JPH0472547A - Method for judging cohesive image - Google Patents
Method for judging cohesive imageInfo
- Publication number
- JPH0472547A JPH0472547A JP18433390A JP18433390A JPH0472547A JP H0472547 A JPH0472547 A JP H0472547A JP 18433390 A JP18433390 A JP 18433390A JP 18433390 A JP18433390 A JP 18433390A JP H0472547 A JPH0472547 A JP H0472547A
- Authority
- JP
- Japan
- Prior art keywords
- data
- average value
- rate
- change
- well
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 12
- 238000006243 chemical reaction Methods 0.000 claims abstract description 37
- 230000008859 change Effects 0.000 claims abstract description 22
- 238000005259 measurement Methods 0.000 claims abstract description 17
- 239000002245 particle Substances 0.000 claims abstract description 17
- 238000012360 testing method Methods 0.000 claims description 12
- 238000012545 processing Methods 0.000 abstract description 23
- 230000002093 peripheral effect Effects 0.000 abstract description 4
- 230000002776 aggregation Effects 0.000 description 22
- 238000004220 aggregation Methods 0.000 description 16
- 238000005054 agglomeration Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000012085 test solution Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000004520 agglutination Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、臨床検査等において、反応容器の底面に形
成される被検粒子の反応パターンを光学的に測定して凝
集、非凝集、またはその他の属性を自動的に判定する凝
集像判定方法に関する。Detailed Description of the Invention [Industrial Application Field] The present invention is used in clinical tests, etc. to optically measure the reaction pattern of test particles formed on the bottom of a reaction container to determine if they are agglomerated, non-agglomerated, or The present invention relates to an agglomerated image determination method for automatically determining other attributes.
従来の凝集像判定方法として、例えば特開昭58−10
5065公報に開示されているように、被検粒子の反応
パターンの測定データから中心部と周辺部との明るさの
比を求め、その比に基づいて凝集、非凝集を判定するよ
うにしたものや、特開昭61−215948号公報、同
62−105031号公報、同63−58237号公報
、同63−256839号公報に開示されているように
、TV左カメラマイクロプレートの光学的状態を取り込
み、その画像データを処理して凝集している部分、また
は静置法で反応容器の中心部等の低い部分に落ちている
粒子の面積を求め、その面積に基づいて凝集、非凝集を
判定するようにしたものがある。As a conventional agglomerated image determination method, for example, Japanese Patent Application Laid-open No. 58-10
As disclosed in Publication No. 5065, the ratio of brightness between the center and the periphery is determined from the measurement data of the reaction pattern of the particles to be tested, and aggregation or non-aggregation is determined based on that ratio. Also, as disclosed in Japanese Patent Laid-Open Nos. 61-215948, 62-105031, 63-58237, and 63-256839, the optical state of the TV left camera microplate is captured. The image data is processed to determine the area of particles that are agglomerated or that have fallen to low areas such as the center of the reaction vessel using the static method, and based on that area, it is determined whether the particles are agglomerated or not. There is something like this.
しかしながら、上述した従来の凝集像判定方法にあって
は、凝集力が非常に弱く、非凝集パターンと殆ど同じ反
応パターンが形成された場合には、これを自動的に正確
に判定することが非常に困難となる。このように、上記
の従来の凝集像判定方法にあっては、その判定結果の信
頼性が低いため、かかる凝集像判定方法を実施する反応
パターンの自動判定装置にあっては、判定結果を操作者
等が目視その他の手段により一々チエツクして補正する
必要があり、操作者等の負担が増大するという問題かあ
る。However, in the conventional aggregation image determination method described above, the agglomeration force is very weak, and when a reaction pattern that is almost the same as a non-aggregation pattern is formed, it is very difficult to automatically and accurately determine this. becomes difficult. As described above, in the conventional agglutinated image determination method described above, the reliability of the determination result is low, so in the automatic reaction pattern determination device that implements such agglutinated image determination method, it is necessary to manipulate the determination result. There is a problem in that the operator or the like needs to check and correct each correction by visual inspection or other means, which increases the burden on the operator and the like.
