JPH0473040A - Ophthalmologic measuring apparatus - Google Patents

Ophthalmologic measuring apparatus

Info

Publication number
JPH0473040A
JPH0473040A JP2186266A JP18626690A JPH0473040A JP H0473040 A JPH0473040 A JP H0473040A JP 2186266 A JP2186266 A JP 2186266A JP 18626690 A JP18626690 A JP 18626690A JP H0473040 A JPH0473040 A JP H0473040A
Authority
JP
Japan
Prior art keywords
lens
cornea
mirror
reflected
eye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2186266A
Other languages
Japanese (ja)
Inventor
Yoshi Kobayakawa
小早川 嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2186266A priority Critical patent/JPH0473040A/en
Publication of JPH0473040A publication Critical patent/JPH0473040A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

PURPOSE:To obtain both functions of a keratometer and a lensmeter with a simple construction by introducing a cornea reflected luminous flux which is obtained by projecting a luminous flux to a cornea of an eye to be inspected and to a lens to be inspected and a luminous flux passing through the lens to measure a radius of curvature of the cornea and a refraction value of the lens to be inspected. CONSTITUTION:A solenoid 36 is driven to insert a stop 35 onto an optical path and when light sources 20a-20d are turned ON, four cornea reflected images are generated on a cornea Ec by these luminous fluxes and after reflected with a mirror 23, the images are reflected on a mirror 30 via a lens 29 to be projected onto an image sensor 19 via a lens 33, a mirror 34 and a stop 35 to measure a radius of curvature of the cornea Ec from a positional relationship thereamong. On the other hands, a lens G to be inspected is set on the side of a light source 16 near a stop 14 and when the light 16 is turned ON, a luminous flux thereof is reflected with a mirror 27 through a lens 15, the lens G to be inspected and the stop 14 and then, with a mirror 34 via a lens 13, a lens 28 and a mirror 25. Thus. four luminous flux images are projected onto the image sensor 19 corresponding to an opening of the stop 14 thereby measuring a refraction value of the lens G to be inspected from a positional relationship among the images.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えば眼科医院等で使用されるケラトメータ
、レンズメータとしての機能を有する眼科測定装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ophthalmological measuring device having functions as a keratometer and a lens meter used, for example, in eye clinics.

[従来の技術] 従来、角膜の曲率半径測定にはケラトメータが用いられ
、被検眼の眼屈折値測定にはレフラクトメータが用いら
れ、被検眼が装用する眼鏡やコンタクトレンズの屈折値
測定にはレンズメータが使用されており、レフラクトメ
ータとレンズメータとを一体化したものも提案されてい
る。
[Prior Art] Conventionally, a keratometer has been used to measure the radius of curvature of the cornea, a refractometer has been used to measure the ocular refraction of the eye to be examined, and a refractometer has been used to measure the refraction of glasses or contact lenses worn by the eye to be examined. A lens meter is used, and an integrated refractometer and lens meter has also been proposed.

[発明が解決しようとする課題1 しかしながら、上述の従来例においては、角膜曲率半径
測定とレンズ屈折値−11定とを1台の器械で実施でき
る装置はない。従って、これらの測定にはそれぞれ別個
の装置を用いなければならないが、これらを別個に用意
するとコスト高となり、また各装置による測定値を比較
するために長時間を要するので、例えば被検眼Eに眼鏡
を処方する際に不都合が生ずる。
[Problem to be Solved by the Invention 1] However, in the conventional example described above, there is no apparatus that can measure the radius of corneal curvature and determine the lens refraction value -11 using one instrument. Therefore, separate devices must be used for each of these measurements, but preparing these separately increases costs and requires a long time to compare the measured values from each device. This causes inconvenience when prescribing glasses.

本発明の目的は、簡便な構造でケラトメータ、レンズメ
ータの両機能を有する眼科測定装置を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide an ophthalmological measuring device having a simple structure and having both functions as a keratometer and a lens meter.

