difference therebetween. Thus, display contents, for example, a deflection of a pointer of a display section 7 increases accordingly thereby indicating that the root point is reached by the deflection.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、歯科の診断や治療に用いられる根管長測定
器における根尖位置検出装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an improvement of an apex position detection device in a root canal length measuring instrument used for dental diagnosis and treatment.

〈従来の技術〉 根尖の位置を電気的に検出して根管長を測定する装置と
しては、根管内に挿入される測定電極と口の中の軟組織
に接続される口腔電極との間の抵抗値を検出する方式の
もの(例えば特公昭62−25381号公報参照)、あ
るいは両電極間のインピーダンスを検出する方式のもの
(例えば特公昭62−2817号公報参照)等が知られ
ている。
<Prior art> A device for measuring the root canal length by electrically detecting the position of the root apex is a device that measures the root canal length by electrically detecting the position of the root apex. A method that detects the resistance value of the electrode (for example, see Japanese Patent Publication No. 62-25381), or a method that detects the impedance between both electrodes (see, for example, Japanese Patent Publication No. 62-2817) is known. .

上記公報の前者は、測定電極の先端が根尖に近づくと抵
抗値が低下することを、また後者は測定電極の先端が根
尖に近づくとインピーダンス値が低下することをそれぞ
れ検出するものであり、測定電極と口腔電極間は抵抗と
コンデンサが並列に接続された等価回路とみなされるた
め、測定の原理としては後者の方が実情に適合している
と考えられる。特に後者では単純にインピーダンス値を
検出するのではなく、2種類の異なる周波数信号を両電
極間に印加して各信号ごとにインピーダンスを検出し、
その結果を逐次比較して両者の差分の変化状態から電極
先端が根尖に到達したことを検出するようにしている。
The former of the above publications detects that the resistance value decreases as the tip of the measurement electrode approaches the root apex, and the latter detects that the impedance value decreases as the tip of the measurement electrode approaches the root apex. Since the area between the measurement electrode and the oral cavity electrode is considered to be an equivalent circuit in which a resistor and a capacitor are connected in parallel, the latter is considered to be more suitable for the actual situation as a measurement principle. In particular, in the latter case, instead of simply detecting the impedance value, two different frequency signals are applied between the two electrodes and the impedance is detected for each signal.
The results are successively compared and it is detected from the state of change of the difference between the two that the electrode tip has reached the root apex.

〈発明が解決しようとする課題〉 上記の前者の方式は根管内が乾燥状態であることを前提
として単純に両電極間の抵抗値を検出するものであるた
め、根管内が良電導体で湿潤状態になっていると誤差が
生ずるが、常に根管内が乾燥した状態で測定を行うこと
は実際には困難である。また、臨床的には根管内に薬液
や血液が存在していることが多く、薬液等の影響で根管
内の等価抵抗が減少するため根尖に到達していないのに
到達表示が出るアンダー表示や、測定不能が起きる可能
性が高い。更に、根尖孔の直径やファイルやり−マ等の
測定電極の太さなどの外部要素の影響も受けるため、抵
抗値の変化がファイルやり−マの根管内での位置変化に
よるものか外部要素によるものかの区別が困難で誤表示
が生じやすいという問題点もあった。
<Problem to be solved by the invention> The former method described above simply detects the resistance value between both electrodes on the premise that the inside of the root canal is dry, so the inside of the root canal is a good conductor. If the inside of the root canal is moist, errors will occur, but it is actually difficult to perform measurements when the inside of the root canal is always dry. In addition, clinically, there are often medicinal solutions and blood in the root canal, and the equivalent resistance in the root canal decreases due to the influence of the medicinal solution, so an indication that the root apex has not been reached appears. There is a high possibility that under-display or measurement failure will occur. Furthermore, it is also influenced by external factors such as the diameter of the apical foramen and the thickness of the measuring electrode of the file drill, etc., so whether the change in resistance value is due to a change in the position of the file drill in the root canal or not. There was also the problem that it was difficult to distinguish between factors, and mislabeling was likely to occur.