この発明は、このような従来の問題点に着目してなされ
たもので、凝集力か非常に弱い凝集パターンでも自動的
に正確に判定でき、したかって信頼性の高い判定結果か
得られる凝集像判定方法を提供することを目的とする。This invention was made by focusing on these conventional problems, and it is possible to automatically and accurately determine even agglomeration patterns with very weak cohesive force, and thus to obtain highly reliable determination results. The purpose is to provide a determination method.
上記目的を達成するため、この発明では、反応容器の底
面に形成される被検粒子の反応パターンを光学的に測定
し、その測定データに基づいて前記被検粒子の凝集、非
凝集、またはその他の属性を自動的に判定するにあたり
5.前記測定データから前記反応パターンの中心部と周
辺部との境界部の測定データを抽出してその変化率を求
め、その変化率に基ついて前記被検粒子の凝集、非凝集
、またはその他の属性を自動的に判定する。In order to achieve the above object, the present invention optically measures the reaction pattern of the test particles formed on the bottom surface of a reaction vessel, and based on the measurement data, determines whether the test particles are agglomerated, non-agglomerated, or otherwise. In automatically determining the attributes of 5. The measurement data of the boundary between the center and the periphery of the reaction pattern is extracted from the measurement data, the rate of change is determined, and based on the rate of change, it is determined whether the test particles are agglomerated, non-agglomerated, or other attributes. Automatically determine.
第1図AおよびBに示すように、マイクロプレート等の
円錐状に窪んだ底面を有する反応容器1に被検粒子を含
む検液を収容して、例えば静置法により反応パターンを
形成すると、第1図Aに示す非凝集パターンと第1図B
に示す凝集力が非常に弱い凝集パターンとか殆ど同じよ
うなパターンになることかある。しかしながら、第1図
Bに示す凝集力の弱い凝集パターンは、第1図Aに示す
非凝集パターンに比へて反応容器1内の中心部に沈んだ
被検粒子の境界部かぼやけて、はっきりしていないとい
う特性かある。As shown in FIGS. 1A and B, a test solution containing test particles is placed in a reaction container 1 having a conically concave bottom such as a microplate, and a reaction pattern is formed by, for example, a standing method. Non-aggregation pattern shown in Figure 1A and Figure 1B
In some cases, the agglomeration pattern shown in Figure 1 shows a very weak cohesive force, or almost the same pattern. However, in the agglomeration pattern with a weak cohesive force shown in FIG. 1B, the boundary of the test particles settled in the center of the reaction vessel 1 is blurred and clearly compared to the non-aggregation pattern shown in FIG. 1A. There is a characteristic that it does not.
この発明では、このような特性を利用して、非凝集パタ
ーンと凝集力の弱い凝集パターンとを区別する。In this invention, such characteristics are utilized to distinguish between non-agglomerated patterns and agglomerated patterns with weak cohesive force.
すなわち、第1図AおよびBにおいて、例えば反応容器
1の中心を通る直線上の透過光量を測定すると、それぞ
れ第2図AおよびBに示すようになる。ここで、第2図
AおよびBに矢印りで示す反応パターンの中心部と周辺
部との境界部に着目すると、この部分での透過光量の変
化率は、第2図Aの非凝集パターンよりも第2図Bの凝
集力の弱い凝集パターンの方が小さいことがわかる。し
たかって、透過光量の測定データから反応パターンの中
心部と周辺部との境界部の測定データを抽出し、その境
界部における測定データの変化率を求めてチエツクすれ
ば、凝集力の弱い凝集パターンと非凝集パターンとを正
確に区別することが可能となる。That is, in FIGS. 1A and 1B, for example, when the amount of transmitted light on a straight line passing through the center of the reaction vessel 1 is measured, it becomes as shown in FIGS. 2A and 2B, respectively. Now, if we focus on the boundary between the center and the periphery of the reaction pattern shown by the arrows in Figures 2A and B, the rate of change in the amount of transmitted light in this area is greater than that of the non-agglomerated pattern in Figure 2A. It can also be seen that the agglomeration pattern with weak cohesive force shown in FIG. 2B is smaller. Therefore, by extracting the measurement data of the boundary between the center and the periphery of the reaction pattern from the measurement data of the amount of transmitted light and checking the rate of change of the measurement data at the boundary, it is possible to identify an aggregation pattern with weak cohesion. It becomes possible to accurately distinguish between the pattern and the non-agglomerated pattern.