[課題を解決するための手段] 上述の目的を達成するために、本発明に係る眼科測定装
置においては、被検眼の角膜に光束を投影してその角膜
反射光束により角膜の曲率半径の測定を行う曲率半径測
定光学系と、角膜に対して非共役に配置した被検レンズ
に光束を投影して得られるレンズ透過光束を用いて屈折
値測定を行うレンズ屈折値測定光学系と、前記角膜反射
光束とレンズ透過光束とを光路結合部材を介して同一の
光電素子に導く導光光学系とを有することを特徴とする
ものである。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the ophthalmological measuring device according to the present invention projects a light beam onto the cornea of the eye to be examined and measures the radius of curvature of the cornea using the corneal reflected light beam. a lens refraction value measurement optical system that measures a refraction value using a lens-transmitted light beam obtained by projecting a light beam onto a test lens disposed non-conjugately with respect to the cornea; It is characterized by having a light guide optical system that guides the light flux and the lens-transmitted light flux to the same photoelectric element via an optical path coupling member.

[作用] 上述の構成を有する眼科測定装置は、被検眼の角膜、被
検レンズに光束を投影して、それぞれ得られた角膜反射
光束、レンズ透過光束とを同一の光電素子に導いて、被
検眼の曲率半径測定、被検レンズの屈折値測定を行う。
[Function] The ophthalmological measurement device having the above-described configuration projects a light beam onto the cornea of the eye to be examined and the lens to be examined, and guides the obtained corneal reflected light beam and lens transmitted light beam to the same photoelectric element to measure the eye. Measures the radius of curvature and refractive value of the lens to be examined.

[実施例] 本発明を図示の実施例に基づいて詳細に説明する。[Example] The present invention will be explained in detail based on illustrated embodiments.

第1図は第1の実施例の構成図を示し、眼屈折値測定用
に設けられた光源1がら被検眼Eに至る光軸01上には
、レンズ2、絞り3、穴開きミラー4、ミラー5、レン
ズ6、光路結合部材としてダイクロイックミラー7、ダ
イクロイックミラー8が配置され、穴開きミラー4の反
射方向には、複数の開口を有する絞り9、レンズ10、
開口に対応したくさびプリズムによって構成される分離
プリズム11、二次元CCD等の損保素子12が配置さ
れている。ダイクロイックミラー8の反射方向の光軸0
2上には、レンズ13、第2図に示すような4個の開口
14a〜14dを有する絞り14、レンズ15、被検レ
ンズGの屈折値測定用の点状光源16が配置され、被検
眼Eの眼軸と一致する光軸03上のダイクロイックミラ
ー8.7の背後には、レンズ17、絞り18、二次元C
CD等の搬像素子19が配列されている。また、被検眼
Eの曲率半径測定用として、被検眼Eに対向して光軸0
3の周囲の対称な位置に4個の光源20a〜20dが配
置されている。なお、絞り14と絞り18とはダイクロ
イックミラー8を介して共役とされ、ダイクロイックミ
ラー7は光源1からの光束を反射して、光源16.20
a〜20dからの光束を透過し、ダイクロイックミラー
8は光源16からの光束を反射して、光源1.20a〜
20dからの光束を透過する波長分割特性を有している
FIG. 1 shows a configuration diagram of the first embodiment. On the optical axis 01 extending from the light source 1 provided for measuring the eye refraction value to the eye E to be examined, there are a lens 2, an aperture 3, a perforated mirror 4, A mirror 5, a lens 6, and a dichroic mirror 7 and a dichroic mirror 8 are arranged as optical path coupling members, and in the reflection direction of the perforated mirror 4, an aperture 9 having a plurality of apertures, a lens 10,
A separation prism 11 constituted by a wedge prism corresponding to the aperture, and a non-life insurance element 12 such as a two-dimensional CCD are arranged. Optical axis 0 of the reflection direction of the dichroic mirror 8
2, a lens 13, an aperture 14 having four apertures 14a to 14d as shown in FIG. Behind the dichroic mirror 8.7 on the optical axis 03 that coincides with the eye axis of E, there is a lens 17, an aperture 18, and a two-dimensional C
Image carrier elements 19 such as CDs are arranged. In addition, for measuring the radius of curvature of the eye E to be examined, the optical axis 0 is placed opposite the eye E to be examined.
Four light sources 20a to 20d are arranged at symmetrical positions around 3. Note that the diaphragm 14 and the diaphragm 18 are made conjugate via a dichroic mirror 8, and the dichroic mirror 7 reflects the light beam from the light source 1 to the light source 16.20.
The dichroic mirror 8 transmits the light beams from the light sources 1.20a to 20d, and reflects the light beams from the light sources 16 to the light sources 1.20a to 20d.
It has a wavelength division characteristic that transmits the light beam from 20d.

