JPH0472849B2 - - Google Patents

Info

Publication number
JPH0472849B2
JPH0472849B2 JP59027362A JP2736284A JPH0472849B2 JP H0472849 B2 JPH0472849 B2 JP H0472849B2 JP 59027362 A JP59027362 A JP 59027362A JP 2736284 A JP2736284 A JP 2736284A JP H0472849 B2 JPH0472849 B2 JP H0472849B2
Authority
JP
Japan
Prior art keywords
epoxy
imidazole
complex
item
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59027362A
Other languages
Japanese (ja)
Other versions
JPS59210930A (en
Inventor
Maikuru Baaton Jon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Development Corp UK
Original Assignee
National Research Development Corp UK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Development Corp UK filed Critical National Research Development Corp UK
Publication of JPS59210930A publication Critical patent/JPS59210930A/en
Publication of JPH0472849B2 publication Critical patent/JPH0472849B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5093Complexes of amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/64Amino alcohols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Polyethers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はエポキシ組成物に関する。 エポキシ樹脂は適当な硬化剤によつて、不溶解
性で難加工性の架橋化したポリマーに変えること
ができる。前記の樹脂および硬化剤は、これら2
つの成分をすぐに使えるような混合物の形で貯え
る1成分系を構成することもできるし、前記の2
つの成分を使用直前まで別々に貯えておく2成分
系を構成することもできる。1成分系は2成分系
に比べ、通常廉価で使い易く、更に使用直前に2
成分を正確な割合および量で混合しなければなら
ない2成分系における困難な処理も必要ないとい
う点で、非常に有利である。本発明は1成分系に
関するものである。 1成分系に使う硬化剤は、室温においてエポキ
シ樹脂に対し比較的非反応性であつて入、硬化す
るための温度に上昇するまでは樹脂と硬化剤との
混合物を安定に保つ必要がある。硬化剤は、1成
分系を長時間貯蔵しておいた場合にも、樹脂の早
期硬化の原因とならないことが要求される。すな
わち、その系が長い貯蔵期間をもつことが非常に
望まれる。 イミダゾール類はエポキシ樹脂用の公知の硬化
剤であるが、エポキシドに対して高反応性である
ので、1成分系中では使用することができない。
この問題に対する1つの方法は、早期硬化を起こ
さないで貯蔵することができる1成分系中でエポ
キシとともに使うことができる硬化剤を生成する
ように金属塩でイミダゾールを錯体化することで
ある。このようなイミダゾール/金属塩錯体は英
国特許第1204843号明細書に記載されている。し
かしながら、その錯体はエポキシ樹脂中で極めて
溶解度が低い結晶性材料である点で不利である。
エポキシ樹脂中における硬化剤の溶解度は、1成
分系で使用する場合に非常に望まれる。英国特許
第1024834号明細書に記載されているような結晶
性硬化剤では、硬化剤を樹脂と混合した場合に、
不均質な分散物が得られることになる。前記分散
物は長期間貯蔵すると、析出または凝集する傾向
がある。更に、前記分散物は予備含浸複合体材料
〔プリプレグ(pre−pregs)〕の製造にも理想的な
ものとは言えない。 本発明は、まず第一に、(イ)イミダゾール類と単
官能性エポキシ化合物との付加物の金属塩錯体と
(ロ)エポキシ樹脂、モノエポキシドまたはエポキシ
樹脂とモノエポキシドとの混合物とから成る、加
熱により硬化または重合することのできる1成分
エポキシ組成物を提供する。 イミダゾール/エポキシ付加物は本質的には任
意のイミダゾール類またはイミダゾール類の混合
物から生成することができる。本明細書において
『イミダゾール類』とは、イミダゾールそれ自体
または任意の置換されたイミダゾールを意味す
る。 本明細書において『単官能性』とは、
The present invention relates to epoxy compositions. Epoxy resins can be converted into insoluble, difficult-to-process, crosslinked polymers by means of suitable curing agents. The above resin and curing agent are
It is also possible to construct one-component systems in which two components are stored in a ready-to-use mixture;
It is also possible to construct a two-component system in which the two components are stored separately until just before use. One-component systems are usually cheaper and easier to use than two-component systems, and they also require
It is very advantageous in that there is also no need for difficult processing in two-component systems where the components have to be mixed in precise proportions and amounts. The present invention relates to one-component systems. The curing agent used in one-component systems must be relatively unreactive with the epoxy resin at room temperature to keep the mixture of resin and curing agent stable until the temperature is raised to cure. The curing agent is required to not cause premature curing of the resin even when the one-component system is stored for a long time. Thus, it is highly desirable for the system to have a long shelf life. Imidazoles are known curing agents for epoxy resins, but cannot be used in one-component systems because of their high reactivity towards epoxides.
One approach to this problem is to complex the imidazole with a metal salt to produce a hardener that can be used with the epoxy in a one-component system that can be stored without premature curing. Such imidazole/metal salt complexes are described in GB 1204843. However, the complex has the disadvantage that it is a crystalline material with very low solubility in epoxy resins.
The solubility of curing agents in epoxy resins is highly desirable when used in one-component systems. With crystalline hardeners such as those described in GB 1024834, when the hardener is mixed with a resin,
A heterogeneous dispersion will be obtained. The dispersions tend to precipitate or agglomerate when stored for long periods of time. Furthermore, the dispersions are not ideal for the production of pre-impregnated composite materials (pre-pregs). The present invention first relates to (a) a metal salt complex of an adduct of an imidazole and a monofunctional epoxy compound;
(b) A one-component epoxy composition comprising an epoxy resin, a monoepoxide, or a mixture of an epoxy resin and a monoepoxide, which can be cured or polymerized by heating. Imidazole/epoxy adducts can be formed from essentially any imidazole or mixture of imidazoles. As used herein, "imidazole" means imidazole itself or any substituted imidazole. In this specification, "monofunctionality" means