なお、上記の変化率は、反応容器lの中心を通る直線上
の透過光量の測定データに対してだけではなく、反応容
器底面の画像データを取り込んで反応パターンの中心部
と周辺部との境界部の一部または全ての画像データを抽
出し、その抽出した画像データを処理して求めることも
できる。また、反応パターンの中心部と周辺部との境界
部は、これら中心部および周辺部の明るさに基づいて中
間的な明るさを計算し、その中間的な明るさを持つ部分
を境界部として検出することもできる。この場合も、そ
の中間的な明るさの測定データの変化率をチエツクする
ことにより、同様に凝集力の弱い凝集パターンと非凝集
パターンとを正確に区別することが可能となる。Note that the above rate of change is calculated based not only on the measurement data of the amount of transmitted light on a straight line passing through the center of the reaction vessel l, but also on the boundary between the center and the periphery of the reaction pattern by incorporating image data of the bottom of the reaction vessel. It is also possible to extract part or all of the image data of the part and process the extracted image data. In addition, for the boundary between the center and the periphery of the reaction pattern, an intermediate brightness is calculated based on the brightness of the center and periphery, and the area with the intermediate brightness is used as the boundary. It can also be detected. In this case as well, by checking the rate of change of the intermediate brightness measurement data, it is possible to accurately distinguish between agglomerated patterns with weak cohesive force and non-agglomerated patterns.
1:実施例〕
第3図はこの発明を実施する凝集像自動判定装置の一例
の構成を示すブロック図である。この実施例では、反応
容器としてマイクロプレー)11を用い、このマイクロ
プレート11を蛍光灯電源12に接続した蛍光灯13に
よって底面側から照明する。1: Embodiment] FIG. 3 is a block diagram showing the configuration of an example of an automatic aggregation image determination apparatus that implements the present invention. In this embodiment, a microplate 11 is used as a reaction vessel, and the microplate 11 is illuminated from the bottom side by a fluorescent lamp 13 connected to a fluorescent lamp power source 12.
マイクロプレート11は、第4図に示すように、円錐状
に窪んだ底面を有するウェルllaをマトリクス状に多
数形成して構成し、その各ウェルllaに被検粒子を含
む検液を収容して静置法により底面に反応パターンを形
成させるようにする。As shown in FIG. 4, the microplate 11 is composed of a large number of wells 11a each having a conical bottom surface formed in a matrix, each of which contains a test solution containing test particles. A reaction pattern is formed on the bottom surface by a standing method.
蛍光灯13によって照明されたマイクロプレート11の
各ウェルllaの底面の像は、ビデオカメラ15で順次
撮像してその画像データを画像処理回路】6に供給し、
ここで入力画像データに基ついてウェルllaの底面像
の中心部と周辺部との境界部における透過光量の変化率
の平均値を求める。なお、各ウェルllaの底面の画像
データは、マイクロプレート11とビデオカメラ15と
を水平面内で2次元方向に相対的に移動させて、順次取
り込むようにする。Images of the bottom surface of each well 11 of the microplate 11 illuminated by the fluorescent lamp 13 are sequentially captured by a video camera 15, and the image data is supplied to an image processing circuit 6.