これに対して後者の方式は上述のような問題は解決され
ているが、2種類の信号を同時に根管内に印加し、また
これらによる検出結果を逐次比較して判断する必要があ
るため回路が複雑化し、更に根管内の状態の影響を除く
ために測定の都度キャリブレーションが必要であり、特
に田面のような複根管歯の場合、1根ごとにキャリブレ
ーションが必要で操作が煩わしく、治療の効率化が妨げ
られるという問題点がある。
On the other hand, although the latter method solves the above-mentioned problems, it requires applying two types of signals into the root canal at the same time and making judgments by successively comparing the detection results from these, which makes the circuit difficult. In addition, calibration is required each time a measurement is made to remove the influence of the condition inside the root canal, and especially in the case of multi-root canal teeth such as Tabe, calibration is required for each root, making the operation cumbersome. , there is a problem that efficiency of treatment is hindered.

第8図はこのキャリブレーションを説明したものであり
、横軸は電極先端の位置、縦軸はインピーダンスに対応
した検出電圧で示しである。2種類の周波数f、、  
f、(ただしf、<f、)による検出値は周波数の高い
方が全般に大きく、根尖付近での増加率も大きくなって
おり、これらの値は根管内の状態に応じて上下に変動す
る。
FIG. 8 explains this calibration, with the horizontal axis representing the position of the electrode tip and the vertical axis representing the detected voltage corresponding to the impedance. Two types of frequencies f,,
The detected values for f, (where f,<f,) are generally larger for higher frequencies, and the rate of increase near the root apex is also large, and these values vary up and down depending on the condition inside the root canal. fluctuate.

今、薗頚部での検出値が■、。、Vl。、根尖位置での
検出値がV、、 V、であったとし、電極位置の変化に
よる各検出値の変化量を八■1.Δ■2とすると、変化
量の差Δ■2−八■、が根管内の状態の影響が除かれ、
周波数に依存したインピーダンスの相対的な変化を示し
たものとなる。すなわち、Δ■2−ΔV、=(V、−V
、。)−(V、−V、。)= (V2− V、 )−(
V、。−■1゜)の関係が成立するのであり、薗頚部で
の検出値を用いて上式の第2項の(■2゜−■1゜)に
相当するキャリブレーションをその都度実施し、根管内
の状態の影響を除くことが必要となるのである。
Currently, the detected value in Sono's neck is ■. , Vl. , the detected value at the root apex position is V,, V, and the amount of change in each detected value due to a change in the electrode position is calculated as follows.1. If Δ■2, the difference in the amount of change Δ■2 - 8■ removes the influence of the condition inside the root canal,
It shows the relative change in impedance depending on frequency. That is, Δ■2−ΔV, = (V, −V
,. )-(V,-V,.)=(V2-V, )-(
V. - ■1°) is established, and the calibration corresponding to (■2° - ■1°) in the second term of the above equation is performed each time using the detected value at the son's neck. It is necessary to eliminate the influence of the conditions inside the pipe.

この発明はこのような点に着目し、煩わしいキャリブレ
ーションが不要であり、しかも正確に根尖位置を検出で
きる根尖位置検出装置を得ることを目的としてなされた
ものである。
The present invention has focused on these points, and has been made with the object of providing an apex position detection device that does not require troublesome calibration and can accurately detect the apex position.

く課題を解決するための手段〉 上述の目的を達成するために、この発明では、測定電極
と口腔電極の間に連続で、あるいは所定の間隔で測定電
圧を繰り返し印加する測定信号出力手段と、印加された
測定電圧の波形と両電極間に流れる負荷電流の波形とを
比較する比較手段とを備え、測定電極の先端が根尖付近
に達して上記電圧波形と電流波形とのずれの状態が変化
することを比較手段で検知して根尖位置を検出するよう
にしている。
Means for Solving the Problems> In order to achieve the above object, the present invention includes a measurement signal output means for repeatedly applying a measurement voltage between a measurement electrode and an oral cavity electrode continuously or at predetermined intervals; Comparison means for comparing the waveform of the applied measurement voltage and the waveform of the load current flowing between both electrodes is provided, and when the tip of the measurement electrode reaches the vicinity of the root apex, the state of deviation between the voltage waveform and the current waveform is determined. The apex position is detected by detecting the change using a comparison means.

