JPH047251B2 - - Google Patents

Info

Publication number
JPH047251B2
JPH047251B2 JP59208631A JP20863184A JPH047251B2 JP H047251 B2 JPH047251 B2 JP H047251B2 JP 59208631 A JP59208631 A JP 59208631A JP 20863184 A JP20863184 A JP 20863184A JP H047251 B2 JPH047251 B2 JP H047251B2
Authority
JP
Japan
Prior art keywords
membrane
electrodialysis
desalting
plant extract
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59208631A
Other languages
Japanese (ja)
Other versions
JPS6186907A (en
Inventor
Motohiko Hirotsuka
Masahiko Terajima
Hitoshi Taniguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Oil Co Ltd
Original Assignee
Fuji Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Oil Co Ltd filed Critical Fuji Oil Co Ltd
Priority to JP59208631A priority Critical patent/JPS6186907A/en
Publication of JPS6186907A publication Critical patent/JPS6186907A/en
Publication of JPH047251B2 publication Critical patent/JPH047251B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、植物抽出液の脱塩方法に関する。更
に詳しくはオリゴ糖を含む植物抽出液の脱膜汚染
物質及び脱低分子物質の方法に関する。 (従来技術) 従来から、チーズホエーの脱塩方法として、特
開昭58−175438には逆浸透圧法と電気透析法を組
み合わせたチーズホエーの濃縮、脱塩方法が開示
されている。その他チーズホエーの脱塩方法に電
気透析装置を用いる方法が多く知られている(例
えば特開昭49−54568ホエーの脱塩方法、特開昭
49−116257乳類の脱塩方、特開昭51−51547乳あ
るいはホエーの脱塩方法、特開昭52−117445精製
乳糖の製造法、特開昭53−79057、特開昭53−
79060、特開昭56−65242、等)。 又、各種糖液の精製法として、(a)特開昭52−
82737には、限外濾過法(分画分子量200〜
100000)と電気透析法を組み合わせる糖液の浄化
方法が開示されている。その他の糖液の精製法と
して、特開昭51−79737、特開昭52−108035、特
開昭53−69841、特開昭54−23137、特開昭57−
129700、特開昭57−159500、特開昭57−174100等
が知られている。 しかし、上述したようなラクトースや砂糖等の
各種単糖類、二糖類を含む液の精製法は各種知ら
れているが、本発明のような主にオリゴ糖を含む
植物抽出液の脱塩方法は知られていない。 (目的) 本発明者等は、オリゴ糖を含む植物抽出液の脱
塩を目的とした。 (経過) 本発明者等は、オリゴ糖を含む植物抽出液の一
つとして、スタキオースやラフイノースを豊富に
含む大豆ホエーの灰分の除去を電気透析装置を用
いて試みるなかで、大豆ホエー(その製造工程に
より塩類、窒素化合物、多糖類、有機酸、着色物
質、フレーバー等の含量は異なる)が、動物性で
あるチーズホエーと異なり、容易に電気透析装置
を用いて脱塩できない問題に遭遇した。即ち電流
が流れ難くなり電気伝導度が下がらない、従い脱
塩効率が非常に悪くなるのである。 かかる問題を解決すべく、原因究明、その解決
策等を鋭意研究の結果、チーズホエー等の場合と
異なり、植物抽出液はフイチン酸等の有機酸、水
溶性多糖類等種々のfouling物質(膜汚染物質)
を含有し、これらが電気透析を阻害していること
を見出した。そして、電気透析の前の工程におい
て、分画分子量1500〜17500の限外濾過膜、好ま
しくは分画分子量2500〜12500の限外濾過膜を用
いて濾過することにより、電気透析阻害物質であ
る膜汚染物質を除去でき、効率よく脱塩できるこ
とを見出し本発明を完成するに至つた。 (構成) 本発明は(1)植物抽出液を電気透析膜を用いて脱
塩する前の工程において、分画分子量1500〜
17500(好ましくは2500〜12500)の限外濾過膜を
用いて濾過する工程を含むことを特徴とする植物
抽出液の脱塩方法である。 本件発明において用いる植物抽出液は穀類、豆
類等の植物性の抽出液で、少なくとも三炭糖以上
(通常三炭糖乃至五炭糖)のオリゴ糖を豊富に
(糖の内オリゴ糖を少なくとも30重量%以上、好
ましくは50重量%以上)含むものが好ましく、例
えば、大豆抽出液、その他豆類の抽出液等を挙げ
ることができるが、入手の容易性、経済性、産業
副生産物有効利用等の観点より大豆抽出液がラフ
イノース、スタキオース、ベルバスコース等のオ
リゴ糖を豊富に(全オリゴ糖中70乃至90重量%以
上)含み好ましい。例えば大豆抽出液は、大豆由
来の糖を含む抽出液を言い、例えば(a)大豆蛋白製
造工程において得られる大豆ホエー、(b)大豆煮
汁、豆腐のゆ、大豆浸漬液、大豆蒸煮液、または
これらから水溶性蛋白(大豆アルブミン、β−ア
ミラーゼ、トリプシンインヒビター等)、サポニ
ン等の水溶性高分子物質(少なくとも本発明にい
うオリゴ糖より高分子の物質)等のうちの一種ま
たは二種以上を除いた大豆抽出液等を挙げること
ができる。更に具体例を挙げると、(a)に関して
は、大豆原料(脱脂大豆等)を水系下に抽出
し、大豆蛋白、オカラ成分を除去した後に得られ
る大豆ホエー、大豆原料を極性有機溶媒(例え
ばアルコール系有機溶剤等)で抽出して得られる
極性有機溶媒可溶性成分、等を挙げることができ
る。(b)に関しては、納豆、味噌等の製造工程に
おいて大豆を蒸煮した煮汁、豆腐製造工程にお
いて、豆腐凝固しない残液、大豆を水等に浸漬
したときの浸漬液等を挙げることができる。 本発明において用いる電気透析装置は公知の装
置を用いることができる。電気透析装置に用いる
膜はアニオン膜及びカチオン膜のイオン交換膜が
好ましく、例えば具体例として(a)セレミオン(旭
ガラス(株)製)(b)ネオセプター(徳山曹達(株)製)、
(c)アイオニクス膜(米国アイオニクス社製)、(d)
その他のメーカー(旭化成(株)製等)の膜を挙げる
ことができる。 本発明において、植物抽出液を電気透析膜を用
いて脱塩する前の工程において、分画分子量1500
〜17500の限外濾過膜を用いて濾過する工程を含
むことが重要である。好ましくは分画分子量2500
〜12500の限外濾過膜が適当である。分画分子量
1500未満では目的とする糖成分の回収率が低下し
好ましくない。分画分子量が17500を越えると膜
汚染物質を除去する効果が少なく電気透析を阻害
し脱塩効率が低下し好ましくない。 更に所望により、本発明において、植物抽出液
を電気透析膜を用いて脱塩する工程の前、即ち、
分画分子量1500〜17500の限外濾過膜を用いて濾
過する工程の前又は後において、塩化ナトリウム
阻止率80%以下(好ましくは10〜70%)の逆浸透
膜を用いて逆浸透圧濾過する工程を含むことがで
きる。ここに塩化ナトリウム阻止率(%)は次式
で表される。 (1−透過液中の塩化ナトリウム濃度/原液中の塩化ナ
トリウム濃度)×100 かかる逆浸透圧濾過により、植物抽出液の濃縮
と同時に分子量約200〜1000以下の脱低分子物質
(アミノ酸、有機酸、塩等)効果とオリゴ糖の濃
縮効果を奏し、植物抽出液の処理工程上好まし
い。塩等もある程度除去でき、電気透析の負荷を
軽減できるのみならず、アミノ酸等の褐変反応物
を除去でき、得られるオリゴ糖混合物の色調を白
くできる効果がある。 塩化ナトリウム阻止率80%を越えると濃縮され
たオリゴ糖を含む植物抽出液の電気透析負荷が増
大し(具体的には初期電気伝導度が大きくなり)
あまり好ましくない。 又、塩化ナトリウム阻止率10%未満の逆浸透膜
では電気透析負荷が減少し電気透析的には好まし
いが、反面オリゴ糖を含む植物抽出液の回収率が
低下し好ましくない。 更に所望により、本発明において、分画分子量
1500〜17500の限外濾過膜を用いて濾過する工程
の前において、植物抽出液(一般に酸性が多い)
をPH7.0〜8.3に調整し、要すれば加熱して、生じ
てくるオリを除去する工程を含むことができる。
オリの除去には濾過、遠心分離等の公知の分離手
段を用いることができる。電気透析の効率をさら
に上げる効果がある。又、加熱をすることにより
殺菌効果も付加することができる。 又、本発明において、植物抽出液にもよるが、
所望により、分画分子量1500〜17500の限外濾過
膜を用いて濾過する工程の前において、予め分画
分子量20000〜100000の限外濾過膜を用いて濾過
する工程を含むことができる。予め蛋白質等の高
分子物質を除去することにより分画分子量1500〜
17500の限外濾過膜の寿命を延ばす効果がある。 又、かかる限外濾過膜による以外の除蛋白の方
法として、100℃以上で10分以上相当の熱履歴を
かける(好ましくはカルシウムイオンの存在下)
ことによつて蛋白を不溶化させ公知の手段を用い
て除去することもできる。 かかる方法により脱塩されたオリゴ糖を含む植
物抽出液は、そのオリゴ糖の種類にもよるが、広
く産業上利用することができる。例えば大豆抽出
液の内大豆ホエーは一般に乾燥固形分は10%未満
(通常2〜5%)で、該乾燥固形分中糖成分を約
50%余、粗蛋白を約21%余、灰分約25%程度を含
み、本発明の方法を用いて脱塩することにより、
乾燥固形分中糖成分が少なくとも80%以上(通常
95%以上)、灰分が約8%以下(通常5%以下)
にすることができ、且つ糖成分中スタキオースが
通常45%以上、ラフイノースが通常10%以上即ち
糖成分の内オリゴ糖が少なくとも30%以上(通常
55%以上)の大豆抽出液(オリゴ糖混合物)とす
ることができる。 (実施例) 以下実施例により本発明の実施態様を説明す
る。 実施例 1 脱脂大豆10Kgを150Kgの温水(50℃)で抽出し、
遠心分離してオカラを除去し、豆乳130Kgを得た。
次いでPHを4.5に調整してカードを分離して大豆
ホエー100(Aとする)を得た。この大豆ホエ
ーは乾燥固形分2.4Kg(糖分1.3Kg、祖蛋白0.5Kg、
灰分0.6Kg)であつた。 次いで、分画分子量20000の限外濾過膜(ダイ
セル社製DUY−M)を用い除蛋白を行いパーミ
エイト(瀘液)90(Bとする)を得た。 次いで、塩化ナトリウム阻止率15%(分画分子
量約200)の逆浸透膜(ダイセル社製DRS−10)
を用い、圧力15Kg/cm2、10℃で5倍濃縮し18の
濃縮液(Cとする)を得た。 次いで5NのNaOHを用いPHを7.8に調整して
120℃で10分間加熱して生じたオリを遠心分離
(2000g)して除去し、16の上清(Dとする)
を得た。 次いで、分画分子量5000の限外濾過膜(ダイセ
ル社製DUY−HH)を用い、20℃、7Kg/cm2
圧力で脱膜汚染物質と濃縮を同時に行い13のパ
ーミエイト(Eとする)を得た。 次いで、電気透析装置(ユアサアイオニツクス
社製スタツクパツク)を用い、流速1.4m/sec、
10あたり2.2dm2のアニオン膜とカチオン膜より
なる電気透析膜20対を用い、電圧30V、90分で液
の電気伝導度が初期電気伝導度13200μS/cm2の10
分の1以下の1020μS/cm2になるまで処理し、脱
塩してオリゴ糖混合液(Fとする)を得た。 このときの電気伝導度と電気透析処理時間の関
係を第1図に示す。 得られた液Fは乾燥固形分5.1重量%で、乾燥
固形分中、糖分97重量%、灰分3重量%であり、
糖のうちシユクロースが38重量%、スタキオース
が49重量%、ラフイノースが13重量%、ベルバス
コースは微量であつた。 比較例 1 実施例1と同様にして得た16の上清Dを、分
画分子量5000の限外濾過膜で処理することなく電
気透析処理した。 液伝導度が初期電気伝導度13800μS/cm2の10分
の1以下の1300μS/cm2になるのに270分を要し
た。しかし、アニオン膜が汚染されており、続け
て電気透析を行うと電気透析処理時間が更に大幅
に長引くことが明らかであつた。 このときの電気伝導度と電気透析処理時間の関
係を第1図に示す。 実施例 2 実施例1と同様にして脱脂大豆10Kgから大豆ホ
エー100(Aとする)を得、次いで、分画分子
量20000の限外濾過膜(アブコア社製HFA−20)
を用い除蛋白を行いパーミエイト(瀘液)90
(Bとする)を得、次いで、塩化ナトリウム阻止
率15%(分画分子量200)の逆浸透圧膜(ダイセ
ル社製DRS−10)を用い、圧力15Kg/cm2、10℃
で5倍濃縮し18の濃縮液(Cとする)を得、次
いで、分画分子量4000の限外濾過膜(テイジン
PBIL膜TL−215)を用い脱膜汚染物質と濃縮を
同時に行い13のパーミエイト(Eとする)を得
た。 次いで、PH処理することなく電気透析膜(旭ガ
ラス社製セレミオン)を用い、流速1.4m/secに
て、10あたり2.2dm2のアニオン膜とカチオン膜
よりなる電気透析膜20対を用い、電圧30V、150
分で液伝導度が初期電気伝導度13500μS/cm2の10
分の1以下の1200μS/cm2になるように脱塩して
オリゴ糖混合液(Fとする)を得た。 このときの電気伝導度と電気透析処理時間の関