Here, based on the input image data, the average value of the rate of change in the amount of transmitted light at the boundary between the center and the periphery of the bottom image of the well lla is determined. Note that the image data of the bottom surface of each well lla is sequentially captured by moving the microplate 11 and the video camera 15 relatively in a two-dimensional direction within a horizontal plane.
以下、この画像処理回路16でのデータ処理について説
明する。Data processing in this image processing circuit 16 will be explained below.
画像処理回路16では、先ず、ビデオカメラ15からの
ウェルllaの底面の入力画像データをデジタルデータ
に変換する。なお、この入力画像データのデジタルデー
タへの変換は、明るいデータの値か大きく、暗いデータ
の値が小さくなるように行う。次に、デジタルデータに
変換された画像に対して、第5図に示す予め設定したウ
ェル中心部17のエリアのデータを一定量取り出してそ
の平均値Cを求めると共に、ウェル周辺部18のエリア
のデータの平均値Pを求める。その後、平均値Cに予め
定めた正の値を加算してCを求めると共に、平均値Pか
ら予め定めた正の値を引いてpを求める。The image processing circuit 16 first converts input image data of the bottom surface of the well lla from the video camera 15 into digital data. Note that the conversion of this input image data into digital data is performed such that the value of bright data is large and the value of dark data is small. Next, from the image converted into digital data, a certain amount of data in the area of the well center 17 set in advance as shown in FIG. Find the average value P of the data. Thereafter, a predetermined positive value is added to the average value C to obtain C, and a predetermined positive value is subtracted from the average value P to obtain p.
次に、第5図のウェル中心部17のエリアのデータから
、I)>X>Cの関係を満たすデータを抽出することに
よって、第2図AおよびBに矢印りで示した反応パター
ンの中心部と周辺部との境界部のデータを抽出し、その
抽出したデータに対して2次元または1次元の微分処理
を行って境界部の透過光量の変化率を求めてその平均値
Xを求める。Next, by extracting data that satisfies the relationship I)>X>C from the data in the area of the well center 17 in FIG. Data on the boundary between the area and the peripheral area is extracted, two-dimensional or one-dimensional differentiation processing is performed on the extracted data to determine the rate of change in the amount of transmitted light at the boundary, and the average value X thereof is determined.
以上のようにして画像処理回路16で求めた境界部の透
過光量の変化率の平均値Xは、データ処理回路19に供
給し、ここで予め定めた基準値と比較して凝集・非凝集
を判定し、その判定結果をキーボード等の入力部20か
らの指示に応じて表示部21に表示する。The average value X of the rate of change in the amount of transmitted light at the boundary, determined by the image processing circuit 16 as described above, is supplied to the data processing circuit 19, where it is compared with a predetermined reference value to determine aggregation/non-aggregation. The judgment result is displayed on the display section 21 in response to an instruction from the input section 20 such as a keyboard.
このように、ウェルllaの底面の画像データから反応
パターンの中心部と周辺部との境界部のデータを抽出し
てその変化率を求め、その変化率に基づいて反応パター
ンの凝集・非凝集を判定するようにすれば、凝集力の弱
い凝集パターンでも、非凝集パターンと誤ることなく、
自動的に正確に判定することができ、信頼性の高い判定
結果を得ることができる。したかって、従来のように、
判定結果を操作者等が目視その他の手段によりチエツク
して補正する必要かないので、操作者等の負担を大幅に
軽減することができる。In this way, data on the boundary between the center and periphery of the reaction pattern is extracted from the image data of the bottom surface of well lla, the rate of change is determined, and based on the rate of change, aggregation/non-aggregation of the reaction pattern is determined. If this is done, even agglomerated patterns with weak cohesion will not be mistaken for non-agglomerated patterns.