また、上記の測定電圧を繰り返し波形とし、比較手段で
測定電圧と負荷電流との位相のずれを検出するようにし
ている。
Further, the above-mentioned measured voltage is made into a repetitive waveform, and a phase shift between the measured voltage and the load current is detected by the comparison means.

また、測定電圧を単発波形または繰り返し波形とし、比
較手段が測定電圧と負荷電流の波形の変化を検出するよ
うにしている。
Further, the measured voltage has a single waveform or a repetitive waveform, and the comparison means detects changes in the waveforms of the measured voltage and the load current.

更に、測定電極と口腔電極の間に容量成分を含むインピ
ーダンスによって生ずる過渡現象が異なる少なくとも2
個の単発波形を一組とした測定電圧を繰り返し印加する
測定信号出力手段と、両電極間に流れる負荷電流の同じ
組の波形を比較する比較手段とを備え、測定電極の先端
が根尖付近に達して上記同じ組の負荷電流の波形に変化
が生ずることを比較手段で検知して根尖位置を検出する
ようにしている。
Furthermore, at least two different transient phenomena caused by impedance including a capacitive component between the measurement electrode and the oral cavity electrode are used.
It is equipped with a measurement signal output means for repeatedly applying a measurement voltage consisting of a set of single-shot waveforms, and a comparison means for comparing the same set of waveforms of the load current flowing between both electrodes. The apex position is detected by detecting, by means of a comparison means, that a change occurs in the waveform of the load current of the same group when the load current reaches .

〈作用〉 等価インピーダンスの容量成分が増大すると、当然電圧
に対する電流の位相が変化する。また単発波形の場合に
は位相の概念でなく過渡現象的なとらえ方が可能であり
、等価インピーダンスの容量成分が増大すると、当然過
渡現象が変化し、同一形状の電圧に対する電流波形が変
化する。従つて、位相あるいは過渡現象に着目して電圧
波形と電流波形の間の位相のずれや波形形状の変化等を
検出し、そのずれの状態や波形形状の変化の状態が変わ
ることを比較手段で検知することにより根尖位置を検出
できるのである。
<Operation> When the capacitance component of the equivalent impedance increases, the phase of the current with respect to the voltage naturally changes. In addition, in the case of a single waveform, it is possible to understand it in terms of a transient phenomenon rather than the concept of phase, and as the capacitance component of the equivalent impedance increases, the transient phenomenon naturally changes, and the current waveform for a voltage of the same shape changes. Therefore, by focusing on phase or transient phenomena, it is possible to detect a phase shift or a change in waveform shape between a voltage waveform and a current waveform, and use a comparison method to detect changes in the state of the shift or change in waveform shape. By sensing this, the position of the root apex can be detected.

〈実施例〉 次にこの発明の詳細な説明する。<Example> Next, this invention will be explained in detail.

第1図及び第2図は測定電圧を繰り返し波形とし、負荷
電流の位相のずれを検出するようにした第1の実施例で
あり、第1図はブロック図、第2図は波形の説明図であ
る。
Figures 1 and 2 show a first embodiment in which the measured voltage has a repetitive waveform and the phase shift of the load current is detected. Figure 1 is a block diagram, and Figure 2 is an explanatory diagram of the waveform. It is.

第1図において、1は歯牙、1a及び1bはその根管及
び根尖、2は測定電極、2aはその先端、3は口腔電極
、4は繰り返し信号発生回路、5は電流制限抵抗、6は
位相比較回路、7は表示部である。
In Fig. 1, 1 is a tooth, 1a and 1b are its root canals and apices, 2 is a measuring electrode, 2a is its tip, 3 is an oral cavity electrode, 4 is a repetitive signal generation circuit, 5 is a current limiting resistor, and 6 is a In the phase comparison circuit, 7 is a display section.