係を第1図に示す。 得られた液Fは乾燥固形分5.3重量%で、乾燥
固形分中、糖分93重量%、灰分5重量%であり、
糖のうちシユクロースが40重量%、スタキオース
が47重量%、ラフイノースが13重量%、ベルバス
コースが微量であつた。 比較例 2 実施例2と同様にして得た18の濃縮液Cを分
画分子量4000の限外濾過膜で処理することなく電
気透析処理した。 液伝導度が初期電気伝導度13500μS/cm2の10分
の1以下の1300μS/cm2になるのに400分を要し、
且つアニオン膜の汚染が甚だしく続けて電気透析
処理することも困難であつた。 このときの電気伝導度と電気透析処理時間の関
係を第1図に示す。 実施例 3 丸大豆20Kgを水200Kgに一夜浸漬後水を切り、
再び水200Kgを加えて摩砕し呉を得た。次いで90
℃で5分加熱し、3号濾布(140メツシユ)で濾
過し、豆乳160Kgを得た。次いで硫酸カルシウム
を加えて豆腐を製造した際に得られた所謂ゆ120
を塩化ナトリウム阻止率15%の逆浸透圧膜(テ
イジンTL−230)を用い、圧力15Kg/cm2、10℃で
5倍濃縮し24の濃縮液を得た。 次いで、分画分子量5000の限外濾過膜(ダイセ
ル社製DUY−HH)を用い脱膜汚染物質と濃縮
を同時に行い19のパーミエイトを得た。 次いで、電気透析装置(ユアサアイオニツクス
社製スタツクパツク)を用い、流速1.4m/secに
て、10あたり2.2dm2の電気透析膜20対を用い、
電圧30V、250分で液伝導度が初期電気伝導度
28000μS/cm2の10分の1以下の1600μS/cm2になる
ように脱塩してオリゴ糖混合液を得た。 得られた液は乾燥固形分中、糖分83重量%、灰
分5重量%であつた。 実施例 4 脱脂大豆10Kgに70%エタノール150Kgを加え、
撹拌・抽出して大豆ホエー120を得た。エバポ
レーターを用いて脱エタノールを行い、大豆ホエ
ー45(乾燥固形分2.8Kg、糖分1.9Kg)を得た。 次いで、分画分子量5000の限外濾過膜(ダイセ
ル社製DUY−HH)を用い脱膜汚染物質を行い
38のパーミエイトを得た。 次いで、電気透析装置(ユアサアイオニツクス
社製スタツクパツク)を用い、実施例1と同様に
して脱塩処理を行い、凍結乾燥して粉末オリゴ糖
混合物(1.7Kg)を得た。糖分91%、灰分7%で
あつた。 実施例 5
The present invention relates to a method for desalting a plant extract. More specifically, the present invention relates to a method for removing membrane contaminants and low molecular weight substances from a plant extract containing oligosaccharides. (Prior Art) Conventionally, as a method for desalting cheese whey, JP-A-58-175438 discloses a method for concentrating and desalting cheese whey that combines a reverse osmosis method and an electrodialysis method. There are many other known methods for desalting cheese whey using an electrodialyzer (for example, JP-A No. 49-54568 Method for Desalting Whey;
49-116257 Method for desalting milk, JP-A-51-51547 Method for desalting milk or whey, JP-A-52-117445 Process for producing purified lactose, JP-A-53-79057, JP-A-53-
79060, JP-A-56-65242, etc.). In addition, as a method for purifying various sugar solutions, (a) JP-A-52-
82737 uses ultrafiltration method (molecular weight cutoff 200~
100,000) and an electrodialysis method is disclosed. Other sugar solution purification methods include JP-A-51-79737, JP-A-52-108035, JP-A-53-69841, JP-A-54-23137, JP-A-57-
129700, JP-A-57-159500, JP-A-57-174100, etc. are known. However, although various methods for purifying liquids containing various monosaccharides and disaccharides such as lactose and sugar as mentioned above are known, the method of the present invention for desalting plant extracts mainly containing oligosaccharides is unknown. (Purpose) The present inventors aimed to desalinate a plant extract containing oligosaccharides. (Progress) While attempting to remove the ash content of soybean whey, which is one of the oligosaccharide-containing plant extracts and is rich in stachyose and raffinose, using an electrodialysis device, the present inventors discovered that soybean whey (its production The content of salts, nitrogen compounds, polysaccharides, organic acids, coloring substances, flavors, etc. differs depending on the process), but unlike cheese whey, which is animal-based, we encountered the problem that it could not be easily desalted using an electrodialysis machine. In other words, it becomes difficult for current to flow and the electrical conductivity does not decrease, resulting in extremely poor desalination efficiency. In order to solve this problem, as a result of intensive research into the causes and solutions, we found that, unlike in the case of cheese whey, plant extracts contain various fouling substances (membranes) such as organic acids such as phytic acid and water-soluble polysaccharides. pollutants)
It was found that these substances inhibit electrodialysis. In the step before electrodialysis, a membrane that is an electrodialysis inhibitor is filtered using an ultrafiltration membrane with a molecular weight cutoff of 1500 to 17500, preferably an ultrafiltration membrane with a molecular weight cutoff 2500 to 12500. The present invention was completed by discovering that pollutants can be removed and desalination can be carried out efficiently. (Structure) The present invention is characterized in that (1) in the step before desalting the plant extract using an electrodialysis membrane,
This is a method for desalting a plant extract, characterized by including a step of filtering using a 17500 (preferably 2500 to 12500) ultrafiltration membrane. The plant extract used in the present invention is a plant extract of grains, beans, etc., and is rich in oligosaccharides of at least tricarbonate or higher (usually tricarbonate to pentose) (at least 30% of the oligosaccharides are % by weight or more, preferably 50% by weight or more), such as soybean extract, extracts of other legumes, etc., but it is easy to obtain, economical, effective use of industrial by-products, etc. From this viewpoint, it is preferable that the soybean extract contains abundant oligosaccharides such as raffinose, stachyose, and verbascose (70 to 90% by weight or more based on the total oligosaccharides). For example, soybean extract refers to an extract containing sugar derived from soybeans, such as (a) soybean whey obtained in the soybean protein manufacturing process, (b) soybean broth, tofu soup, soybean soaking liquid, soybean steaming liquid, or From these, one or more of water-soluble proteins (soybean albumin, β-amylase, trypsin inhibitor, etc.), water-soluble polymer substances such as saponin (at least substances with a higher molecular weight than the oligosaccharide referred to in the present invention), etc. Examples include a soybean extract that has been removed. To give a more specific example, regarding (a), soybean raw materials (defatted soybeans, etc.) are extracted in an aqueous system, and soybean whey and soybean raw materials obtained after removing soybean protein and okara components are extracted with a polar organic solvent (such as alcohol). polar organic solvent-soluble components obtained by extraction with organic solvents, etc.). Regarding (b), examples include the broth from steaming soybeans in the manufacturing process of natto, miso, etc., the residual liquid that does not coagulate tofu in the tofu manufacturing process, and the soaking liquid when soybeans are soaked in water, etc. As the electrodialysis device used in the present invention, a known device can be used. The membrane used in the electrodialysis device is preferably an ion exchange membrane such as an anion membrane or a cation membrane, and specific examples include (a) Selemion (manufactured by Asahi Glass Co., Ltd.), (b) Neoceptor (manufactured by Tokuyama Soda Co., Ltd.),