Judgment can be made automatically and accurately, and highly reliable judgment results can be obtained. Just like in the past,
Since there is no need for the operator or the like to check and correct the determination result visually or by other means, the burden on the operator or the like can be significantly reduced.
なお、この実施例では、マイクロプレート11とビデオ
カメラ15とを水平面内で2次元方向に相対的に移動さ
せて、マイクロプレートllの各ウェル11aの底面の
画像データを順次取り込むようにしたか、マイクロプレ
ート11の全体の画像データを取り込み、その画像デー
タから各ウェルlla′の底面の画像データを抽出して
同様に処理するようにしてもよい。In this embodiment, the microplate 11 and the video camera 15 are moved relatively in a two-dimensional direction within a horizontal plane to sequentially capture image data of the bottom surface of each well 11a of the microplate 11. The image data of the entire microplate 11 may be taken in, and the image data of the bottom surface of each well lla' may be extracted from the image data and processed in the same way.
第6図はこの発明を実施する凝集像自動判定装置の他の
例の構成を示すブロック図である。この実施例では、マ
イクロプレート11を電源31に接続した光源32によ
ってレンズ群33を介して底面側からスポット照明し、
その透過光を受光器34で受光する。この受光器34の
出力は、受光データ処理部35でデジタル信号に変換し
てデータ処理部36に供給する。また、マイクロプレー
ト11は、データ処理部36の制御のもとにマイクロプ
レート移送機構37を介して水平面内で直線状に移動さ
せるようにし、これにより第7図Aに示すようにウェル
llaを直径方向に走査して、第7図Bに示すような透
過光量のデータを得るようにする。なお、受光データ処
理部35てのアナログ−デジタル変換は、明るいデータ
の値か大きく、暗いデータの値か小さくなるように行う
。FIG. 6 is a block diagram showing the configuration of another example of an automatic agglomerated image determination apparatus embodying the present invention. In this embodiment, the microplate 11 is spot-illuminated from the bottom side through a lens group 33 by a light source 32 connected to a power source 31.
The transmitted light is received by a light receiver 34. The output of the light receiver 34 is converted into a digital signal by a light reception data processing section 35 and supplied to a data processing section 36 . Further, the microplate 11 is moved linearly in a horizontal plane via the microplate transfer mechanism 37 under the control of the data processing unit 36, thereby moving the well 11a to the diameter 1a as shown in FIG. By scanning in the direction, data on the amount of transmitted light as shown in FIG. 7B is obtained. Note that the analog-to-digital conversion in the received light data processing section 35 is performed so that the value of bright data becomes large and the value of dark data becomes small.
この実施例では、以上のようにして各ウェルllaにつ
いて第7図Bに示すような透過光量のデータを得にその
データに基ついてデータ処理部36において、当該ウェ
ルllaの底面に形成された反応パターンの中心部と周
辺部との境界部における透過光量の変化率の平均値を求
める。In this embodiment, data on the amount of transmitted light as shown in FIG. The average value of the rate of change in the amount of transmitted light at the boundary between the center and the periphery of the pattern is determined.
以下、データ処理部36でのデータ処理について説明す
る。Data processing in the data processing section 36 will be explained below.
データ処理部36では、各ウェルllaのデータに対し
て、先ず、予め設定したウェル中心部のデータの平均値
Cを求めると共に、ウェル周辺部のデータの平均値Pを
求める。その後、平均値Cに予め定めた1より大きい正
の値を乗算してCを求めると共に、平均値Pに予め定め
た1より小さい正の値を乗算してpを求める。ただし、
平均値CおよびPにそれぞれ乗算する値は、p>cの条
件を満たす値とする。次に、当該ウェルllaのデータ
から、p>x>cを満たすデータを抽出することによっ
て、第2図AおよびBに矢印りで示した反応パターンの
中心部と周辺部との境界部のデータを抽出し、その抽出
したデータに対して微分処理を行って境界部の透過光量
の変化率を求めてその平均値Xを求める。The data processing unit 36 first calculates the average value C of the data at the center of the well set in advance for the data of each well lla, and also calculates the average value P of the data at the periphery of the well. Thereafter, the average value C is multiplied by a predetermined positive value greater than 1 to obtain C, and the average value P is multiplied by a predetermined positive value smaller than 1 to obtain p. however,
The values by which the average values C and P are respectively multiplied are values that satisfy the condition p>c. Next, by extracting data that satisfies p>x>c from the data of the well lla, data of the boundary between the center and the periphery of the reaction pattern shown by arrows in FIG. 2A and B is extracted. is extracted, differential processing is performed on the extracted data, the rate of change in the amount of transmitted light at the boundary is determined, and the average value X is determined.