眼屈折値測定の際に光源1を点灯すると、光束は光軸O
1上を進み、レンズ2、絞り3、穴開きミラー4の開口
部を経てミラー5で反射され、レンズ6を介してダイク
ロイックミラー7で反射されて、更にダイクロイックミ
ラー8を介して被検眼Eに至る。その眼底Erによる反
射光束は同じ光路を戻り穴開きミラー4で反射され、絞
り9、レンズ10、分離プリズム11を経て撮像素子1
2上に絞り9の開口に対応した4個の眼底反射像が投影
され、これらの投影座標位置から眼屈折値の算出がなさ
れる。
When light source 1 is turned on when measuring the eye refraction value, the luminous flux is directed to the optical axis O.
1, passes through the lens 2, the aperture 3, and the aperture of the perforated mirror 4, is reflected by the mirror 5, passes through the lens 6, is reflected by the dichroic mirror 7, and then passes through the dichroic mirror 8 to the eye E to be examined. reach. The light flux reflected by the fundus Er returns along the same optical path and is reflected by the perforated mirror 4, passes through the diaphragm 9, the lens 10, and the separation prism 11, and then passes through the image sensor 1.
Four fundus reflection images corresponding to the aperture of the aperture 9 are projected onto the diaphragm 2, and an ocular refraction value is calculated from these projected coordinate positions.

被検眼Eの曲率半径測定の際に光源20a〜20dを点
灯すると、これらの光束によって角膜Ec上には、第3
図に示すように光源20a〜20dに対応した位置に角
膜反射像Ma−Mdが生成され、これらの反射像は光軸
03上を進み搬像素子19上には4個の角膜反射像が投
影され、これらの位置関係から乱視を含む屈折値即ち曲
率半径の測定が行われる。なお、4個の角膜反射像Ma
−Mdの偏心を検知してアライメントに利用することが
できる。
When the light sources 20a to 20d are turned on when measuring the radius of curvature of the eye E, these light beams produce a third light on the cornea Ec.
As shown in the figure, corneal reflection images Ma-Md are generated at positions corresponding to the light sources 20a to 20d, and these reflection images advance on the optical axis 03, and four corneal reflection images are projected onto the image carrier 19. The refractive value including astigmatism, that is, the radius of curvature is measured from these positional relationships. In addition, four corneal reflection images Ma
- The eccentricity of Md can be detected and used for alignment.