【式】基を1個含むものを意味する。 使用することのできる置換されたイミダゾール
の例を挙げれば以下のとおりである。 アルキルイミダゾール例えば1−メチルイミダ
ゾール、1,2−ジメチルイミダゾール、2−メ
チルイミダゾール、2−エチルイミダゾールおよ
び2−エチル−4−メチルイミダゾール、カルバ
ミルアルキル置換イミダゾール例えば1−(2−
カルバメチル)イミダゾールおよび1−(2−カ
ルバミルエチル)−2−エチル−4−メチルイミ
ダゾール:アルカリール置換イミダゾール例えば
1−ベンジル−2−メチルイミダゾールおよび1
−フエニル−2−メチルイミダゾール:アルケニ
ル置換イミダゾール例えば1−ビニル−2−メチ
ルイミダゾール:アリル置換イミダゾール例えば
1−アリル−2−エチル−4−メチルイミダゾー
ル:カルボキサニリド置換イミダゾール例えば1
−イミダゾールカルボキサニリドおよび2−メチ
ル−1−イミダゾールカルボキサニリド:ベンズ
イミダゾール、ナフトイミダゾール:ポリミダゾ
ール:カルボヒドロキシエチルアミン:o−フエ
ニレンジアミンおよびその他例えば1−p−トル
エン。混合イミダゾールたとえばイミダゾールと
1−メチルイミダゾールとその他のものとの混合
物を使用してイミダゾール/エポキシ付加物を生
成し、これを金属塩で錯体化して、前記組成物中
で使用する硬化剤を生成することもできる。 イミダゾール類として好ましいものは、イミダ
ゾールおよび2−エチル−4(5)−メチルイミダゾ
ールである。 イミダゾール・エポキシ付加物を生成するのに
使う単官能性エポキシ化合物は炭素原子20個まで
のエポキシであることが好ましい。好ましくは、
前記エポキシ化合物はグリシジルエーテル例えば
フエニルグリシジルエーテルである。 前記組成物中で使用する錯体における付加物
は、イミダゾール:エポキシのモル比1:1また
は1:2で生成することができ、例えば式
[Formula] means one containing one group. Examples of substituted imidazoles that can be used are as follows. Alkylimidazoles such as 1-methylimidazole, 1,2-dimethylimidazole, 2-methylimidazole, 2-ethylimidazole and 2-ethyl-4-methylimidazole, carbamyl alkyl substituted imidazoles such as 1-(2-
Carbamethyl)imidazole and 1-(2-carbamylethyl)-2-ethyl-4-methylimidazole: alkaryl-substituted imidazoles such as 1-benzyl-2-methylimidazole and 1
-Phenyl-2-methylimidazole: alkenyl-substituted imidazole e.g. 1-vinyl-2-methylimidazole: allyl-substituted imidazole e.g. 1-allyl-2-ethyl-4-methylimidazole: carboxanilide-substituted imidazole e.g. 1
- Imidazolecarboxanilide and 2-methyl-1-imidazolecarboxanilide: benzimidazole, naphthimidazole: polymidazole: carbohydroxyethylamine: o-phenylenediamine and others such as 1-p-toluene. Mixed imidazoles, such as mixtures of imidazole and 1-methylimidazole and others, are used to form imidazole/epoxy adducts, which are complexed with metal salts to form the curing agent used in the compositions. You can also do that. Preferred imidazoles are imidazole and 2-ethyl-4(5)-methylimidazole. Preferably, the monofunctional epoxy compound used to form the imidazole epoxy adduct is an epoxy having up to 20 carbon atoms. Preferably,
The epoxy compound is a glycidyl ether, such as phenyl glycidyl ether. The adduct in the complex used in the composition can be formed in a molar ratio of imidazole:epoxy of 1:1 or 1:2, e.g.