繰り返し信号発生回路4は例えば1kHzの繰り返し信
号を測定電圧として発生し、これを電流制限抵抗5を介
してリーマ、ファイル等の測定電極2に印加するもので
ある。測定電極2と口腔電極3の間に流れる負荷電流は
測定電極2の電圧の形で検出され、この検出電圧と測定
電圧とが位相比較回路6に入力される。位相比較回路6
は両型圧の位相差に応じた幅のパルス電圧を出力するよ
うに構成されており、表示部7は指針式メータや信号音
または断続音発生器、断続発光器などの適宜のものが使
用され、位相比較回路6から出力されるパルス信号のパ
ルス幅に応じて駆動されるようになっている。
The repetitive signal generating circuit 4 generates a repetitive signal of, for example, 1 kHz as a measuring voltage, and applies this to the measuring electrode 2 such as a reamer or file via a current limiting resistor 5. The load current flowing between the measurement electrode 2 and the oral cavity electrode 3 is detected in the form of the voltage of the measurement electrode 2, and this detection voltage and the measurement voltage are input to the phase comparator circuit 6. Phase comparison circuit 6
is configured to output a pulse voltage with a width corresponding to the phase difference between the two mold pressures, and the display section 7 uses an appropriate device such as a pointer type meter, a signal tone or intermittent tone generator, or an intermittent light emitter. and is driven according to the pulse width of the pulse signal output from the phase comparator circuit 6.

第2図において、Aは繰り返し信号発生回路4から出力
される測定電圧波形であり、Bは検出された負荷電流波
形で、B8及びB、は測定電極2の先端2aがそれぞれ
歯頚部及び根尖付近に位置している時の波形である。ま
たCは位相比較回路6の出力波形で、C1及びC2は電
極2の先端2aがそれぞれ歯頚部及び根尖付近に位置し
ている時の波形を示している。第1図のA、B、Cはこ
れらの各信号波形に対応している。
In FIG. 2, A is the measured voltage waveform output from the repetitive signal generation circuit 4, B is the detected load current waveform, and B8 and B are the measured voltage waveforms output from the repetitive signal generating circuit 4. This is the waveform when it is located nearby. Further, C is an output waveform of the phase comparison circuit 6, and C1 and C2 show waveforms when the tip 2a of the electrode 2 is located near the tooth neck and root apex, respectively. A, B, and C in FIG. 1 correspond to each of these signal waveforms.

画電極2,3間の等価回路が抵抗とコンデンサの並列回
路とみなされるため、図のように測定電圧波形Aが正弦
波である場合、負荷電流波形B。
Since the equivalent circuit between the picture electrodes 2 and 3 is considered to be a parallel circuit of a resistor and a capacitor, when the measured voltage waveform A is a sine wave as shown in the figure, the load current waveform B.

及びB2は同じ正弦波となってもその位相がコンデンサ
の容量に応じて異なったものとなる。このため、電極2
の先端2aが根尖付近に近づいて等価インピーダンスの
容量成分が増大すると波形Aに対する負荷電流波形の位
相のずれは大きくなり、位相比較回路6の出力波形C2
はその位相差に応じてC1よりもパルス幅が大きくなる
。従って、表示部7の表示内容、例えば指針の振れはこ
れに応じて大きくなり、その振れによって根尖に到達し
たことが表示されるのである。
Even though B2 and B2 are the same sine wave, their phases differ depending on the capacitance of the capacitor. For this reason, electrode 2
When the tip 2a approaches the vicinity of the root apex and the capacitance component of the equivalent impedance increases, the phase shift of the load current waveform with respect to the waveform A increases, and the output waveform C2 of the phase comparison circuit 6 increases.
The pulse width of C1 becomes larger than that of C1 depending on the phase difference. Therefore, the content displayed on the display unit 7, for example, the deflection of the pointer increases accordingly, and the deflection indicates that the apex has been reached.

以上は根尖に近づくと位相のずれが大きくなる例である
が、逆にずれが小さくなるようにしたものを第3図及び
第4図に示す。この例では第3図のように抵抗5と測定
電極2との間に補償用コンデンサCcを挿入している。
The above is an example in which the phase shift increases as one approaches the root apex, but FIGS. 3 and 4 show an example in which the phase shift becomes smaller. In this example, a compensating capacitor Cc is inserted between the resistor 5 and the measuring electrode 2 as shown in FIG.

このため、根管上部では測定電極2の電圧は根管内の容
量成分の影響を受けず、コンデンサCcによる進相電流
のため位相が進む。しかし、根尖に近づくと根管内の容
量成分が増大して電流が進む(検出される測定電極2の
電圧は遅れる)ようになり、位相のずれが小さくなる。
Therefore, in the upper part of the root canal, the voltage of the measurement electrode 2 is not affected by the capacitance component in the root canal, and the phase advances due to the phase-advanced current caused by the capacitor Cc. However, as the root apex approaches, the capacitance component within the root canal increases and the current advances (the detected voltage of the measurement electrode 2 lags), and the phase shift becomes smaller.