(c) Ionics membrane (manufactured by Ionics, USA), (d)
Membranes from other manufacturers (such as those manufactured by Asahi Kasei Corporation) can be mentioned. In the present invention, in the step before desalting the plant extract using an electrodialysis membrane,
It is important to include a filtration step using a ~17500 ultrafiltration membrane. Preferably a molecular weight cutoff of 2500
~12500 ultrafiltration membranes are suitable. Molecular weight cutoff
If it is less than 1500, the recovery rate of the target sugar component will decrease, which is not preferable. If the molecular weight cutoff exceeds 17,500, the effect of removing membrane contaminants will be low and electrodialysis will be inhibited, resulting in a decrease in desalting efficiency, which is undesirable. Furthermore, if desired, in the present invention, before the step of desalting the plant extract using an electrodialysis membrane, that is,
Before or after the step of filtration using an ultrafiltration membrane with a molecular weight cutoff of 1500 to 17500, perform reverse osmosis filtration using a reverse osmosis membrane with a sodium chloride rejection rate of 80% or less (preferably 10 to 70%). can include steps. Here, the sodium chloride rejection rate (%) is expressed by the following formula. (1-Sodium chloride concentration in permeate solution/Sodium chloride concentration in stock solution) x 100 This reverse osmotic filtration allows the concentration of plant extracts and the removal of low-molecular substances (amino acids, organic acids, , salts, etc.) and the effect of concentrating oligosaccharides, and are preferable in the process of processing plant extracts. Not only can salts and the like be removed to some extent, reducing the load on electrodialysis, but also browning reactants such as amino acids can be removed, which has the effect of whitening the color tone of the resulting oligosaccharide mixture. When the sodium chloride rejection rate exceeds 80%, the electrodialysis load of the plant extract containing concentrated oligosaccharides increases (specifically, the initial electrical conductivity increases).
I don't like it very much. In addition, a reverse osmosis membrane with a sodium chloride rejection rate of less than 10% reduces the electrodialysis load and is preferable for electrodialysis, but on the other hand, it is undesirable because the recovery rate of plant extracts containing oligosaccharides decreases. Furthermore, if desired, in the present invention, the molecular weight cut-off
Before the filtration process using an ultrafiltration membrane of 1500 to 17500, the plant extract (generally highly acidic) is
The method may include a step of adjusting the pH to 7.0 to 8.3, heating if necessary, and removing sludge that is formed.
Known separation means such as filtration and centrifugation can be used to remove the dregs. It has the effect of further increasing the efficiency of electrodialysis. Furthermore, a sterilizing effect can be added by heating. In addition, in the present invention, depending on the plant extract,
If desired, a step of filtration using an ultrafiltration membrane having a molecular weight cutoff of 20000 to 100000 may be included before the step of filtration using an ultrafiltration membrane having a molecular weight cutoff 1500 to 17500. By removing high molecular substances such as proteins in advance, the molecular weight cutoff is 1500~
It has the effect of extending the life of the 17500 ultrafiltration membrane. In addition, as a method of protein removal other than using such an ultrafiltration membrane, a thermal history equivalent to 10 minutes or more is applied at 100°C or higher (preferably in the presence of calcium ions).
Alternatively, the protein can be made insolubilized and removed using known means. Plant extracts containing oligosaccharides desalted by such a method can be widely used industrially, depending on the type of oligosaccharides. For example, soybean whey in soybean extract generally has a dry solid content of less than 10% (usually 2 to 5%), and the sugar component in the dry solid content is approximately
It contains about 50% crude protein, about 21% crude protein, and about 25% ash, and by desalting it using the method of the present invention,
Sugar content in dry solids is at least 80% (usually
95% or more), ash content is approximately 8% or less (usually 5% or less)
stachyose is usually 45% or more, raffinose is usually 10% or more, that is, oligosaccharides are at least 30% (usually
55% or more) soybean extract (oligosaccharide mixture). (Example) Embodiments of the present invention will be described below with reference to Examples. Example 1 Extract 10 kg of defatted soybeans with 150 kg of warm water (50°C),
The okara was removed by centrifugation to obtain 130 kg of soy milk.
Then, the pH was adjusted to 4.5 and the curd was separated to obtain soybean whey 100 (referred to as A). This soy whey has a dry solid content of 2.4Kg (sugar 1.3Kg, protein 0.5Kg,
The ash content was 0.6 kg). Next, protein was removed using an ultrafiltration membrane with a molecular weight cutoff of 20,000 (DUY-M, manufactured by Daicel Corporation) to obtain Permeate (filtrate) 90 (referred to as B). Next, a reverse osmosis membrane (DRS-10 manufactured by Daicel) with a sodium chloride rejection rate of 15% (molecular weight cutoff approximately 200) was used.
The mixture was concentrated 5 times at a pressure of 15 kg/cm 2 and 10° C. to obtain 18 concentrated liquids (referred to as C). Then adjust the pH to 7.8 using 5N NaOH.
After heating at 120°C for 10 minutes, centrifuge (2000g) to remove the resulting sludge, and remove the supernatant of 16 (referred to as D).