【式】または[expression] or

【式】 (式中、R1とR′1とはエポキシ/イミダゾール付
加反応によつて提供される残基であり、R2とR3
とR4とは水素原子または置換基例えば好ましく
は炭素原子が10個よりも少ないアルキル基または
アリール基である) で表わされる。 例えば前記式()または式()の付加物は
または式 (式中、RAとR′AとはC1-10アルキル基または好ま
しくは置換されていることのあるフエニル基であ
る) で表わされる。 非置換イミン窒素原子をもつイミダゾール類の
互変異性的性質により、そのようなイミダゾール
類から生成したエポキシ付加物は2種の異性体の
形の混合物として生成されやすくなる。例えば、
式()および式()において基R4と基R5
の1方が水素原子であり他方が置換基である場合
には、付加物は2種の異性体の形で形成されやす
い。すなわち、1方はイミダゾールの4−位置に
置換基のあるものであり、他方はイミダゾールの
5−位置に置換基のあるものである。 付加物の生成に使用するイミダゾールに対する
エポキシのモル比は2:1を越えないこと、すな
わち1個の単官能性エポキシ基だけが各窒素原子
に付着し、例えばポリエポキシドが付着しないこ
とが好ましい。モル比がそれより大きくなると硬
化剤の有効性が希釈化され、錯体の有効性が実際
に減少するからである。 本質的には任意の金属塩を、金属塩とイミダゾ
ール/エポキシ付加物との錯体に使用することが
できる。 金属塩の例を挙げれば以下のとおりである。 銅塩例えば塩化第二銅、塩化第一銅、臭化第二
銅、フツ化第二銅、硝酸第二銅、フツ化ホウ酸第
二銅、硫酸第二銅、酢酸第二銅、トリフルオロ酢
酸第二銅、メタクリル酸第二銅、ステアリン酸第
二銅、オクトン酸第二銅、マロン酸第二銅、安息
香酸第二銅:ニツケル塩例えば塩化ニツケル、フ
ツ化ニツケル、硫酸ニツケル、フツ化ホウ酸ニツ
ケル、トール酸ニツケル、ステアリン酸ニツケル
およびニツケルのひまし油酸塩:カルシウム塩例
えば塩化カルシウムおよび臭化カルシウム:コバ
ルト塩例えば塩化第一コバルト、フツ化第一コバ
ルト、硫酸第一コバルト、ステアリン酸第一コバ
ルト、オクトン酸第一コバルトおよびフツ化ホウ
酸第一コバルト:亜鉛塩例えば臭化亜鉛、ステア
リン酸亜鉛、オクトン酸亜鉛、2−エチルヘキソ
ン酸亜鉛、クロム酸亜鉛および塩化亜鉛:水銀塩
例えば臭化第二水銀および塩化第二水銀:ジルコ
ニウム塩例えば硫酸ジルコニウム:インジウム塩
例えばフツ化ホウ酸インジウム:銀塩例えば硝酸
銀:クロム酸例えば塩化第二クロム:マンガン塩
例えば塩化マンガンおよび硫酸マンガン:スズ塩
例えば塩化第一スズ:カドミウム塩例えば塩化カ
ドミウム:鉄塩例えば塩化第一鉄:チタン塩例え
ば塩化チタン。 好ましい金属塩はCuCl2、CuBr2、Cu(NO32
酢酸銅、プロピオン酸銅、CaCl2、CoCl2、ZnCl2
および酢酸カドミウムである。 上記の金属塩は、使用することのできる金属塩
の一部分を挙げただけである。 イミダゾール/エポキシ付加物に対する金属塩
のモル比は臨界的意義をもたない。しかしなが
ら、一般に、金属塩対イミダゾール・エポキシ付
加物のモル比は1:1ないし1:6好ましくは
1:4である。 イミダゾール・エポキシ付加物と金属塩との錯
体は、それら成分を混合することにより都合よく
生成される。前記成分のいずれかが固体である場
合は、溶媒例えばメタノールまたは水中の反応体
溶液を使うことができる。生成物が固体である場
合は、得られる沈でん物をろ過して錯体を得るこ
とができる。 本発明の一態様である組成物は、硬化剤として
の前記イミダゾール金属塩錯体を含むエポキシ樹
脂またはモノエポキシドである。前記組成物は、
イミダゾール/エポキシ錯体とエポキシ樹脂また
はモノエポキシドとを、溶媒を使つてまたは使わ
ないで単に混合することにより生成することがで
きる。各成分は室温で混合することができる。 エポキシ樹脂またはモノエポキシドをイミダゾ
ール/エポキシ金属塩錯体と混合し、その混合物
を約200〜500〓に加熱することにより、任意のエ
ポキシ樹脂またはモノエポキシドを硬化させるこ
とができる。前記のエポキシ樹脂またはモノエポ
キシドは飽和または不飽和、あるいは脂環式、複
素環式または脂肪族の化合物であることができ、
更に所望により置換基例えばハロゲン原子、イオ
ウ原子、エステル残基、ウレタン残基、アミノ
基、水酸基、エーテル基、メルカプト基、酸基、
無水物残基、ケトン残基およびアルデヒド残基に
より置換されていてもよい。前記のエポキシ樹脂
またはモノエポキシドはモノメリツクであること
もポリメリツクであることもできる。更に、ハロ
ゲン原子、イオウ原子、水酸基、メルカプト基、
エーテル残基、アミノ基、酸基、無水物残基、エ
ステル残基、ウレタン残基、ケトン残基およびア
ルデヒド残基を含む化合物または樹脂の存在下で
使用することができる。 本明細書において『エポキシ樹脂』とはポリエ
ポキシドを意味する。モノエポキシドは、イミダ
ゾール/エポキシ金属塩錯体と混合し、加熱する
と重合する。従つてモノエポキシドの場合は、本
願明細書において言う硬化剤は重合化剤を意味す
る。イミダゾール/エポキシ金属塩錯体を加えて
加熱すると重合するモノエポキシドは例えばプロ
ピレンオキシド、アリルグリシジルエーテル、フ
エニルグリシジルエーテル、ペンタクロルフエニ
ルグリシジルエーテル、テトラブロムフエニルグ
リシジルエーテルおよびグリシジルメタクリレー
トである。 好ましい態様においては、エポキシ樹脂は平均
分子量あたり1,2−エポキシ基を平均で1.0よ
り多くもつポリエポキシドである。本発明で使用
することができるポリエポキシドの中ではポリフ
エノールのポリグリシジルエーテル例えばビスフ
エノール(Bisphenol)−Aが好ましい。これら
は例えばアルカリの存在下でポリフエノールをエ
ピクロルヒドリンまたはジクロルヒドリンでエー
テル化することによつて得ることができる。フエ
ノール性化合物は例えば2,2−ビス(4−ヒド
ロキシフエニル)プロパン、4,4′−ジヒドロキ
シベンゾフエノン、1,1−ビス(4−ヒドロキ
シフエニル)エタン、2,2−ビス(4−ヒドロ
キシ−t−ブチルフエニル)プロパン、ビス(2
−ヒドロキシナフチル)メタンまたは1,5−ジ
ヒドロキシナフタリンである。ポリフエノールは
ノボラツク樹脂であることもできる。 この種類のポリエポキシドは例えばビスフエノ
ール−Aとエピクロルヒドリンとの反応生成物で
ある。 多価アルコール例えばエチレングリコール、ジ
エチレングリコール、トリエチレングリコール、
1,2−プロピレングリコール、1,4−ブチレ
ングリコール、1,5−ペンタンジオール、2,
4,6−ヘキサントリオール、グリセリンおよび
トリメチロールプロパンから誘導することのでき
る多価アルコールの同様なポリグリシジルエーテ
ルも適したものである。 本発明において使用することのできるポリエポ
キシドの他の例は、前記の多価アルコールのグリ
シジルポリエーテルおよび多価フエノールのグリ
シジルポリエーテルの部分脂肪酸エステルであ
る。これらの樹脂を生成するのに使うことのでき
る脂肪酸は例えばあまに油およびひまし油であ
る。 エピクロルヒドリンまたは同様のエポキシ化合
物と脂肪族または芳香族ポリカルボン酸例えばシ
ユウ酸、コハク酸、グルタル酸、アジピン酸、ア
ゼライン酸、フタル酸、イソフタル酸、テレフタ
ル酸、2,5−ナフタリンジカルボン酸および2
量体化リノレン酸との反応によつて生成されるポ
リカルボン酸のポリグリシジルエステルも適した
ものである。 その他の例は、オレフイン系不飽和脂肪族化合
物のエポキシ化から誘導されるポリエポキシドで
ある。ジエポキシドおよび高級エポキシド、更に
は部分的にモノエポキシド1種またはそれ以上か
ら成るエポキシド混合物が含まれる。これ等のポ
リエポキシドは非フエノール性であり、オレフイ
ン例えばブタジエンおよびシクロヘキセンを例え
ば酸素および選んだ金属触媒により、過安息香酸
により、アセトアルデヒドモノパーアセテートに
より、または過酢酸によりエポキシ化することに
より得る。 エポキシ樹脂に対するイミダゾール/エポキシ
付加物金属塩錯体の比は臨界的意味をもたない。
一般に、混合物はエポキシ樹脂100重量部に対し
て金属塩錯体約0.5〜約4.0重量部を含んでいる。 エポキシ樹脂またはモノエポキシドとイミダゾ
ール金属塩錯体を一緒に混合した場合、組成物は
硬化または重合せずに長期間室温で貯蔵すること
ができる。エポキシ樹脂をシート材料として使用
する場合には、硬質のゲル化材料を形成するのに
必要な時間加熱することができる。エポキシ混合
物を被覆または接着剤として使用する場合は、混
合物を基体上に被覆し、充分な時間加熱して樹脂
を硬化し、基体上に堅質の接着性被覆を形成す
る。エポキシ混合物を硬化するのに必要な加熱量
は特定成分により異なるが、一般には樹脂が硬化
するまで混合物を約90〜約250℃に加熱する。 急速硬化および改善された高温強度を望む場合
には、エポキシ樹脂またはモノエポキシドを前記
金属塩錯体および窒素化合物の混合物と混合する
ことができる。 この組成物は錯体および窒素化合物とエポキシ
樹脂またはモノエポキシドとを単に混合すること
によつて生成することができる。 エポキシ樹脂またはモノエポキシドに対する硬
化剤の比は、窒素化合物を加えていない場合と同
じである。硬化剤は窒素化合物に対してイミダゾ
ール錯体を任意の割合で含むことができる。しか
しながら、最もよい結果は窒素化合物1〜98重量
%を含む硬化剤を使用するときに得られる。 窒素化合物は例えば芳香族ポリアミド例えばビ
ス(4−アミノフエノール)スルホンである。 従つて、金属塩イミダゾール/エポキシ付加物
は可溶性促進剤として他の硬化剤例えば前記窒素
化合物と共に使うことができる。 顔料例えば二酸化チタン、カーボンブラツク
等、充てん剤および可撓化剤をエポキシ樹脂組成
物に加えることができる。本発明の組成物中には
エポキシ樹脂と共反応性の他の樹脂性材料、例え
ばカルボキシル基例えばアキセラン酸(axelaic
acid)を含む樹脂、無水物例えばナデイツク
(Nadic:商品名)無水物を含む樹脂、エポキシ
基を含むポリエステル、水酸基を含む樹脂、チオ
基を含む樹脂、エポキシ基を含むシリコン樹脂、
ウレタン樹脂およびアミノ基を含む樹脂を含むこ
ともできる。前記の共反応体の添加は、エポキシ
樹脂組成物に対して種々の公知の所望の性質を付
与するために行うことができる。 本発明の組成物中に使用する金属塩イミダゾー
ル/エポキシ付加物錯体は、公知の金属塩イミダ
ゾール錯体と比べ一般にエポキシ樹脂への溶解度
が優れている硬化剤である。本発明に係る前記錯
体は有機溶媒に比較的可溶性であり、室温におい
てはエポキシ樹脂に対し一般に非反応性である
が、高温例えば約100℃以上で1成分エポキシ系
(1成分組成物)中で硬化剤として有効である。
既に明らかなように、前記組成物は、早期硬化を
起こすことなく、また凝集の生成および硬化剤の
凝結も起こすことなく、長期間貯蔵することがで
きる。 本発明は第2に、イミダゾール類と炭素原子20
個までの単官能性エポキシ化合物との付加物と金
属塩との錯体であり、エポキシ樹脂、モノエポキ
シドまたはエポキシ樹脂とモノエポキシドとの混
合物と共に加熱により硬化または重合することの
できる1成分系エポキシ組成物を形成するのに適
する錯体を提供する。金属塩錯体は前記の新規な
金属塩イミダゾール/エポキシ錯体の任意のもの
であることができる。 以下実施例によつて本発明を更に詳細に説明す
る。 例 1 イミダゾール(Im)およびフエニルグリシジ
ルエーテル(PGE)の1:1モル付加物の調
製 ベンゼン200cm3中のイミダゾール17g(0.25モ
ル)のかきまぜた還流溶液に、1時間の間にベン
ゼン50cm3中のフエニルグリシジルエーテル37.5g
(0.25モル)の溶液を加える。反応混合物をさら
に1時間還流下に保ち、そして次に溶媒を回転式
蒸発器により除去する。薄黄色のわずかに不透明
な粘稠生成物が収量52.5gで得られる。 例 2 2−エチル−4(5)−メチルイミダゾール
(EMI)およびPGEの1:1モル付加物の調製 トルエン200cm3中の2−エチル−4−メチルイ
ミダゾール27.5g(0.25モル)のかきまぜた還流
溶液に1時間の間にトルエン50cm3中のフエニルグ
リシジルエーテル37.5g(0.25モル)の溶液を加
える。反応溶液をさらに2時間還流下に保ち、そ
して次に放冷する。生成物を沈殿させ、ピー・エ
テ(p.eth.)40〜60で洗い、そして真空オーブン
中40℃で乾燥する。オレンジ色の粘稠な生成物が
収量45.6gで得られる。 例 3 EMIおよびPGEとの1:2モル付加物の調製 トルエン100cm3中の2−エチル−4−メチルイ
ミダゾール11g(0.1モル)のかきまぜた還流溶
液に2時間の間にトルエン50cm3中のフエニルグリ
シジルエーテル30g(0.2モル)の溶液を加える。