従って、コンデンサCcや抵抗5の値を適切に選定して
おけば、ずれがゼロになることによって根尖位置を検出
できることになるのである。
Therefore, if the values of the capacitor Cc and the resistor 5 are appropriately selected, the position of the apex can be detected when the deviation becomes zero.

次に、第5図及び第6図により単発波形の測定電圧を用
い、過渡現象によって生ずる測定電圧と負荷電流の波形
のずれを検出するようにした第2の実施例について説明
する。第5図はブロック図、第6図は波形の説明図であ
る。
Next, a second embodiment will be described in which a deviation between the waveforms of the measured voltage and load current caused by a transient phenomenon is detected using a measured voltage having a single waveform with reference to FIGS. 5 and 6. FIG. 5 is a block diagram, and FIG. 6 is an explanatory diagram of waveforms.

図において、11は単発波形発生回路、12はタイミン
グコントローラ、13はメモリ、14は波形比較回路、
15はA−D変換器であり、他は第1図と同様である。
In the figure, 11 is a single waveform generation circuit, 12 is a timing controller, 13 is a memory, 14 is a waveform comparison circuit,
15 is an A-D converter, and the others are the same as in FIG.

単発波形発生回路11は例えば第6図の波形りのように
正確な傾きと振幅を持つ三角波を測定電圧として発生す
るように構成され、この三角波が抵抗5を介して測定電
極2に印加される。A−D変換器15は負荷電流に対応
して測定電極2に発生する電圧、すなわち負荷電流波形
Eをタイミングコントローラ12の制御のもとに所定の
単位時間ごとにA−D変換し、各時刻T1〜T、の波高
値を記録するように構成されている。また、メモリ13
には電極2の先端2aが根尖1bに到達した時に得られ
る負荷電流波形の各時刻T1〜T、の波高値を基準デー
タとして記憶しており、波形比較回路14はこのメモリ
13の基準データとA−D変換器15で得られた負荷電
流波形Eとを比較し、比較結果に応じた信号電圧を出力
するように構成されている。
The single-shot waveform generating circuit 11 is configured to generate a triangular wave having an accurate slope and amplitude as a measurement voltage, such as the waveform shown in FIG. 6, and this triangular wave is applied to the measurement electrode 2 via a resistor 5. . The A-D converter 15 performs A-D conversion on the voltage generated at the measurement electrode 2 in response to the load current, that is, the load current waveform E, every predetermined unit time under the control of the timing controller 12, and It is configured to record the peak values of T1 to T. Also, memory 13
stores the peak values of the load current waveform obtained when the tip 2a of the electrode 2 reaches the root apex 1b at each time T1 to T as reference data, and the waveform comparison circuit 14 uses the reference data in the memory 13. and the load current waveform E obtained by the AD converter 15, and outputs a signal voltage according to the comparison result.

すなわち、電極2の先端2aが例えば歯頚部に位置して
いる時の負荷電流波形E1は、等価インピーダンスの容
量成分がほとんどないため測定電圧波形りと同等な三角
波となり、基準データとの形状のずれが大きくて波形比
較回路14の出力は小さい。しかし、電極2の先端2a
が根尖付近に近づいて等価インピーダンスの容量成分が
増大すると過渡現象の影響によって負荷電流波形E2は
基準データの波形とのずれが小さくなり、波形比較回路
14の出力が増大する。従って表示部7では例えば指針
の振れが増大し、波形が一致したこと、すなわち電極2
の先端2aが根尖に到達した二とが表示されるのである
In other words, the load current waveform E1 when the tip 2a of the electrode 2 is located at the neck of the tooth, for example, has almost no capacitive component of the equivalent impedance, so it becomes a triangular wave that is equivalent to the measured voltage waveform, and there is a deviation in shape from the reference data. is large and the output of the waveform comparison circuit 14 is small. However, the tip 2a of the electrode 2
When the capacitance component of the equivalent impedance increases as the current approaches the root apex, the deviation of the load current waveform E2 from the reference data waveform becomes smaller due to the influence of the transient phenomenon, and the output of the waveform comparison circuit 14 increases. Therefore, on the display section 7, for example, the deflection of the pointer increases and the waveforms match, that is, the electrode 2
2 when the tip 2a has reached the root apex is displayed.