I got it. Next, using an ultrafiltration membrane with a molecular weight cutoff of 5000 (DUY-HH manufactured by Daicel), the membrane was removed at the same time as contaminants and concentrated at 20°C and a pressure of 7 kg/cm 2 to obtain 13 permeates (referred to as E). Obtained. Next, using an electrodialysis device (Stack Pack manufactured by Yuasa Ionics), the flow rate was 1.4 m/sec.
Using 20 pairs of electrodialysis membranes consisting of an anion membrane and a cation membrane of 2.2 dm 2 per 10, the electrical conductivity of the liquid decreased to an initial electrical conductivity of 13200 μS/cm 2 in 90 minutes at a voltage of 30 V.
The mixture was treated until the concentration was 1020 μS/cm 2 or less, and desalted to obtain an oligosaccharide mixture (referred to as F). The relationship between electrical conductivity and electrodialysis treatment time at this time is shown in FIG. The obtained liquid F had a dry solid content of 5.1% by weight, a sugar content of 97% by weight, and an ash content of 3% by weight in the dry solid content,
Of the sugars, sucrose was 38% by weight, stachyose was 49% by weight, raffinose was 13% by weight, and verbascose was in a trace amount. Comparative Example 1 Sixteen supernatants D obtained in the same manner as in Example 1 were electrodialyzed without being treated with an ultrafiltration membrane having a molecular weight cut off of 5000. It took 270 minutes for the liquid conductivity to reach 1300 μS/cm 2 , which is less than one-tenth of the initial electrical conductivity of 13800 μS/cm 2 . However, it was clear that the anion membrane was contaminated and subsequent electrodialysis would significantly prolong the electrodialysis treatment time. The relationship between electrical conductivity and electrodialysis treatment time at this time is shown in FIG. Example 2 Soybean whey 100 (referred to as A) was obtained from 10 kg of defatted soybeans in the same manner as in Example 1, and then an ultrafiltration membrane with a molecular weight cutoff of 20,000 (HFA-20 manufactured by Abcor) was obtained.
Perform protein removal using permeate (filtrate) 90
(referred to as B) was obtained, and then using a reverse osmosis membrane (DRS-10 manufactured by Daicel Corporation) with a sodium chloride rejection rate of 15% (molecular weight cut off 200), a pressure of 15 Kg/cm 2 and 10 ° C.
Concentrate 5 times to obtain a concentrated solution of 18 (referred to as C).
Thirteen permeates (referred to as E) were obtained by removing the pollutants and concentrating them simultaneously using a PBIL membrane (TL-215). Next, using an electrodialysis membrane (Celemion manufactured by Asahi Glass Co., Ltd.) without PH treatment, at a flow rate of 1.4 m/sec, using 20 pairs of electrodialysis membranes consisting of an anion membrane and a cation membrane of 2.2 dm 2 per 10, the voltage was increased. 30V, 150
Initial electrical conductivity is 13,500 μS/cm 2 at 10 min.
An oligosaccharide mixture (referred to as F) was obtained by desalting to 1200 μS/cm 2 , which is less than one-fold. The relationship between electrical conductivity and electrodialysis treatment time at this time is shown in FIG. The obtained liquid F had a dry solid content of 5.3% by weight, a sugar content of 93% by weight, and an ash content of 5% by weight in the dry solid content,
Of the sugars, sucrose was 40% by weight, stachyose was 47% by weight, raffinose was 13% by weight, and verbascose was in a trace amount. Comparative Example 2 18 Concentrated Solution C obtained in the same manner as in Example 2 was subjected to electrodialysis treatment without treatment with an ultrafiltration membrane having a molecular weight cut off of 4000. It took 400 minutes for the liquid conductivity to reach 1300μS/cm 2 , which is less than one-tenth of the initial electrical conductivity of 13500μS/cm 2 .
In addition, the anion membrane was so contaminated that it was difficult to continue electrodialysis treatment. The relationship between electrical conductivity and electrodialysis treatment time at this time is shown in FIG. Example 3 Soak 20 kg of whole soybeans in 200 kg of water overnight, then drain the water.
200 kg of water was added again and the mixture was ground to obtain Go. then 90
The mixture was heated at ℃ for 5 minutes and filtered through a No. 3 filter cloth (140 mesh) to obtain 160 kg of soy milk. Then, the so-called Yu120 obtained when producing tofu by adding calcium sulfate
Using a reverse osmosis membrane (Teijin TL-230) with a sodium chloride rejection rate of 15%, the mixture was concentrated 5 times at a pressure of 15 kg/cm 2 at 10°C to obtain 24 concentrated liquids. Next, using an ultrafiltration membrane with a molecular weight cutoff of 5000 (DUY-HH, manufactured by Daicel), the membrane-removed contaminants and concentration were simultaneously performed to obtain 19 permeates. Next, using an electrodialysis device (Stack Pack manufactured by Yuasa Ionics) at a flow rate of 1.4 m/sec, using 20 pairs of electrodialysis membranes of 2.2 dm 2 per 10,
The liquid conductivity becomes the initial electrical conductivity at a voltage of 30V and 250 minutes.
An oligosaccharide mixture was obtained by desalting to a concentration of 1,600 μS/cm 2 , which is less than one-tenth of 28,000 μS/cm 2 . The resulting liquid had a sugar content of 83% by weight and an ash content of 5% by weight in the dry solid content. Example 4 Add 150 kg of 70% ethanol to 10 kg of defatted soybeans,
Soybean whey 120 was obtained by stirring and extraction. Ethanol was removed using an evaporator to obtain soybean whey 45 (dry solid content: 2.8 Kg, sugar content: 1.9 Kg). Next, remove contaminants using an ultrafiltration membrane with a molecular weight cutoff of 5000 (DUY-HH manufactured by Daicel).
Got 38 permeates. Next, desalination was performed in the same manner as in Example 1 using an electrodialysis device (Stack Pack manufactured by Yuasa Ionics), and freeze-dried to obtain a powdered oligosaccharide mixture (1.7 kg). The sugar content was 91% and the ash content was 7%. Example 5