被検眼Eが装用する被検レンズGの屈折値測定の際には
、第1図に示すように被検レンズGを光軸03上の絞り
14の近傍の光源16側に、被検眼Eの角膜Ecと非共
役な位置に固定して光源16を点灯すると、その光束は
レンズ15、被検レンズG、絞り14、レンズ13を経
てダイクロイックミラー8で反射された後に、ダイクロ
イックミラー7、レンズ17、絞り18を経て、搬像素
子19上には第4図に示すような絞り14の開口14a
〜14dに対応した4個の光束Pa〜Pdが投影され、
これらの光束の位置関係から屈折値測定が行われる。な
お、被検レンズGは角膜Ecと非共役に配置することに
より、撮像素子19上で4個の光束に分離できることに
なる。
When measuring the refractive value of the test lens G worn by the test eye E, as shown in FIG. When the light source 16 is turned on while being fixed at a position non-conjugate with the cornea Ec, the light flux passes through the lens 15, the test lens G, the diaphragm 14, and the lens 13, and is reflected by the dichroic mirror 8, and then the dichroic mirror 7 and the lens 17. , the aperture 14a of the aperture 14 as shown in FIG.
Four luminous fluxes Pa to Pd corresponding to ~14d are projected,
Refraction value measurement is performed based on the positional relationship of these light beams. Note that by arranging the lens G to be examined non-conjugately with the cornea Ec, it can be separated into four light beams on the image sensor 19.

ここで、絞り14と絞り18とは共役に配置されている
ので、被検レンズGが光軸02から偏心している場合で
あっても、4個の光束Pa=Pdの全てが撮像素子19
上に受光され、これらの光束Pa〜Pdの偏心を検知し
て被検レンズGのアライメントに利用できる。また、絞
り18はレンズ17の後側焦点と撮像素子19との間に
配置されていて、作動距離の誤差によって測定誤差が生
じないようにされている。
Here, since the aperture 14 and the aperture 18 are arranged conjugately, even if the test lens G is decentered from the optical axis 02, all of the four light beams Pa=Pd are transmitted to the image sensor 19.
The eccentricity of these light beams Pa to Pd can be detected and used for alignment of the lens G to be tested. Further, the aperture 18 is disposed between the rear focal point of the lens 17 and the image sensor 19 to prevent measurement errors from occurring due to errors in the working distance.

撮像素子12.19上の投影像は、例えばビデオカメラ
によりビデオ信号に変換した後に信号処理を行えばよい
が、絞り14の4個の開口14a〜14dと光源20a
〜20dの光軸に対する位置関係を上述の実施例のよう
対応させ、更には絞り9の開口も4個設けて対応させて
おけば、投影像の信号処理過程が共通となって好適であ
る。測定には、3個以上の投影像の位置を用いて3径線
方向の屈折力を算出すればよいので、例えば開口を6個
に増やしたり或いは環状開口や環状光源であっても支障
はなく、その場合でも信号処理過程は共通であることが
望ましい。
The projected image on the image sensor 12.19 may be converted into a video signal by a video camera and then subjected to signal processing.
It is preferable to make the positional relationship of .about.20d with respect to the optical axis correspond as in the above-described embodiment, and to also provide four apertures of the diaphragm 9 to correspond, since the signal processing process of the projected image can be shared. For measurement, it is sufficient to calculate the refractive power in the three radial directions using the positions of three or more projected images, so there is no problem even if the number of apertures is increased to six, or an annular aperture or an annular light source is used. Even in that case, it is desirable that the signal processing process be common.

第5図は第2の実施例の構成図を示し、第1の実施例と
同一の符号は同一の部材を表している。
FIG. 5 shows a configuration diagram of the second embodiment, in which the same reference numerals as in the first embodiment represent the same members.

眼屈折値測定用の光源lから被検眼Eに至る光軸01上
には、レンズ2、光学部材21の小ミラー21a、レン
ズ22、ダイクロイックミラー23が配列されている。
A lens 2, a small mirror 21a of an optical member 21, a lens 22, and a dichroic mirror 23 are arranged on an optical axis 01 extending from a light source 1 for measuring an eye refraction value to an eye E to be examined.