反応混合物をさらに1時間還流下に保ち、そして
次に放冷する。褐色の粘稠な生成物を沈殿させ、
ピー・エテ(p.eth.)40〜60で洗い、そして真空
オーブン中40℃で乾燥する。収量は33.5gであ
る。 例 4 PGEおよびInの1:1モル付加物とCuCl2との
錯体〔Cu(PGE・Im)4Cl2〕の調製 メタノール50cm3中の付加物PGE・Im15.7g
(0.072モル)の溶液にかきまぜながらメタノール
25cm3中のCuCl2・2H2O3.05g(0.01794モル)の
溶液を加える。最初に薄青色の沈殿が生成する
が、これはCuCl2/メタノール溶液をさらに添加
することにより溶解して暗青色の溶液を与える。
この溶液を真空オーブン中40℃で容積を減少さ
せ、そして最後には乾燥させる。暗青色のもろい
生成物が得られる。 例 5 PGEおよびEMIの1:1モル付加物とCuCl2
の錯体〔Cu(PGE・EMI)4Cl2〕の調製 メタノール50cm3中の付加物PGE・EMI10.00g
(0.0385モル)の溶液にかきまぜながらメタノー
ル20cm3中のCuCl2・2H2O1.6346g(0.0096モル)
の溶液を加える。16時間以上溶媒をゆつくり蒸発
させた後、暗緑色の残さが得られる。真空オーブ
ン中、40℃で乾燥すると、暗青色のもろい樹脂質
生成物9.4gが生成する。 例 6 PGEおよびEMIの2:1モル付加物とCuCl2
の錯体〔Cu(PGE2.EMI)4Cl2〕の調製 メタノール40cm3中の付加物PGE2・EMI9.69g
(0.0236モル)の溶液中にかきまぜながらメタノ
ール10cm3中のCuCl2・2H2O1.0044g(0.0059モ
ル)の溶液を加える。得られた暗緑色溶液を蒸発
して緑色の樹脂質物質とし、このものは真空オー
ブン中、40℃で最後に乾燥させられる。生成物は
暗緑色の非常に粘稠な樹脂質物質である。 例 7 PGEおよびEMIの2:1モル付加物の調製 メタノール5cm3中に溶解した付加物PGE2
EMIの精密に秤量した試料約2gの溶液にかき
まぜながらメタノール約10cm2中の化学量論的に必
要な金属塩の精密に秤量した試料の溶液を加え
る。溶媒を室温で蒸発させ、最後の痕跡は真空中
50℃で除去する。種種の錯体の組成の要約は以下
の第1表中に記載されている。 例 8 エポキシ樹脂Shell E pikote828(商品名)に
対する硬化剤としての錯体の活性の評価実験 Epikote828はビスフエノール−Aのエピクロ
ルヒドリンとの反応により生成したポリエポキシ
ドの群の一例である。前記例6および7で調製し
た錯体を樹脂試料中に混入し、樹脂100重量部当
たり錯体約5重量部(pph)含む組成物を与え
る。精密に秤量した錯体試料約0.05gに精密に秤
量したエポキシ樹脂試料を加え、アセトン約5cm3
を加えて錯体濃度を5.0pphにする。混合物を必要
ならば穏かに温めながら錯体が溶解するまでかき
まぜる。次にアセトンを真空オーブン中、50℃で
除去する。 アルミニウムパン中の混合物の試料10〜30mgを
加熱速度10K/minで示差走査熱量計(DSC)
Dupont910中で走査する。計器からのアウトプツ
トは温度に対するヒートフロー(heatflow)で
プロツトされる。樹脂の硬化はアウトプツト中で
ピークまたは一速のピークとして現われる発熱に
より特徴づけられる。初期基準線上の発熱の開始
は硬化の開始の測定の標準として使われ、そして
ヒートフローアウトプツト中の任意の順次のピー
クは硬化反応の特性とみなされる。種種の錯体に
よる結果は以下の第1表中に包含される。 例 9 エポキシ樹脂MY720(チバ−ガイギー)の硬化 樹脂MY720を別の重要なポリエポキシドの群、
ポリグリシジルアミンの一例である。MY720は
その大部分がテトラ−N−グリシジル−ビス(4
−アミノフエニル)メタンであると信じられてい
る。 樹脂試料0.982gに組成Cu(PGE・EMI)4Cl2
もつ錯体0.054gを加え、そして100℃に加熱し、
数分間かきまぜることにより溶液を得る。試料を
加熱速度10K/minでDSC中で走査する。大量の
硬化熱が102℃の開始で観測される。第2の試料
をアルミニウムパン中、200℃のオーブンで2時
間硬化させる。次にこれを20K/minでDSC中で
走査すると208℃でガラス転位点の特性である吸
熱変化が見られ、これは高い硬化度を示してい
る。 例 10 MY720はしばしば芳香族ポリアミンとともに
硬化し、そして特にこの目的にビス(4−アミノ
フエニル)スルホン(BAPS)がしばしば使用さ
れる。BAPSの低い反応性のため、促進剤例えば
三ふつ化ホウ素とエチルアミンとの錯体が普通添
加される。 MY720樹脂2459gおよびBAPS0.738gを135℃
で15分間混合して溶液とする。135℃で約2分間
かきまぜながら、混合物に組成Cu(PGE・
EMI)4Cl2をもつ錯体0.114gを加えて溶液とす
る。試料28.2gを秤量してアルミニウムパンに入
れ、加熱速度10K/minで40℃〜290℃の範囲で
DSC中で走査する。硬化発熱の開始は約110℃で
観測され、そして発熱ピーク温度は約200℃であ
る。加熱速度20K/minでの試料の第2の走査は
189℃のガラス転位温度を示し、高い硬化度が得
られたことを証明する。 錯体を使用しない同様の実験は約160℃の硬化
開始および約260℃の発熱ピークを示す。このこ
とは錯体が硬化反応の有効に促進剤であることを
示す。
[Formula] (wherein R 1 and R′ 1 are residues provided by the epoxy/imidazole addition reaction, R 2 and R 3
and R 4 are hydrogen atoms or substituents such as preferably alkyl or aryl groups having less than 10 carbon atoms. For example, the formula () or the adduct of the formula () is the formula or expression (In the formula, R A and R′ A are a C 1-10 alkyl group or preferably a phenyl group that may be substituted.) The tautomeric nature of imidazoles with unsubstituted imine nitrogen atoms makes it easy for epoxy adducts formed from such imidazoles to be formed as a mixture of two isomeric forms. for example,
In formulas () and (), when one of the groups R 4 and R 5 is a hydrogen atom and the other is a substituent, the adduct is likely to be formed in the form of two isomers. That is, one has a substituent at the 4-position of imidazole, and the other has a substituent at the 5-position of imidazole. Preferably, the molar ratio of epoxy to imidazole used to form the adduct does not exceed 2:1, ie only one monofunctional epoxy group is attached to each nitrogen atom, and no polyepoxide, for example, is attached. Higher molar ratios dilute the effectiveness of the curing agent and actually reduce the effectiveness of the complex. Essentially any metal salt can be used in the complex of the metal salt and the imidazole/epoxy adduct. Examples of metal salts are as follows. Copper salts such as cupric chloride, cuprous chloride, cupric bromide, cupric fluoride, cupric nitrate, cupric fluoroborate, cupric sulfate, cupric acetate, trifluoro Cupric acetate, cupric methacrylate, cupric stearate, cupric octonate, cupric malonate, cupric benzoate: nickel salts such as nickel chloride, nickel fluoride, nickel sulfate, fluoride Nickel borate, nickel tholeate, nickel stearate and nickel castor oil salts: Calcium salts such as calcium chloride and calcium bromide; Cobalt salts such as cobaltous chloride, cobaltous fluoride, cobaltous sulfate, stearate Monocobalt, cobaltous octonate and cobaltous borate fluoride: Zinc salts such as zinc bromide, zinc stearate, zinc octonate, zinc 2-ethylhexonate, zinc chromate and zinc chloride: Mercury salts such as bromide Mercury and mercuric chloride: Zirconium salts such as zirconium sulphate: Indium salts such as indium fluoroborate: Silver salts such as silver nitrate: Chromic acids such as chromic chloride: Manganese salts such as manganese chloride and manganese sulphate: Tin salts such as chloride Stannous: cadmium salts such as cadmium chloride: iron salts such as ferrous chloride: titanium salts such as titanium chloride. Preferred metal salts are CuCl 2 , CuBr 2 , Cu(NO 3 ) 2 ,
Copper acetate, copper propionate, CaCl 2 , CoCl 2 , ZnCl 2
and cadmium acetate. The above metal salts are only a partial list of the metal salts that can be used. The molar ratio of metal salt to imidazole/epoxy adduct is not critical. However, generally the molar ratio of metal salt to imidazole epoxy adduct is from 1:1 to 1:6, preferably 1:4. Complexes of imidazole epoxy adducts and metal salts are conveniently produced by mixing the components. If any of the above components are solids, solutions of the reactants in a solvent such as methanol or water can be used. If the product is a solid, the resulting precipitate can be filtered to obtain the complex. A composition that is one aspect of the present invention is an epoxy resin or monoepoxide containing the imidazole metal salt complex as a curing agent. The composition includes:
The imidazole/epoxy complex and the epoxy resin or monoepoxide can be formed by simply mixing with or without a solvent. Each component can be mixed at room temperature. Any epoxy resin or monoepoxide can be cured by mixing the epoxy resin or monoepoxide with the imidazole/epoxy metal salt complex and heating the mixture to about 200-500°C. The epoxy resin or monoepoxide can be saturated or unsaturated, or cycloaliphatic, heterocyclic or aliphatic;
Furthermore, if desired, substituents such as halogen atoms, sulfur atoms, ester residues, urethane residues, amino groups, hydroxyl groups, ether groups, mercapto groups, acid groups,
It may also be substituted with anhydride, ketone and aldehyde residues. The epoxy resins or monoepoxides mentioned can be monomeric or polymeric. Furthermore, halogen atoms, sulfur atoms, hydroxyl groups, mercapto groups,
It can be used in the presence of compounds or resins containing ether residues, amino groups, acid groups, anhydride residues, ester residues, urethane residues, ketone residues and aldehyde residues. In this specification, "epoxy resin" means polyepoxide. The monoepoxide polymerizes when mixed with the imidazole/epoxy metal salt complex and heated. Therefore, in the case of monoepoxides, the curing agent referred to herein means a polymerizing agent. Monoepoxides which polymerize when the imidazole/epoxy metal salt complex is added and heated are, for example, propylene oxide, allyl glycidyl ether, phenyl glycidyl ether, pentachlorophenyl glycidyl ether, tetrabromphenyl glycidyl ether and glycidyl methacrylate. In a preferred embodiment, the epoxy resin is a polyepoxide having an average of more than 1.0 1,2-epoxy groups per average molecular weight. Among the polyepoxides that can be used in the present invention, polyglycidyl ethers of polyphenols such as Bisphenol-A are preferred. These can be obtained, for example, by etherifying polyphenols with epichlorohydrin or dichlorohydrin in the presence of an alkali. Examples of phenolic compounds include 2,2-bis(4-hydroxyphenyl)propane, 4,4'-dihydroxybenzophenone, 1,1-bis(4-hydroxyphenyl)ethane, and 2,2-bis(4-hydroxyphenyl)ethane. -Hydroxy-t-butylphenyl)propane, bis(2
-hydroxynaphthyl)methane or 1,5-dihydroxynaphthalene. The polyphenol can also be a novolac resin. Polyepoxides of this type are, for example, the reaction products of bisphenol-A and epichlorohydrin. Polyhydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol,
1,2-propylene glycol, 1,4-butylene glycol, 1,5-pentanediol, 2,
Similar polyglycidyl ethers of polyhydric alcohols which can be derived from 4,6-hexanetriol, glycerin and trimethylolpropane are also suitable. Other examples of polyepoxides that can be used in the present invention are partial fatty acid esters of the aforementioned glycidyl polyethers of polyhydric alcohols and glycidyl polyethers of polyhydric phenols. Fatty acids that can be used to produce these resins are, for example, linseed oil and castor oil. Epichlorohydrin or similar epoxy compounds and aliphatic or aromatic polycarboxylic acids such as oxalic acid, succinic acid, glutaric acid, adipic acid, azelaic acid, phthalic acid, isophthalic acid, terephthalic acid, 2,5-naphthalenedicarboxylic acid and 2
Polyglycidyl esters of polycarboxylic acids produced by reaction with merized linolenic acids are also suitable. Other examples are polyepoxides derived from the epoxidation of olefinically unsaturated aliphatic compounds. Included are diepoxides and higher epoxides, as well as epoxide mixtures consisting in part of one or more monoepoxides. These polyepoxides are nonphenolic and are obtained by epoxidizing olefins such as butadiene and cyclohexene, for example with oxygen and selected metal catalysts, with perbenzoic acid, with acetaldehyde monoperacetate, or with peracetic acid. The ratio of imidazole/epoxy adduct metal salt complex to epoxy resin is not critical.
Generally, the mixture will contain from about 0.5 to about 4.0 parts by weight of metal salt complex per 100 parts by weight of epoxy resin. When the epoxy resin or monoepoxide and the imidazole metal salt complex are mixed together, the composition can be stored at room temperature for extended periods without curing or polymerization. If the epoxy resin is used as a sheet material, it can be heated for as long as necessary to form a hard gelling material. When the epoxy mixture is used as a coating or adhesive, the mixture is coated onto a substrate and heated for a sufficient period of time to cure the resin and form a hard adhesive coating on the substrate. The amount of heat required to cure the epoxy mixture will vary depending on the particular components, but generally the mixture will be heated to about 90 to about 250 degrees Celsius until the resin is cured. If rapid curing and improved high temperature strength are desired, an epoxy resin or monoepoxide can be mixed with the mixture of the metal salt complex and nitrogen compound. This composition can be produced by simply mixing the complex and nitrogen compound with the epoxy resin or monoepoxide. The ratio of curing agent to epoxy resin or monoepoxide is the same as without added nitrogen compound. The curing agent can contain the imidazole complex in any proportion to the nitrogen compound. However, the best results are obtained when using curing agents containing 1 to 98% by weight of nitrogen compounds. Nitrogen compounds are, for example, aromatic polyamides such as bis(4-aminophenol)sulfone. Metal salt imidazole/epoxy adducts can therefore be used as solubility promoters together with other hardeners, such as the nitrogen compounds mentioned above. Pigments such as titanium dioxide, carbon black, fillers and flexibilizing agents can be added to the epoxy resin composition. Other resinous materials co-reactive with the epoxy resin may be present in the compositions of the invention, such as carboxyl groups such as axelaic acid.