【表】 実施例1と同様にして、得られた大豆ホエーA
を限外濾過して得たパーミエイトBを逆浸透膜処
理して濃縮液Cを得、PHを7.8に調整して生じた
オリを除去した後、限外濾過膜の分画分子量を次
の表のように変えて得たパーミエイトを電気透析
したときの、糖回収率と電気伝導度が初期電気伝
導度の10分の1になるまでに要する時間(分)
(時間※とする)を示した。 表より明らかなように、限外濾過膜の分画分子
量が1500未満では電気伝導度が初期電気伝導度の
10分の1になるまでに要する時間が短い(換言す
れば電気透析効率が良い)が、糖回収率が低下し
好ましくなくなる。又、限外濾過膜の分画分子量
が17500を越えると糖回収率は良くなる反面、電
気伝導度が初期電気伝導度の10分の1になるまで
に要する時間が長くなり・(換言すれば電気透析
効率が悪くなり)、膜汚染がひどくなり、電気透
析が困難となつて好ましくない。 ここに糖回収率は次式で表される。 糖回収率=パーミエイトの糖濃度/限外濾過前の液糖濃
度×100% 実験例 1 実施例1と同様にして得た大豆ホエー(A)を限外
濾過して得たパーミエイト(B)を逆浸透圧濾過処理
したときに逆浸透膜の塩化ナトリウム阻止率を次
の表のように変えて処理して得た5倍濃縮液Cの
糖回収率(濃縮液中の糖分のパーミエイト中の糖
分に対する百分率)と、この液を、実施例1と同
様の条件で電気透析装置にかけたときの初期電気
伝導度(μS/cm2)を次の表に示す。
[Table] Soybean whey A obtained in the same manner as in Example 1
Permeate B obtained by ultrafiltration was treated with a reverse osmosis membrane to obtain a concentrated solution C, and the pH was adjusted to 7.8 to remove the resulting sludge. The time (minutes) required for the sugar recovery rate and electrical conductivity to become one-tenth of the initial electrical conductivity when electrodialyzing permeate obtained by changing
(time*) was shown. As is clear from the table, when the molecular weight cutoff of the ultrafiltration membrane is less than 1500, the electrical conductivity is lower than the initial electrical conductivity.
Although the time required to reduce the amount to 1/10 is short (in other words, the electrodialysis efficiency is good), the sugar recovery rate decreases, which is not desirable. In addition, when the molecular weight cutoff of the ultrafiltration membrane exceeds 17,500, the sugar recovery rate improves, but the time required for the electrical conductivity to become one-tenth of the initial electrical conductivity increases (in other words, This is undesirable because electrodialysis efficiency deteriorates), membrane contamination becomes severe, and electrodialysis becomes difficult. Here, the sugar recovery rate is expressed by the following formula. Sugar recovery rate = sugar concentration of permeate / liquid sugar concentration before ultrafiltration x 100% Experimental example 1 Permeate (B) obtained by ultrafiltrating soybean whey (A) obtained in the same manner as in Example 1. Sugar recovery rate of 5-fold concentrated solution C obtained by reverse osmosis pressure filtration with the sodium chloride rejection rate of the reverse osmosis membrane changed as shown in the following table The following table shows the initial electrical conductivity (μS/cm 2 ) when this solution was applied to an electrodialyzer under the same conditions as in Example 1.