被検眼Eの眼軸と一致する光軸04上の小ミラー21a
の背後には、第6図に示すようにマスクされた4個の周
辺間口21b〜21eと、これらに対応した4個のくさ
びプリズムを有する光学部材21、レンズ24、ダイク
ロイックミラー25が配列されている。被検レンズGの
屈折値測定用の光源16からダイクロイックミラー25
に至る光軸05上には、レンズ15、絞り14、ミラー
27、レンズ13.28が配列されている。ダイクロイ
ックミラー23の反射方向の光軸06上には、レンズ2
9、ダイクロイックミラー30、レンズ31、ミラー3
2が配置され、ダイクロイックミラー30の反射方向の
光軸07上には、レンズ33、他の反射方向をダイクロ
イックミラー25の反射方向と一致させたダイクロイッ
クミラー34、光路に挿脱自在な絞り35、撮像素子1
9が配列されていて、絞り35にはソレノイド36が接
続され、絞り35を駆動するようになっている。また、
ミラー32の反射方向の光軸08上には、光軸08に沿
った方向に移動が可能なレンズ37、視標38が配列さ
れている。更に、被検眼Eに対向して曲率半径測定用の
光源20a〜20dが設けられ、前眼部照明用として複
数個の光源39が配置されている。なお、光学部材21
は被検眼Eの瞳孔に略共役であり、撮像素子19は眼屈
折値測定光軸では正視眼底に共役で、角1iEcの曲率
半径測定光軸では前眼部に共役とされている。ダイクロ
イックミラー23は可視光及び光源20a〜20d、3
9からの光束を反射し、光源1からの光束を透通し、ダ
イクロイックミラー25は光源1からの光束を反射し、
光源16からの光束を透通し、ダイクロイックミラ30
は光源20a〜20d、39からの光束を反射し、可視
光を透通し、ダイクロイックミラー34は光源1.16
からの光束を反射し、光源20a〜20d、39からの
光束を透通ずる波長分割特性を有している。
A small mirror 21a on the optical axis 04 that coincides with the eye axis of the eye E to be examined.
As shown in FIG. 6, four masked peripheral openings 21b to 21e, an optical member 21 having four wedge prisms corresponding to these, a lens 24, and a dichroic mirror 25 are arranged behind the lens. There is. From the light source 16 for measuring the refractive value of the test lens G to the dichroic mirror 25
A lens 15, a diaphragm 14, a mirror 27, and lenses 13 and 28 are arranged on the optical axis 05 leading to . On the optical axis 06 in the direction of reflection of the dichroic mirror 23, there is a lens 2.
9, dichroic mirror 30, lens 31, mirror 3
2 are arranged, and on the optical axis 07 in the reflection direction of the dichroic mirror 30, a lens 33, a dichroic mirror 34 whose other reflection direction matches the reflection direction of the dichroic mirror 25, an aperture 35 which can be inserted into and removed from the optical path, Image sensor 1
A solenoid 36 is connected to the diaphragm 35 to drive the diaphragm 35. Also,
On the optical axis 08 in the reflection direction of the mirror 32, a lens 37 and an optotype 38, which are movable in the direction along the optical axis 08, are arranged. Further, light sources 20a to 20d for measuring the radius of curvature are provided facing the eye E to be examined, and a plurality of light sources 39 are arranged for illuminating the anterior ocular segment. Note that the optical member 21
is approximately conjugate to the pupil of the eye E to be examined, and the image sensor 19 is conjugate to the emmetropic fundus on the optical axis for measuring the eye refraction value, and is conjugate to the anterior segment on the optical axis for measuring the radius of curvature of the angle 1iEc. The dichroic mirror 23 uses visible light and light sources 20a to 20d, 3
The dichroic mirror 25 reflects the light beam from the light source 1, and the dichroic mirror 25 reflects the light beam from the light source 1.
The light beam from the light source 16 passes through the dichroic mirror 30.
reflects the luminous flux from the light sources 20a to 20d, 39 and transmits visible light, and the dichroic mirror 34 is connected to the light source 1.16.
It has a wavelength division characteristic of reflecting the light flux from the light sources 20a to 20d and transmitting the light flux from the light sources 20a to 20d and 39.