resins containing anhydrides such as Nadic (trade name) anhydrides, polyesters containing epoxy groups, resins containing hydroxyl groups, resins containing thio groups, silicone resins containing epoxy groups,
Urethane resins and resins containing amino groups can also be included. Addition of the co-reactants described above can be carried out to impart a variety of known desired properties to the epoxy resin composition. The metal salt imidazole/epoxy adduct complexes used in the compositions of the present invention are curing agents that generally have better solubility in epoxy resins than known metal salt imidazole complexes. The complexes according to the invention are relatively soluble in organic solvents and are generally non-reactive with epoxy resins at room temperature, but in one-component epoxy systems (one-component compositions) at elevated temperatures, e.g., above about 100°C. Effective as a hardening agent.
As already evident, the compositions can be stored for long periods of time without premature curing and without formation of agglomerates and caking of the curing agent. Second, the present invention relates to imidazoles and carbon atoms 20
A one-component epoxy composition, which is a complex of an adduct with up to 1,000 monofunctional epoxy compounds and a metal salt, and which can be cured or polymerized by heating with an epoxy resin, a monoepoxide, or a mixture of an epoxy resin and a monoepoxide. Provide complexes suitable for forming products. The metal salt complex can be any of the novel metal salt imidazole/epoxy complexes described above. The present invention will be explained in more detail below using examples. Example 1 Preparation of a 1:1 molar adduct of imidazole (Im) and phenyl glycidyl ether (PGE) To a stirred refluxing solution of 17 g (0.25 mol) of imidazole in 200 cm 3 of benzene is added in 50 cm 3 of benzene over the course of 1 hour. 37.5g of phenyl glycidyl ether
Add a solution of (0.25 mol). The reaction mixture is kept under reflux for a further hour, and then the solvent is removed by rotary evaporator. A pale yellow, slightly opaque viscous product is obtained with a yield of 52.5 g. Example 2 Preparation of 1:1 molar adduct of 2-ethyl-4(5)-methylimidazole (EMI) and PGE Stirred reflux of 27.5 g (0.25 mol) of 2-ethyl-4-methylimidazole in 200 cm 3 of toluene A solution of 37.5 g (0.25 mol) of phenyl glycidyl ether in 50 cm 3 of toluene is added to the solution over the course of 1 hour. The reaction solution is kept under reflux for a further 2 hours and then allowed to cool. The product is precipitated, washed with p.eth. 40-60 and dried in a vacuum oven at 40°C. An orange viscous product is obtained with a yield of 45.6 g. Example 3 Preparation of a 1:2 molar adduct with EMI and PGE A stirred refluxing solution of 11 g (0.1 mol) of 2-ethyl-4-methylimidazole in 100 cm 3 of toluene was added in 50 cm 3 of toluene for 2 hours. A solution of 30 g (0.2 mol) of enyl glycidyl ether is added.
The reaction mixture is kept under reflux for an additional hour and then allowed to cool. A brown viscous product precipitates,
Wash with p.eth. 40-60 and dry at 40°C in a vacuum oven. Yield is 33.5g. Example 4 Preparation of a complex of 1:1 molar adduct of PGE and In with CuCl 2 [Cu(PGE・Im) 4 Cl 2 ] 15.7 g of adduct PGE・Im in 50 cm 3 of methanol
(0.072 mol) of methanol while stirring.
A solution of 3.05 g (0.01794 mol) of CuCl 2 .2H 2 O in 25 cm 3 is added. Initially a light blue precipitate forms which is dissolved by further addition of CuCl 2 /methanol solution to give a dark blue solution.
The solution is reduced in volume at 40° C. in a vacuum oven and finally dried. A dark blue, crumbly product is obtained. Example 5 Preparation of a complex of 1:1 molar adduct of PGE and EMI with CuCl 2 [Cu(PGE・EMI) 4 Cl 2 ] 10.00 g of adduct PGE・EMI in 50 cm 3 of methanol
(0.0385 mol) of CuCl 2.2H 2 O in 20 cm 3 of methanol while stirring into a solution of 1.6346 g (0.0096 mol)
Add the solution. After slow evaporation of the solvent over 16 hours, a dark green residue is obtained. Drying in a vacuum oven at 40°C yields 9.4 g of a dark blue, brittle, resinous product. Example 6 Preparation of a complex of 2:1 molar adduct of PGE and EMI with CuCl 2 [Cu(PGE 2 .EMI) 4 Cl 2 ] 9.69 g of adduct PGE 2 EMI in 40 cm 3 of methanol
(0.0236 mol) is added with stirring a solution of 1.0044 g (0.0059 mol) of CuCl 2 .2H 2 O in 10 cm 3 of methanol. The resulting dark green solution is evaporated to a green resinous material, which is finally dried at 40° C. in a vacuum oven. The product is a dark green, highly viscous resinous material. Example 7 Preparation of a 2:1 molar adduct of PGE and EMI The adduct PGE 2. dissolved in 5 cm 3 of methanol.
To a solution of approximately 2 g of a precisely weighed sample of EMI is added, with stirring, a solution of a precisely weighed sample of the stoichiometrically required metal salt in approximately 10 cm 2 of methanol. Evaporate the solvent at room temperature and leave the last traces in vacuo