【表】 但し、塩化ナトリウム阻止率100%はエバポレ
ーターを用いて5倍濃縮した。又、同阻止率3〜
10%はテイジンYBIL膜TL−215、同阻止率5〜
20%はテイジンYBIL膜−230、同阻止率50〜70
%は日東電工NTR−7250、同阻止率95%はダイ
セルDRS−95を各々用いた。 この結果より、逆浸透膜の塩化ナトリウム阻止
率が大きくなる(換言すれば低分子のもが透過し
にくくなる)と5倍濃縮液Cの電気透析処理にお
ける初期電気伝導度が高くなり、電気透析処理に
負担がかかり、電気透析処理時間が長引くので、
塩化ナトリウム阻止率は大きくないほうが適当で
あり、好ましくは80%以内のほうが適当である。 又、逆浸透膜の塩化ナトリウム阻止率が10%未
満では、5倍濃縮液Cの糖分の回収率が低下する
ので、次の電気透析処理後のオリゴ糖混合物の収
率が低下し好ましくない。 又得られた乾燥オリゴ糖混合物の色調は塩化ナ
トリウム阻止率が小さくなるほど白くなる傾向を
示した。 実験例 2 実施例1と同様にして、大豆ホエーAを得、限
外濾過して得たパーミエイトBを逆浸透膜処理し
て5倍濃縮液Cを得、この液を5NのNaOHを用
いPHを6.0〜8.6に調整して120℃で10分加熱して
生じたオリを遠心分離(2000g)して除去して得
た上清(Dとする)を実施例1と同様にして電気
透析したときの電気伝導度と処理時間との関係を
第2図に示す。 この図から、PH調製したほうがより効率的に電
気透析を行うことができることが分かる。好適に
はPH7.0〜8.3が適当であることが分かる。 (効果) 以上詳述したように、本発明(即ち、電気透析
の前の工程において、分画分子量1500〜17500の
限外濾過膜、好ましくは分画分子量2500〜12500
の限外濾過膜を用いて濾過することにより、電気
透析阻害物質である膜汚染物質を除去でき、効率
よく脱塩できる)により、オリゴ糖を含む植物抽
出液の脱膜汚染物質及び脱低分子物質が容易にな
つたものである。又、本発明の方法は、電気透析
膜等の膜汚染物質を含むオリゴ糖液であれば、例
えば微生物抽出液等にも応用できるものであり、
得られる低灰分、高純度のオリゴ糖混合物は甘味
を抑えた甘味剤として広く食品分野に応用できる
のみならず微生物成長促進因子等として広く産業
上利用できるものであり、本発明は産業の発達に
大いに寄与するものである。
[Table] However, 100% sodium chloride rejection was obtained by concentrating 5 times using an evaporator. Also, the same blocking rate is 3~
10% is Teijin YBIL membrane TL-215, same rejection rate 5 ~
20% is Teijin YBIL membrane-230, rejection rate 50-70
% was Nitto Denko NTR-7250, and the same rejection rate was 95% using Daicel DRS-95. From this result, when the sodium chloride rejection rate of the reverse osmosis membrane increases (in other words, it becomes difficult for low-molecular substances to permeate), the initial electrical conductivity in the electrodialysis treatment of 5 times concentrated liquid C increases, and the electrodialysis Because the processing is burdensome and the electrodialysis processing time is prolonged,
It is appropriate that the sodium chloride rejection rate is not large, preferably within 80%. Furthermore, if the sodium chloride rejection rate of the reverse osmosis membrane is less than 10%, the recovery rate of the sugar content of the 5-fold concentrated solution C will decrease, which is undesirable because the yield of the oligosaccharide mixture after the subsequent electrodialysis treatment will decrease. Furthermore, the color tone of the dried oligosaccharide mixture obtained tended to become whiter as the sodium chloride rejection rate decreased. Experimental Example 2 In the same manner as in Example 1, soybean whey A was obtained, and permeate B obtained by ultrafiltration was treated with a reverse osmosis membrane to obtain a 5-fold concentrated solution C. This solution was purified by PH using 5N NaOH. was adjusted to 6.0 to 8.6 and heated at 120°C for 10 minutes, and the resulting sludge was removed by centrifugation (2000 g), and the obtained supernatant (referred to as D) was electrodialyzed in the same manner as in Example 1. FIG. 2 shows the relationship between electrical conductivity and treatment time. This figure shows that electrodialysis can be performed more efficiently by adjusting the pH. It can be seen that a pH of 7.0 to 8.3 is suitable. (Effects) As detailed above, the present invention (that is, in the step before electrodialysis, an ultrafiltration membrane with a molecular weight cutoff of 1500 to 17500, preferably a molecular weight cutoff of 2500 to 12500
By filtration using an ultrafiltration membrane, membrane contaminants that inhibit electrodialysis can be removed and desalination can be carried out efficiently). It is something that has become easier. Furthermore, the method of the present invention can be applied to, for example, microbial extracts, as long as the oligosaccharide solution contains membrane contaminants such as electrodialysis membranes.
The resulting low-ash, high-purity oligosaccharide mixture can be widely applied in the food field as a sweetener with suppressed sweetness, and can also be widely used industrially as a microbial growth promoter, etc., and the present invention will contribute to the development of industry. This will contribute greatly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は植物抽出液の電気透析処理における電
気伝導度と電気透析処理時間の関係を表す図であ
る。1……実施例1、2……実施例2、3……比
較例1、4……比較例2、第2図はPH処理した植
物抽出液の電気透析処理における電気伝導度と電
気透析処理時間の関係を表す図である。1……PH
7.7、2……PH7.2、3……PH8.6、4……PH6.0。
FIG. 1 is a diagram showing the relationship between electrical conductivity and electrodialysis treatment time in electrodialysis treatment of plant extracts. 1...Example 1, 2...Example 2, 3...Comparative example 1, 4...Comparative example 2, Figure 2 shows the electrical conductivity and electrodialysis treatment in electrodialysis treatment of PH-treated plant extract FIG. 3 is a diagram showing a time relationship. 1...PH
7.7, 2...PH7.2, 3...PH8.6, 4...PH6.0.