アライメント時にはソレノイド36を作動して絞り35
を光路から離脱した状態で光源39を点灯すると、この
光束は前眼部で反射された後にダイクロイックミラー2
3で反射され、レンズ29を介してダイクロイックミラ
ー30で反射され、レンズ33、ダイクロイックミラー
34を経て撮像素子19上に前眼部像が結像される。検
者はこれを例えば図示しないテレビモニタ等に出力して
観察してアライメントを行う。
At the time of alignment, the solenoid 36 is operated and the aperture 35 is
When the light source 39 is turned on with the light beam removed from the optical path, this light beam is reflected at the anterior segment of the eye and then passes through the dichroic mirror 2.
3 , is reflected by the dichroic mirror 30 via the lens 29 , and an anterior segment image is formed on the image sensor 19 via the lens 33 and the dichroic mirror 34 . The examiner outputs this to, for example, a television monitor (not shown), observes it, and performs alignment.

眼屈折測定に際して光源1を点灯すると、光源lからの
光束は光軸O1上を進み小ミラー21aで反射され、レ
ンズ22、ダイクロイックミラー23を経て被検眼Eに
至り、その眼底Erによる反射光束は同じ光路を戻り、
光学部材21の周辺開口21b〜21e、くさびプリズ
ム、レンズ24を経てダイクロイックミラー25及びダ
イクロイックミラー34で反射され、撮像素子19に光
学部材21の4個の周辺開口21b〜21dに対応した
眼底反射像が投影され、これらの位置関係から眼屈折値
測定が行われる。
When the light source 1 is turned on during eye refraction measurement, the light beam from the light source L travels on the optical axis O1, is reflected by the small mirror 21a, passes through the lens 22 and the dichroic mirror 23, and reaches the eye E to be examined, and the light beam reflected by the fundus Er is Returning along the same optical path,
The fundus reflection images corresponding to the four peripheral apertures 21b to 21d of the optical member 21 are reflected by the dichroic mirror 25 and the dichroic mirror 34 via the peripheral apertures 21b to 21e of the optical member 21, the wedge prism, and the lens 24, and are displayed on the image sensor 19. is projected, and the eye refraction value is measured based on these positional relationships.

この場合に、視標38は被検眼Eの視度誘導に用いられ
、この視標38で反射される可視光束はレンズ37を経
てミラー32で反射され、レンズ31、ダイクロイック
ミラー30を経て、ダイクロイックミラー23で反射さ
れて被検眼Eに至り、レンズ37を光軸08に沿った方
向に移動することによって、視標38の見掛けの視度の
調節がなされる。
In this case, the optotype 38 is used to guide the diopter of the eye E to be examined, and the visible light beam reflected by the optotype 38 passes through the lens 37, is reflected by the mirror 32, passes through the lens 31, the dichroic mirror 30, and then passes through the dichroic mirror 30. The light is reflected by the mirror 23 and reaches the subject's eye E, and by moving the lens 37 in the direction along the optical axis 08, the apparent diopter of the optotype 38 is adjusted.

角膜の曲率半径測定の際には、ソレノイド36を駆動し
て絞り35を光路上に挿入した状態で光源20a〜20
dを点灯すると、これらの光束によって角膜Ec上には
4個の角膜反射像が生成され、これらの角膜反射像はダ
イクロイックミラー23で反射された後に、レンズ29
を経てダイクロイックミラー30で反射され、レンズ3
3、ダイクロイックミラー34、絞り35を経て4個の
角膜反射像が撮像素子19上に投影されて、これらの位
置関係から角膜Ecの曲率半径の測定が行われる。
When measuring the radius of curvature of the cornea, the light sources 20a to 20 are operated while the solenoid 36 is driven and the aperture 35 is inserted on the optical path.
When d is turned on, four corneal reflection images are generated on the cornea Ec by these light beams, and these corneal reflection images are reflected by the dichroic mirror 23 and then reflected by the lens 29.
is reflected by the dichroic mirror 30, and is reflected by the lens 3.
3. Four corneal reflection images are projected onto the image sensor 19 via the dichroic mirror 34 and the aperture 35, and the radius of curvature of the cornea Ec is measured based on their positional relationship.