なお、この実施例では測定電圧が単発波形となっている
が、測定電圧が繰り返し波形であっても同様な処理によ
って検出することができる。
In this embodiment, the measured voltage has a single waveform, but even if the measured voltage has a repeated waveform, it can be detected by similar processing.

この方式を発展させ、単発波形の波高値や波形形状によ
って根尖位置を確認するようにしたものが請求項4の発
明であり、第7図はその実施例における波形の説明図で
ある。ここでは測定電圧として傾きが異なり、波高値の
等しい2個の三角波形F、  F’を一組で使用し、負
荷電流として各三角波形F、  F′に対応した波形G
、 G’のピーク波高値を検出して比較している。
The invention of claim 4 is an extension of this method, in which the apex position is confirmed by the peak value and waveform shape of a single waveform, and FIG. 7 is an explanatory diagram of the waveform in this embodiment. Here, two triangular waveforms F and F' with different slopes and equal peak values are used as a set as the measurement voltage, and a waveform G corresponding to each triangular waveform F and F' is used as the load current.
, G' peak wave height values are detected and compared.

すなわち、電極2の先端2aが例えば歯頚部に位置して
いる時は、等価インピーダンスはほとんど抵抗成分のみ
であるから、その時の波形G I IG′のピーク波高
値に差は生じない。しかし、根尖付近に近づいて容量成
分が支配的になると三角波形の傾きに応じて過渡現象が
異なったものとなるので、波形はG、、 G、’のよう
にピーク波高値に差が生ずるようになる。そこで、この
現象を利用すれば位相差や波形形状のずれを利用した場
合と同様に根尖位置を検出できるのである。
That is, when the tip 2a of the electrode 2 is located, for example, at the tooth neck, the equivalent impedance is almost only a resistance component, so there is no difference in the peak height value of the waveform G I IG' at that time. However, as the capacitive component becomes dominant near the apex, the transient phenomenon becomes different depending on the slope of the triangular waveform, so the waveforms differ in peak wave height values as shown in G, G,'. It becomes like this. Therefore, by using this phenomenon, the apex position can be detected in the same way as when using phase difference or waveform shape deviation.

なお、2個一組の単発波形は容量性インピーダンスによ
って生ずる過渡現象が異なるものであればよく、上記の
実施例のようにピーク波高値を比較せず、波形の形状の
差を比較することにより根尖位置を検出することもでき
る。
Note that a set of two single-shot waveforms only needs to have different transient phenomena caused by capacitive impedance, and can be calculated by comparing the difference in waveform shape instead of comparing the peak wave height values as in the above example. It is also possible to detect the apex position.

〈発明の効果〉 上記の実施例の説明からも明らかなように、この発明は
測定電極の先端が根尖付近に達して等価インピーダンス
の容量成分が増大すると、電圧に対する電流の位相や過
渡現象による電流波形が変化するという簡単な動作原理
に基づき、電圧波形と電流波形の間の位相あるいは波形
のずれによって根尖位置を検出するようにしたものであ
る。
<Effects of the Invention> As is clear from the explanation of the above embodiments, the present invention provides that when the tip of the measuring electrode reaches the vicinity of the root apex and the capacitance component of the equivalent impedance increases, the phase of the current with respect to the voltage and the transient phenomenon Based on a simple operating principle in which the current waveform changes, the apex position is detected based on the phase or waveform shift between the voltage and current waveforms.

従って、乾燥状態か湿潤状態か、また薬液や血液が存在
しているか否か等の根管内の状態に左右されず、常に安
定した測定が可能となり、また根失礼の直径やり−マ等
の測定電極の太さ等の外部要素の影響による誤差がなく
、測定の都度煩わしいキャリブレーションを行う必要も
なくなる。また回路構成が簡単であるため小型化、低消
費電力化が可能となり、バッテリを電源とするこの種の
装置として適したものを得ることが容易となる。
Therefore, it is possible to always perform stable measurements regardless of the conditions inside the root canal, such as whether it is dry or wet, or whether there is a chemical solution or blood. There are no errors caused by external factors such as the thickness of the measurement electrode, and there is no need to perform troublesome calibration each time a measurement is made. Further, since the circuit configuration is simple, it is possible to reduce the size and reduce power consumption, and it becomes easy to obtain a device suitable for this type of device using a battery as a power source.