Claims (1)

【特許請求の範囲】 1 植物抽出液を電気透析膜を用いて脱塩する前
の工程において、分画分子量1500〜17500(好まし
くは2500〜12500)の限外濾過膜を用いて濾過す
る工程、及び該濾過工程の前又は後において塩化
ナトリウム阻止率80%以下の逆浸透膜を用いて逆
浸透圧濾過する工程を含むことを特徴とする植物
抽出液の脱塩方法。 2 更に、PH7.0〜8.3に調整し、オリを除去する
工程を含む特許請求の範囲第1項記載の脱塩方
法。 3 脱塩された植物抽出液が乾燥固形分中80重量
%以上の糖を含み、糖の内三単糖以上のオリゴ糖
が30重量%以上である特許請求の範囲第1項又は
第2項記載の脱塩方法。 4 オリゴ糖がラフイノースとスタキオースを主
成分とする特許請求の範囲第3項記載の脱塩方
法。 5 植物抽出液が大豆抽出液である特許請求の範
囲第1項乃至第4項のいずれかに記載の脱塩方
法。
[Claims] 1. A step of filtering the plant extract using an ultrafiltration membrane with a molecular weight cutoff of 1,500 to 17,500 (preferably 2,500 to 12,500) before desalting the plant extract using an electrodialysis membrane; and a method for desalting a plant extract, comprising the step of performing reverse osmosis filtration using a reverse osmosis membrane with a sodium chloride rejection rate of 80% or less before or after the filtration step. 2. The desalination method according to claim 1, further comprising the steps of adjusting the pH to 7.0 to 8.3 and removing sludge. 3. Claims 1 or 2, wherein the desalted plant extract contains 80% by weight or more of sugars in the dry solid content, and 30% by weight or more of oligosaccharides of three or more monosaccharides. Desalination method as described. 4. The desalting method according to claim 3, wherein the oligosaccharide is mainly composed of raffinose and stachyose. 5. The desalting method according to any one of claims 1 to 4, wherein the plant extract is a soybean extract.
JP59208631A 1984-10-04 1984-10-04 Method for desalting plant extracted solution Granted JPS6186907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59208631A JPS6186907A (en) 1984-10-04 1984-10-04 Method for desalting plant extracted solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59208631A JPS6186907A (en) 1984-10-04 1984-10-04 Method for desalting plant extracted solution