一方、被検レンズGの屈折値測定の際には、被検レンズ
Gを絞り14の近傍の光源16側に配置した状態で光源
16を点灯すると、この光束はレンズ15、被検レンズ
G、絞り14を介してミラー27で反射され、レンズ1
3、レンズ28、ダイクロイックミラー25を経た後に
ダイクロイックミラー34で反射されて、撮像素子19
上には絞り14の開口に対応した4個の光束像が投影さ
れ、これらの位置関係から被検レンズGの屈折値の測定
が行われる。なお、4個の光束像の偏心を検知して被検
レンズGのアライメントに利用することもできる。
On the other hand, when measuring the refractive value of the test lens G, when the light source 16 is turned on with the test lens G placed near the aperture 14 on the light source 16 side, this luminous flux is transmitted to the lens 15, the test lens G, It is reflected by the mirror 27 through the aperture 14, and the lens 1
3. After passing through the lens 28 and the dichroic mirror 25, it is reflected by the dichroic mirror 34, and the image sensor 19
Four beam images corresponding to the aperture of the diaphragm 14 are projected above, and the refractive value of the lens G to be tested is measured based on the positional relationship between these images. Note that the eccentricity of the four beam images can also be detected and used for alignment of the lens G to be tested.

絞り14の開口、光学部材21の周辺開口21b〜21
e、光源20a−20dはそれぞれ配置位置や形状等に
制約がないことは上述の実施例と同様である。また、実
施例においては二次元の撮像素子19を用ているが、−
次元のCCDなどを複数個配列して代用してもよい。
The aperture of the diaphragm 14 and the peripheral apertures 21b to 21 of the optical member 21
e. Similarly to the above-described embodiment, there are no restrictions on the arrangement positions, shapes, etc. of the light sources 20a to 20d. In addition, although a two-dimensional image sensor 19 is used in the embodiment, -
Alternatively, a plurality of dimensional CCDs may be arranged.

[発明の効果] 以上説明したように本発明に係る眼科測定装置は、被検
眼の角膜、被検レンズに光束を投影してそれぞれ得られ
た角膜反射光束、レンズ透過光束とを同一の光電素子に
導いて、角膜の曲率半径測定、被検レンズの屈折値測定
を行っているので、簡便な構成であってケラトメータ、
レンズメータの機能を有する。また、これらの結果を簡
単に比較できるので、眼鏡レンズの処方に役立てること
ができる。
[Effects of the Invention] As explained above, the ophthalmological measuring device according to the present invention uses the same photoelectric element to project the cornea reflected light flux and the lens transmitted light flux obtained by projecting the light flux onto the cornea of the eye to be examined and the lens to be examined, respectively. The keratometer has a simple configuration and can be used to measure the radius of curvature of the cornea and the refractive value of the lens to be tested.
It has the function of a lens meter. Furthermore, since these results can be easily compared, they can be useful for prescription of eyeglass lenses.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る眼科測定装置の実施例を示し、第1
図は第1の実施例の構成図、第2図は絞りの正面図、第
3図は角膜上の角膜反射像の説明図、第4図は撮像素子
上の投影光束の説明図、第5図は第2の実施例の構成図
、第6図は光学部材のマスクの説明図である。 符号1.16.20a〜20d、39は光源、3.9.
14.18.35は絞り、5.7.8.23.25.3
0.34はダイクロイックミラー、12.19は撮像素
子、21は光学部材、Gは被検レンズである。
The drawings show an embodiment of the ophthalmological measuring device according to the present invention, and the first
2 is a front view of the aperture, FIG. 3 is an illustration of a corneal reflection image on the cornea, FIG. 4 is an illustration of a projected light beam on the image sensor, and FIG. The figure is a configuration diagram of the second embodiment, and FIG. 6 is an explanatory diagram of a mask of an optical member. Symbols 1.16.20a to 20d, 39 are light sources, 3.9.
14.18.35 is the aperture, 5.7.8.23.25.3
0.34 is a dichroic mirror, 12.19 is an image sensor, 21 is an optical member, and G is a lens to be tested.