その後、平均値Xと予め定めた基準値とを比較して凝集
・非凝集を判定する。Thereafter, the average value X is compared with a predetermined reference value to determine aggregation/non-aggregation.
以上のようにして、データ処理部36で反応パターンを
判定した後は、その判定結果をキーボード等の入力部3
8からの指示に応じて表示部39に表示する。After determining the reaction pattern in the data processing section 36 as described above, the determination result is transferred to the input section 3 such as a keyboard.
8 is displayed on the display section 39 in response to an instruction from 8.
このように、ウェルllaの直径方向における透過光量
分布を表すデータから反応パターンの中心部と周辺部と
の境界部のデータを抽出してその変化率を求め、その変
化率に基ついて反応パターンの凝集・非凝集を判定する
ようにすれば、上述した実施例と同様に、凝集力の弱い
凝集パターンでも、非凝集パターンと誤ることなく、自
動的に正確に判定することができ、信頼性の高い判定結
果を得ることができる。したがって、従来のように、判
定結果を操作者等が目視その他の手段によりチエツクし
て補正する必要かないので、操作者等の負担を大幅に軽
減することができる。In this way, the data on the boundary between the center and the periphery of the reaction pattern is extracted from the data representing the transmitted light amount distribution in the diameter direction of well lla, the rate of change is determined, and the reaction pattern is calculated based on the rate of change. If agglomeration/non-aggregation is determined, even an agglomeration pattern with weak cohesive force can be automatically and accurately determined without being mistaken as a non-aggregation pattern, as in the above-mentioned embodiment, and reliability can be improved. High judgment results can be obtained. Therefore, it is not necessary for the operator or the like to check and correct the determination result visually or by other means, as in the past, and the burden on the operator or the like can be significantly reduced.
以上のように、この発明によれば、反応パターンの中心
部と周辺部との境界部が、非凝集パターンに比べ凝集力
の弱い凝集パターンでは、ぼやけてはっきりしていない
という特性があるのに着目して、反応パターンの測定デ
ータから上記境界部の測定データを抽出してその変化率
を求め、その変化率に基づいて被検粒子の凝集、非凝集
、またはその他の属性を自動的に判定するようにしたの
で、信頼性の高い正確な判定結果を得ることができる。As described above, according to the present invention, the boundary between the center and the periphery of the reaction pattern is blurred and unclear in the agglomerated pattern, which has a weaker cohesive force than the non-agglomerated pattern. Focusing on the measurement data of the reaction pattern, extract the measurement data of the boundary part mentioned above, find the rate of change, and automatically determine whether the test particles are agglomerated, non-agglomerated, or other attributes based on the rate of change. As a result, highly reliable and accurate determination results can be obtained.
したがって、この発明を実施する装置では、従来のよう
に判定結果を操作者等が目視その他の手段によりチエツ
クして補正する必要かないので、操作者等の負担を大幅
に軽減することかできる。Therefore, in the apparatus embodying the present invention, there is no need for the operator or the like to check and correct the determination result visually or by other means, as is the case in the past, so that the burden on the operator or the like can be significantly reduced.