Publications (2)

Publication Number Publication Date
JPS6186907A JPS6186907A (en) 1986-05-02
JPH047251B2 true JPH047251B2 (en) 1992-02-10

Family

ID=16559422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59208631A Granted JPS6186907A (en) 1984-10-04 1984-10-04 Method for desalting plant extracted solution

Country Status (1)

Country Link
JP (1) JPS6186907A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3379651B2 (en) * 1990-09-04 2003-02-24 カルピス株式会社 Method for producing bifidobacterium-grown substance
JP2005118015A (en) * 2003-10-20 2005-05-12 Sanei Gen Ffi Inc Black soybean extract and method for preparing the same
JP2011101627A (en) * 2009-11-11 2011-05-26 Q P Corp Method for producing desalted protein hydrolysate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50105547A (en) * 1974-01-12 1975-08-20
JPS5922608A (en) * 1982-07-30 1984-02-04 Ajinomoto Co Inc Electrodialysis method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50105547A (en) * 1974-01-12 1975-08-20
JPS5922608A (en) * 1982-07-30 1984-02-04 Ajinomoto Co Inc Electrodialysis method

Also Published As

Publication number Publication date
JPS6186907A (en) 1986-05-02

Similar Documents

Publication Publication Date Title
US11377462B2 (en) Process for the purification of a neutral human milk oligosaccharide (HMO) from microbial fermentation
AU778614B2 (en) Method of filtration of a dairy stream
EP1811858B1 (en) Method of deflavouring soy-derived materials using electrodialysis
CN112646847A (en) Preparation method of galactose glucose mixture
AU733296B2 (en) Method of producing fructose syrup from agave plants
JPH047251B2 (en)
US20010034443A1 (en) Process for producing water-soluble polysaccharides, and method for clarifying water-soluble polysaccharide aqueous solutions
Bazinet et al. Recent patented applications of ion-exchange membranes in the agrifood sector
KR101724118B1 (en) Method for preparing high purity protein concentrate from rice bran
JP3379651B2 (en) Method for producing bifidobacterium-grown substance
JP3347822B2 (en) Extraction and purification method of quinic acid
AU2021370933A1 (en) Process for the purification of an acidic human milk oligosaccharide from fermentation broth
JP3106256B2 (en) Method for producing kappa-casein glycomacropeptide
JPS6240261A (en) Decoloration of liquid food
JPH04278057A (en) Concentrated soybean mineral and its preparation process
US20190289868A1 (en) Milk protein concentrates with a reduced ash content
JP2003092996A (en) Method for producing composition containing imidazole dipeptides
JP2635210B2 (en) Manufacturing method of soybean oligosaccharide
JPH11215980A (en) Treatment of liquid containing microbial cell
CN116813726A (en) Method for extracting high-purity nisin from food-grade nisin product
JP3920954B2 (en) Manufacturing method of anti-ulcer agent
JP3115394B2 (en) Purification method and purified product of non-protein nitrogen component contained in milk
JPH07222570A (en) Production of thick soup stock
CS277617B6 (en) Process for isolating various application forms of tylosine