Claims (1)

【特許請求の範囲】[Claims] 1、被検眼の角膜に光束を投影してその角膜反射光束に
より角膜の曲率半径の測定を行う曲率半径測定光学系と
、角膜に対して非共役に配置した被検レンズに光束を投
影して得られるレンズ透過光束を用いて屈折値測定を行
うレンズ屈折値測定光学系と、前記角膜反射光束とレン
ズ透過光束とを光路結合部材を介して同一の光電素子に
導く導光光学系とを有することを特徴とする眼科測定装
置。
1. A radius of curvature measuring optical system that projects a light beam onto the cornea of the eye to be examined and measures the radius of curvature of the cornea using the reflected light beam; It has a lens refraction value measuring optical system that measures a refraction value using the obtained lens transmitted light flux, and a light guiding optical system that guides the corneal reflected light flux and the lens transmitted light flux to the same photoelectric element via an optical path coupling member. An ophthalmological measurement device characterized by:
JP2186266A 1990-07-13 1990-07-13 Ophthalmologic measuring apparatus Pending JPH0473040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2186266A JPH0473040A (en) 1990-07-13 1990-07-13 Ophthalmologic measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2186266A JPH0473040A (en) 1990-07-13 1990-07-13 Ophthalmologic measuring apparatus

Publications (1)

Publication Number Publication Date
JPH0473040A true JPH0473040A (en) 1992-03-09

Family

ID=16185280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2186266A Pending JPH0473040A (en) 1990-07-13 1990-07-13 Ophthalmologic measuring apparatus

Country Status (1)

Country Link
JP (1) JPH0473040A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106940A (en) * 2001-09-28 2003-04-09 Tomey Corporation Method for measuring refracting power of contact lens
CN110455221A (en) * 2019-09-11 2019-11-15 大连鉴影光学科技有限公司 A kind of light channel structure and equipment of rapid survey optical mirror slip radius of curvature

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106940A (en) * 2001-09-28 2003-04-09 Tomey Corporation Method for measuring refracting power of contact lens
CN110455221A (en) * 2019-09-11 2019-11-15 大连鉴影光学科技有限公司 A kind of light channel structure and equipment of rapid survey optical mirror slip radius of curvature
CN110455221B (en) * 2019-09-11 2024-04-09 大连鉴影光学科技有限公司 Optical path structure and equipment for rapidly measuring curvature radius of optical lens

Similar Documents

Publication Publication Date Title
JPS6324927A (en) Ophthalmic measuring apparatus
US5144346A (en) Ophthalomological apparatus for alignment and refraction
JPH04200436A (en) Ophthamologic apparatus
JPH08103413A (en) Ophthalmological measuring instrument
US5781275A (en) Eye refractometer and eye refractive power measuring apparatus for electro-optically measuring the refractive power of the eye
JPH0315434A (en) Eye refractometer
JPH0473040A (en) Ophthalmologic measuring apparatus
JPH06121773A (en) Ophthalmology refractometer
JP3015042B2 (en) Hand-held eye refractometer
JPS6117494B2 (en)
JPH02302243A (en) Measuring instrument for refractive index of eyes
JP2951991B2 (en) Eye refractometer
JPH11299735A (en) Ophthalmoscopic device
JP2002345753A (en) Dioptometer
JPH067299A (en) Ophthalmologic refractometer
JPS6159134B2 (en)
JPH0439332B2 (en)
JP2001161644A (en) Optometer
JP3181893B2 (en) Eye refractometer
JPH0554326B2 (en)
JPH06121774A (en) Ophthalmology refractometer
JP2783618B2 (en) Eye refractive power measuring device
JPH04288120A (en) Eye measuring apparatus
JP2001258841A (en) Ophthalmoscopic instrument
JPS6219851B2 (en)