第1図A、Bおよび第2図A、Bはこの発明の詳細な説
明するための図、
第3図はこの発明を実施する凝集像自動判定装置の一例
の構成を示すブロック図、
第4図は第3図に示すマイクロプレートの構成を示す図
、
第5図は第3図の動作を説明するための図、第6図はこ
の発明を実施する凝集像自動判定装置の他の例の構成を
示すブロック図、
第7図AおよびBはその動作を説明するための図である
。
1・・・反応容器 11・・・マイクロプレー
ト11a・・・ウェル 12・・・蛍光灯電源
13・・・蛍光灯 15・・・ビデオカメラ
16・・・画像処理回路 17・・・ウェル中心部
18・・・ウェル周辺部 19・・・データ処理回
路20・・・入力部 21・・・表示部31
・・・電源 32・・・光源33・・・レ
ンズ群 34・・・受光器35・・・受光デー
タ処理部 36・・・データ処理部37・・・マイクロ
プレート移送機構1A, B and 2A, B are diagrams for explaining the present invention in detail; FIG. 3 is a block diagram showing the configuration of an example of an automatic agglutination image determination device implementing the present invention; This figure shows the structure of the microplate shown in FIG. 3, FIG. 5 is a diagram for explaining the operation of FIG. 3, and FIG. A block diagram showing the configuration and FIGS. 7A and 7B are diagrams for explaining its operation. 1... Reaction container 11... Microplate 11a... Well 12... Fluorescent light power source 13... Fluorescent light 15... Video camera 16... Image processing circuit 17... Well center 18...Well peripheral area 19...Data processing circuit 20...Input section 21...Display section 31
... Power source 32... Light source 33... Lens group 34... Light receiver 35... Light reception data processing section 36... Data processing section 37... Microplate transfer mechanism
Claims (1)
ンを光学的に測定し、その測定データに基づいて前記被
検粒子の凝集、非凝集、またはその他の属性を自動的に
判定するにあたり、前記測定データから前記反応パター
ンの中心部と周辺部との境界部の測定データを抽出して
その変化率を求め、その変化率に基づいて前記被検粒子
の凝集、非凝集、またはその他の属性を自動的に判定す
ることを特徴とする凝集像判定方法。1. In optically measuring the reaction pattern of the test particles formed on the bottom of the reaction vessel and automatically determining whether the test particles are agglomerated, non-agglomerated, or other attributes based on the measurement data. , Extract the measurement data of the boundary between the center and the periphery of the reaction pattern from the measurement data, determine the rate of change, and determine whether the test particles are agglomerated, non-agglomerated, or otherwise based on the rate of change. A method for determining agglomerated images characterized by automatically determining attributes.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18433390A JP3165429B2 (en) | 1990-07-13 | 1990-07-13 | Aggregation image judgment method |
DE4042523A DE4042523C2 (en) | 1989-12-21 | 1990-12-19 | Investigation of particle patterns formed |
DE19904040726 DE4040726C2 (en) | 1989-12-21 | 1990-12-19 | Methods for examining particle patterns |
US08/080,592 US5389555A (en) | 1989-12-21 | 1993-06-24 | Particle pattern judging method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18433390A JP3165429B2 (en) | 1990-07-13 | 1990-07-13 | Aggregation image judgment method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000308826A Division JP2001133398A (en) | 2000-10-10 | 2000-10-10 | Cohesion image determining method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0472547A true JPH0472547A (en) | 1992-03-06 |
JP3165429B2 JP3165429B2 (en) | 2001-05-14 |
Family
ID=16151476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18433390A Expired - Lifetime JP3165429B2 (en) | 1989-12-21 | 1990-07-13 | Aggregation image judgment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3165429B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05297001A (en) * | 1992-04-15 | 1993-11-12 | Fujirebio Inc | Method and device for automatic immunity measurement using magnetic particle |
JP2007507706A (en) * | 2003-10-03 | 2007-03-29 | カイロン ソチエタ ア レスポンサビリタ リミタータ | Digital image of a simple radial immune diffusion assay |
WO2008059934A1 (en) * | 2006-11-15 | 2008-05-22 | Olympus Corporation | Method for determining agglutination |