このように、この発明によれば前述した公報記載の抵抗
検出方式やインピーダンス検出方式における諸問題を解
決することができ、構成が簡単であると共に操作が容易
で臨床的に使いやすい根管長測定器を得ることが可能と
なるのである。
As described above, according to the present invention, various problems in the resistance detection method and impedance detection method described in the above-mentioned publication can be solved, and the root canal length measurement is simple in configuration, easy to operate, and clinically easy to use. It becomes possible to obtain a vessel.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例のブロック図、第2図はそ
の波形の説明図、第3図及び第4図は一実施例の変形例
のブロック図及び波形の説明図、第5図は他の実施例の
ブロック図、第6図はその波形の説明図、第7図は別の
発明の一実施例の波形の説明図、第8図は従来の装置に
おけるキャリブレーションの説明図である。 1 歯牙、1a・根管、1b・・根尖、2・・・測定電
極、2a・・・先端、3・・・口腔電極、4・・・繰り
返し信号発生回路、5・・・電流制限抵抗、6・・・位
相比較回路、7・・・表示部、11・・・単発波形発生
回路、12・・・タイミングコントローラ、13・・メ
モ1ハ 14・・・波形比較回路、15・・・A−D変
換器。 特許出願人   株式会社モリタ製作所復代理人  弁
理士篠1)實 第3図 第2図 第4図 第 図 第 図 歯頚部 一一→電極位置 根尖 第 図
FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is an explanatory diagram of waveforms thereof, FIGS. 3 and 4 are block diagrams and explanatory diagrams of waveforms of a modified example of the embodiment, and FIG. 5 is an explanatory diagram of waveforms. is a block diagram of another embodiment, FIG. 6 is an explanatory diagram of its waveform, FIG. 7 is an explanatory diagram of the waveform of another embodiment of the invention, and FIG. 8 is an explanatory diagram of calibration in a conventional device. be. 1 Tooth, 1a Root canal, 1b Root apex, 2 Measuring electrode, 2a Tip, 3 Oral electrode, 4 Repetitive signal generation circuit, 5 Current limiting resistor , 6... Phase comparison circuit, 7... Display unit, 11... Single waveform generation circuit, 12... Timing controller, 13... Memo 1c, 14... Waveform comparison circuit, 15... A-D converter. Patent Applicant Morita Manufacturing Co., Ltd. Sub-Agent Patent Attorney Shino 1) Actual Figure 3 Figure 2 Figure 4 Figure Diagram Tooth neck 11 → Electrode position Apical diagram

Claims (4)