Remove at 50°C. A summary of the compositions of the various complexes is given in Table 1 below. Example 8 Experimental evaluation of the activity of the complex as a curing agent for the epoxy resin Shell E pikote 828 (trade name) Epikote 828 is an example of a group of polyepoxides produced by the reaction of bisphenol-A with epichlorohydrin. The complexes prepared in Examples 6 and 7 above are incorporated into a resin sample to provide a composition containing about 5 parts by weight (pph) of complex per 100 parts by weight of resin. Add a precisely weighed epoxy resin sample to approximately 0.05 g of a precisely weighed complex sample, and add approximately 5 cm 3 of acetone.
to make the complex concentration 5.0 pph. The mixture is stirred, with gentle warming if necessary, until the complex is dissolved. The acetone is then removed in a vacuum oven at 50°C. A 10-30 mg sample of the mixture in an aluminum pan was heated using a differential scanning calorimeter (DSC) at a heating rate of 10 K/min.
Scan in Dupont910. The output from the instrument is plotted as heatflow versus temperature. Curing of the resin is characterized by an exotherm that appears as a peak or a rapid peak in the output. The onset of exotherm on the initial baseline is used as a standard for measuring the onset of cure, and any sequential peaks in the heat flow output are considered characteristic of the cure reaction. Results with various complexes are included in Table 1 below. Example 9 Curing of epoxy resin MY720 (Ciba-Geigy)
This is an example of polyglycidylamine. Most of MY720 is tetra-N-glycidyl-bis(4
-aminophenyl)methane. 0.054 g of a complex with the composition Cu(PGE・EMI) 4 Cl 2 was added to 0.982 g of the resin sample, and heated to 100°C.
Obtain a solution by stirring for a few minutes. The sample is scanned in the DSC with a heating rate of 10 K/min. A large amount of heat of curing is observed at an onset of 102°C. The second sample is cured in an aluminum pan in an oven at 200°C for 2 hours. Next, when this was scanned in DSC at 20K/min, an endothermic change, which is characteristic of the glass transition point, was observed at 208°C, indicating a high degree of hardening. Example 10 MY720 is often cured with aromatic polyamines, and bis(4-aminophenyl) sulfone (BAPS) is often used specifically for this purpose. Due to the low reactivity of BAPS, promoters such as a complex of boron trifluoride and ethylamine are commonly added. 2459g of MY720 resin and 0.738g of BAPS at 135℃
Mix for 15 minutes to form a solution. Add composition Cu (PGE/
EMI) Add 0.114 g of a complex with 4 Cl 2 to form a solution. Weigh 28.2g of the sample, put it in an aluminum pan, and heat it at a heating rate of 10K/min in the range of 40℃ to 290℃.
Scan in DSC. The onset of the curing exotherm is observed at about 110°C, and the exothermic peak temperature is about 200°C. The second scan of the sample at a heating rate of 20 K/min is
It showed a glass transition temperature of 189°C, proving that a high degree of hardening was achieved. Similar experiments without the complex show an onset of curing at about 160°C and an exothermic peak at about 260°C. This indicates that the complex is an effective promoter of the curing reaction.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 (イ)イミダゾール類と単官能性エポキシ化合物
との付加物の金属塩錯体と(ロ)エポキシ樹脂、モノ
エポキシドまたはエポキシ樹脂とモノエポキシド
との混合物とから成る、加熱により硬化または重
合することのできる1成分系エポキシ組成物。 2 付加物が、イミダゾールまたは2−エチル−
4−メチルイミダゾールから生成したものであ
る、前項1に記載の組成物。 3 付加物が、炭酸原子20個までのエポキシ化合
物から生成したものである、前項1に記載の組成
物。 4 エポキシ化合物が、グリシジルエーテルであ
る前項3に記載の組成物。 5 エポキシ化合物が、フエニルグリシジルエー
テルである前項4に記載の組成物。 6 付加物生成に使用するエポキシに対するイミ
ダゾール類のモル比が1:1〜1:2である前項
1に記載の組成物。 7 錯体生成に使用する金属塩を、CuCl2
CuBr2、Cu(NO32、酢酸銅、プロピオン酸銅、
CaCl2、CoCl2、ZnCl2および酢酸カドミウムから
成る群から選ぶ、前項1に記載の組成物。 8 錯体生成に使用する付加物に対する金属塩の
モル比が1:1〜1:6である、前項1に記載の
組成物。 9 錯体に加えて窒素化合物少くとも1種を更に
含む、前項1に記載の組成物。 10 窒素化合物として芳香族ポリアミン少くと
も1種を更に含む、前項9に記載の組成物。 11 エポキシ樹脂またはモノエポキシドに対す
る錯体の比が、エポキシ樹脂またはモノエポキシ
ド100重量部に対して錯体0.5〜40重量部である、
前項1に記載の組成物。
[Claims] 1. A metal salt complex of an adduct of an imidazole and a monofunctional epoxy compound, and (b) an epoxy resin, a monoepoxide, or a mixture of an epoxy resin and a monoepoxide, by heating. A one-component epoxy composition that can be cured or polymerized. 2 The adduct is imidazole or 2-ethyl-
The composition according to item 1 above, which is produced from 4-methylimidazole. 3. The composition according to item 1, wherein the adduct is produced from an epoxy compound having up to 20 carbon atoms. 4. The composition according to item 3 above, wherein the epoxy compound is glycidyl ether. 5. The composition according to item 4 above, wherein the epoxy compound is phenyl glycidyl ether. 6. The composition according to item 1, wherein the molar ratio of the imidazole to the epoxy used to form the adduct is from 1:1 to 1:2. 7 The metal salts used for complex formation are CuCl 2 ,
CuBr 2 , Cu(NO 3 ) 2 , copper acetate, copper propionate,
2. The composition according to item 1, which is selected from the group consisting of CaCl 2 , CoCl 2 , ZnCl 2 and cadmium acetate. 8. The composition according to item 1, wherein the molar ratio of the metal salt to the adduct used for complex formation is 1:1 to 1:6. 9. The composition according to item 1, further comprising at least one nitrogen compound in addition to the complex. 10. The composition according to item 9, further comprising at least one aromatic polyamine as the nitrogen compound. 11 The ratio of complex to epoxy resin or monoepoxide is 0.5 to 40 parts by weight of complex to 100 parts by weight of epoxy resin or monoepoxide,
The composition according to item 1 above.
JP59027362A 1983-02-18 1984-02-17 Curing agent for epoxy resin Granted JPS59210930A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8304581 1983-02-18
GB838304581A GB8304581D0 (en) 1983-02-18 1983-02-18 Curing agents for epoxy resins

Publications (2)

Publication Number Publication Date
JPS59210930A JPS59210930A (en) 1984-11-29
JPH0472849B2 true JPH0472849B2 (en) 1992-11-19

Family

ID=10538226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59027362A Granted JPS59210930A (en) 1983-02-18 1984-02-17 Curing agent for epoxy resin

Country Status (4)

Country Link
US (1) US4487914A (en)
EP (1) EP0117113A3 (en)
JP (1) JPS59210930A (en)
GB (2) GB8304581D0 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4736011A (en) * 1985-05-06 1988-04-05 Texaco Inc. Mannich condensates as epoxy curing agents
JPS62127360A (en) * 1985-11-27 1987-06-09 Kansai Paint Co Ltd Coating composition for resin
US5001211A (en) * 1989-10-26 1991-03-19 Texaco Chemical Company Salicylate of 1-isopropyl-2-methyl imidazole as an epoxy resin curative
DD292468A5 (en) 1990-03-09 1991-08-01 Zeiss Carl Jena Gmbh METHOD FOR POLYMERIZING EPOXY COMPOUNDS
US5395913A (en) * 1990-03-09 1995-03-07 Rutgerswerke Ag Polymerizable epoxide mixtures and process using Lewis base complexes
CA2054212C (en) * 1990-03-09 1997-02-11 Axel Bottcher Method for polymerization of epoxide compounds
US5721323A (en) * 1990-05-21 1998-02-24 The Dow Chemical Company Cure inhibited epoxy resin compositions and laminates prepared from the compositions
JP3665070B2 (en) * 1993-11-02 2005-06-29 ダウ グローバル テクノロジーズ インコーポレイティド Epoxy resin composition with suppressed curing and laminate prepared from the composition
DE4408865C2 (en) * 1994-03-16 2001-05-17 Raymond A & Cie Use of a one-component, adhesive coating material for equipping the surfaces of fastening elements with a reactive adhesive layer
US5591811A (en) * 1995-09-12 1997-01-07 Ciba-Geigy Corporation 1-imidazolylmethyl-2-naphthols as catalysts for curing epoxy resins
US5733954A (en) * 1995-12-14 1998-03-31 Minnesota Mining And Manufacturing Company Epoxy resin curing agent made via aqueous dispersion of an epoxide and an imidazole
JPH1030015A (en) * 1996-07-15 1998-02-03 Kansai Paint Co Ltd Catalyst for curing epoxy resin and thermosetting coating composition using the same
DE19848329A1 (en) * 1998-10-20 2000-04-27 Bakelite Ag Hardener for epoxy compounds, process for their production and use
US6486256B1 (en) * 1998-10-13 2002-11-26 3M Innovative Properties Company Composition of epoxy resin, chain extender and polymeric toughener with separate base catalyst
CN100586935C (en) * 2003-04-16 2010-02-03 亨斯迈先进材料(瑞士)有限公司 1-imidazolylmethyl-substituted-2-naphtols and their use as accelerators for low-temperature curing
CN100575384C (en) * 2003-04-16 2009-12-30 亨斯迈先进材料(瑞士)有限公司 The accelerator system that is used for low-temperature curing
US9617373B2 (en) 2015-02-13 2017-04-11 LCY Chemical Corp. Curable resin composition, article, and method for fabricating the same
PL230205B1 (en) * 2015-06-24 2018-10-31 Zachodniopomorski Univ Technologiczny W Szczecinie Method for obtaining a latent hardener, composition of epoxy resin and a composite material
DE102016203867A1 (en) * 2016-03-09 2017-09-14 Siemens Aktiengesellschaft Solid insulation material, use for this purpose and insulation system manufactured therewith
CN111484821B (en) * 2020-04-28 2022-06-14 东莞市恒尔朗实业有限公司 Low-temperature fast-curing epoxy resin adhesive for relays and preparation method thereof
CN113278132A (en) * 2021-05-24 2021-08-20 浙江理工大学 Epoxy resin curing agent and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1204834A (en) * 1968-02-02 1970-09-09 Ppg Industries Inc Improvements in or relating to epoxy resins
US3553166A (en) * 1968-02-02 1971-01-05 Ppg Industries Inc Mixtures of imidazole complexes and nitrogenous compound as curing agents for epoxy resins
FR1566468A (en) * 1968-03-04 1969-05-09
US3678007A (en) * 1971-08-23 1972-07-18 Ppg Industries Inc Metal salt complexes of imidazolium salts as curing agents for one part epoxy resins
US3677978A (en) * 1971-08-23 1972-07-18 Ppg Industries Inc Metal salt complexes of imidazoles as curing agents for one-part epoxy resins
US3792016A (en) * 1972-01-06 1974-02-12 Minnesota Mining & Mfg Metal imidazolate-catalyzed systems
US4358571A (en) * 1981-03-10 1982-11-09 Mobil Oil Corporation Chemically modified imidazole curing catalysts for epoxy resin and powder coatings containing them

Also Published As

Publication number Publication date
EP0117113A2 (en) 1984-08-29
GB8403917D0 (en) 1984-03-21
US4487914A (en) 1984-12-11
GB2135316B (en) 1986-12-17
EP0117113A3 (en) 1985-12-18
GB2135316A (en) 1984-08-30
GB8304581D0 (en) 1983-03-23
JPS59210930A (en) 1984-11-29

Similar Documents

Publication Publication Date Title
JPH0472849B2 (en)
US3677978A (en) Metal salt complexes of imidazoles as curing agents for one-part epoxy resins
US4393181A (en) Polyfunctional phenolic-melamine epoxy resin curing agents
US3553166A (en) Mixtures of imidazole complexes and nitrogenous compound as curing agents for epoxy resins
CA1312976C (en) Process for preparing phenolic curing agents for epoxy resins
US2928809A (en) Epoxide resin-quaternary ammonium salt compositions
JP2000309624A (en) Flame-retardant epoxy resin composition and its production
JPS6118761A (en) Bicyclic imide, manufacture and hardenable mixture
JPH0216767B2 (en)
US2947712A (en) Epoxide resin compositions
US4549008A (en) Novel tetraglycidyl ethers
JPH0237924B2 (en) NETSUKOKASEISOSEIBUTSU
TW200911866A (en) Catalyst for curing epoxides
JP4354242B2 (en) Novel crystalline epoxy resin, curable epoxy resin composition and cured product thereof
US4214068A (en) Esters containing phenolic groups as epoxy resin curing agents
JPS59126428A (en) Curing agent for epoxy resin
JPS5812898B2 (en) epoxy resin composition
EP0503764A2 (en) Epoxide resins and hardeners
JPH03109465A (en) Thermosetting resin composition
JPS6312093B2 (en)
JP4565489B2 (en) Curing agent for epoxy resin, epoxy resin composition, and cured product thereof
US5955551A (en) Polyglycidyl ethers of secondary alcohols, their preparation, and curable compositions containing them
US5521261A (en) Epoxy resin mixtures containing advancement catalysts
US4297459A (en) Curable epoxy resins
JPH0848747A (en) Epoxy resin, epoxy resin composition, and its cured item