JP2008275473A (en) * | 2007-04-27 | 2008-11-13 | Olympus Corp | Analyzer and analyzing method |
WO2009004984A1 (en) | 2007-06-29 | 2009-01-08 | Olympus Corporation | Agglutination image automatic judging method by mt system, device, program, and recording medium |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017158806A1 (en) * | 2016-03-18 | 2017-09-21 | 株式会社 日立ハイテクノロジーズ | Specimen observation method |
-
1990
- 1990-07-13 JP JP18433390A patent/JP3165429B2/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05297001A (en) * | 1992-04-15 | 1993-11-12 | Fujirebio Inc | Method and device for automatic immunity measurement using magnetic particle |
JP2007507706A (en) * | 2003-10-03 | 2007-03-29 | カイロン ソチエタ ア レスポンサビリタ リミタータ | Digital image of a simple radial immune diffusion assay |
WO2008059934A1 (en) * | 2006-11-15 | 2008-05-22 | Olympus Corporation | Method for determining agglutination |
JPWO2008059934A1 (en) * | 2006-11-15 | 2010-03-04 | オリンパス株式会社 | Aggregation judgment method |
US8712699B2 (en) | 2006-11-15 | 2014-04-29 | Beckman Coulter, Inc. | Agglutination judgment method |
JP2008275473A (en) * | 2007-04-27 | 2008-11-13 | Olympus Corp | Analyzer and analyzing method |
WO2009004984A1 (en) | 2007-06-29 | 2009-01-08 | Olympus Corporation | Agglutination image automatic judging method by mt system, device, program, and recording medium |
US8213697B2 (en) | 2007-06-29 | 2012-07-03 | Beckman Coulter, Inc. | Agglutination image automatic judging method by MT system, device, program, and recording medium |
Also Published As
Publication number | Publication date |
---|---|
JP3165429B2 (en) | 2001-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW583389B (en) | A surface conduction examination method and a substrate examination device | |
US4688939A (en) | Method and apparatus for inspecting articles | |
EP0595261A1 (en) | Method of inspecting solid body for foreign matter | |
KR20010067345A (en) | Nondestructive inspection method and an apparatus thereof | |
JPH04168346A (en) | Decision of flocculation pattern of particle | |
US8712699B2 (en) | Agglutination judgment method | |
CN116642830A (en) | Novel line scanning image detection method | |
JPH0472547A (en) | Method for judging cohesive image | |
US5389555A (en) | Particle pattern judging method | |
JPS61215948A (en) | Particle flocculation discriminating device | |
JPH0579999A (en) | Inspecting device for precipitated foreign object in bottle | |
JP2001133398A (en) | Cohesion image determining method and device | |
JPH04120442A (en) | Coagulation image discerning method | |
JPH0781962B2 (en) | Foreign object detection method | |
JPS63256839A (en) | Method and device for aggregation decision | |
JPH1137923A (en) | Method for discriminating aggregation image | |
KR0152885B1 (en) | Classifying method of soldering for pcb | |
JP2000097882A (en) | Method and device for x-ray inspection | |
JPH03191848A (en) | Method for judging particle aggregation pattern | |
JPS63157044A (en) | Foreign matter inspection method for metal grain | |
JPH03269242A (en) | Apparatus for inspecting nonmetallic enclosure | |
JPH01313743A (en) | Method for inspecting colored periodic pattern | |
JPH06242023A (en) | Fish eye inspection system | |
JPS61293659A (en) | Method for inspecting soldering appearance | |
JPH04286944A (en) | Flaw detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090302 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090302 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100302 Year of fee payment: 9 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100302 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100302 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110302 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110302 Year of fee payment: 10 |