【特許請求の範囲】[Claims] (1)測定電極と口腔電極との間のインピーダンスの変
化から根尖位置を検出する装置であって、測定電極と口
腔電極の間に連続で、あるいは所定の間隔で測定電圧を
繰り返し印加する測定信号出力手段と、印加された測定
電圧の波形と両電極間に流れる負荷電流の波形とを比較
する比較手段とを備え、測定電極の先端が根尖付近に達
して上記電圧波形と電流波形とのずれの状態が変化する
ことを比較手段で検知して根尖位置を検出することを特
徴とする根尖位置検出装置。
(1) A device that detects the root apex position from changes in impedance between the measurement electrode and the oral cavity electrode, and measurement in which a measurement voltage is applied continuously or repeatedly at predetermined intervals between the measurement electrode and the oral cavity electrode. It is equipped with a signal output means and a comparison means for comparing the waveform of the applied measuring voltage and the waveform of the load current flowing between both electrodes, and when the tip of the measuring electrode reaches the vicinity of the root apex, the voltage waveform and the current waveform are compared. A root apex position detecting device, characterized in that the apex position is detected by detecting a change in the state of deviation of the root apex using a comparing means.
(2)測定電圧が繰り返し波形であり、比較手段が測定
電圧と負荷電流との位相のずれを検出するものである請
求項1記載の根尖位置検出装置。
(2) The apex position detection device according to claim 1, wherein the measured voltage has a repetitive waveform, and the comparison means detects a phase shift between the measured voltage and the load current.
(3)測定電圧が単発波形または繰り返し波形であり、
比較手段が測定電圧と負荷電流の波形の変化を検出する
ものである請求項1記載の根尖位置検出装置。
(3) The measured voltage is a single waveform or a repetitive waveform,
2. The root apex position detection device according to claim 1, wherein the comparison means detects changes in waveforms of the measured voltage and the load current.
(4)測定電極と口腔電極との間のインピーダンスの変
化から根尖位置を検出する装置であって、測定電極と口
腔電極の間に容量成分を含むインピーダンスによって生
ずる過渡現象が異なる少なくとも2個の単発波形を一組
とした測定電圧を繰り返し印加する測定信号出力手段と
、両電極間に流れる負荷電流の同じ組の波形を比較する
比較手段とを備え、測定電極の先端が根尖付近に達して
上記同じ組の負荷電流の波形に変化が生ずることを比較
手段で検知して根尖位置を検出することを特徴とする根
尖位置検出装置。
(4) A device for detecting the root apex position from a change in impedance between a measurement electrode and an oral electrode, the device comprising at least two different transient phenomena caused by impedance including a capacitive component between the measurement electrode and the oral cavity electrode. Equipped with a measurement signal output means for repeatedly applying a measurement voltage consisting of a set of single waveforms, and a comparison means for comparing the same set of waveforms of the load current flowing between both electrodes, the tip of the measurement electrode reaches near the root apex. A root apex position detection device, characterized in that the apex position is detected by detecting, by means of a comparison means, a change in the waveform of the load current of the same group.
JP2186330A 1990-07-13 1990-07-13 Apical position detection device Expired - Fee Related JP2873726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2186330A JP2873726B2 (en) 1990-07-13 1990-07-13 Apical position detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2186330A JP2873726B2 (en) 1990-07-13 1990-07-13 Apical position detection device

Publications (2)

Publication Number Publication Date
JPH0473056A true JPH0473056A (en) 1992-03-09
JP2873726B2 JP2873726B2 (en) 1999-03-24

Family

ID=16186461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2186330A Expired - Fee Related JP2873726B2 (en) 1990-07-13 1990-07-13 Apical position detection device

Country Status (1)

Country Link
JP (1) JP2873726B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07246210A (en) * 1994-03-10 1995-09-26 Konuki Shin Diagnostic device for dental purpose

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07246210A (en) * 1994-03-10 1995-09-26 Konuki Shin Diagnostic device for dental purpose

Also Published As

Publication number Publication date
JP2873726B2 (en) 1999-03-24

Similar Documents

Publication Publication Date Title
US5096419A (en) Apparatus and method for detecting an apical position
US6221031B1 (en) Method and improved device for measuring and locating a tooth apex
JP2005512078A (en) Field device electronics with a sensor unit for measuring capacitive fill levels in containers
US20080280261A1 (en) Root apex position detection method
JP4041360B2 (en) Bioimpedance measurement device
JPH02271854A (en) Dental root canal treating device
JP2002513325A (en) Multi-frequency phase detector for ultrasonic cataract emulsification suction method
JPH0473056A (en) Root point position detector
JP2873722B2 (en) Apical position detection device
JP2873725B2 (en) Root canal length measuring instrument
JP3795673B2 (en) Apical position detector
JP3071245B2 (en) Root canal length measuring instrument
JPH0633427Y2 (en) Jitter measuring device
JPS60174144A (en) Apparatus for detecting dental root drilling position
JP2798704B2 (en) Dental apex position detection device
JPH0154057B2 (en)
JPH0229940Y2 (en)
JPH06181937A (en) Measuring instrument for root canal length
JPS6225381B2 (en)
WO2006021891A1 (en) Apical constriction locator
JP2590300B2 (en) Dental apex position detection device
SU808971A1 (en) Device for measuring components of a complex resistance
KR950004833B1 (en) Method and apparatus for measuring powerfactor of wattmeter
JPH0994259A (en) Root tip position detector
CN1063216A (en) Pen-shaped multifunctional medical testing probe

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees