JPH047250B2 - - Google Patents
Info
- Publication number
- JPH047250B2 JPH047250B2 JP60000040A JP4085A JPH047250B2 JP H047250 B2 JPH047250 B2 JP H047250B2 JP 60000040 A JP60000040 A JP 60000040A JP 4085 A JP4085 A JP 4085A JP H047250 B2 JPH047250 B2 JP H047250B2
- Authority
- JP
- Japan
- Prior art keywords
- cation
- polyvalent
- acid
- aqueous liquid
- ions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 150000001768 cations Chemical class 0.000 claims description 176
- 150000003839 salts Chemical class 0.000 claims description 128
- 239000012528 membrane Substances 0.000 claims description 102
- 239000002253 acid Substances 0.000 claims description 86
- 239000007788 liquid Substances 0.000 claims description 63
- 238000000034 method Methods 0.000 claims description 53
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 49
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 48
- -1 salt anion Chemical class 0.000 claims description 46
- 229910052751 metal Inorganic materials 0.000 claims description 36
- 239000002184 metal Substances 0.000 claims description 36
- 150000007513 acids Chemical class 0.000 claims description 33
- 239000000243 solution Substances 0.000 claims description 33
- 238000000909 electrodialysis Methods 0.000 claims description 32
- 239000000203 mixture Substances 0.000 claims description 28
- 239000007864 aqueous solution Substances 0.000 claims description 24
- 239000003795 chemical substances by application Substances 0.000 claims description 24
- 239000011780 sodium chloride Substances 0.000 claims description 24
- 239000002244 precipitate Substances 0.000 claims description 19
- 229910052736 halogen Inorganic materials 0.000 claims description 12
- 150000002367 halogens Chemical class 0.000 claims description 12
- 230000003100 immobilizing effect Effects 0.000 claims description 12
- 150000001875 compounds Chemical class 0.000 claims description 11
- 230000002378 acidificating effect Effects 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 150000002500 ions Chemical class 0.000 claims description 10
- 238000000926 separation method Methods 0.000 claims description 10
- 239000012527 feed solution Substances 0.000 claims description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims description 7
- 239000003513 alkali Substances 0.000 claims description 7
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 5
- 238000004891 communication Methods 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 5
- 238000005342 ion exchange Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- 239000011593 sulfur Substances 0.000 claims description 5
- 239000003456 ion exchange resin Substances 0.000 claims description 4
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 3
- 150000001721 carbon Chemical class 0.000 claims description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims 3
- 229910052783 alkali metal Inorganic materials 0.000 claims 3
- 229910052698 phosphorus Inorganic materials 0.000 claims 3
- 239000011574 phosphorus Substances 0.000 claims 3
- 229910001508 alkali metal halide Inorganic materials 0.000 claims 2
- 150000008045 alkali metal halides Chemical group 0.000 claims 2
- 239000013522 chelant Substances 0.000 claims 2
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 claims 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims 2
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 claims 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-L Oxalate Chemical compound [O-]C(=O)C([O-])=O MUBZPKHOEPUJKR-UHFFFAOYSA-L 0.000 claims 1
- 150000004820 halides Chemical class 0.000 claims 1
- DAHPIMYBWVSMKQ-UHFFFAOYSA-N n-hydroxy-n-phenylnitrous amide Chemical compound O=NN(O)C1=CC=CC=C1 DAHPIMYBWVSMKQ-UHFFFAOYSA-N 0.000 claims 1
- 210000004027 cell Anatomy 0.000 description 87
- 239000012267 brine Substances 0.000 description 21
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 21
- 235000011121 sodium hydroxide Nutrition 0.000 description 15
- 238000005868 electrolysis reaction Methods 0.000 description 13
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 12
- 150000001450 anions Chemical class 0.000 description 12
- 238000002474 experimental method Methods 0.000 description 11
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 10
- 239000000460 chlorine Substances 0.000 description 10
- 229910052801 chlorine Inorganic materials 0.000 description 10
- 238000011084 recovery Methods 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 150000004679 hydroxides Chemical class 0.000 description 7
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical class [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 6
- 239000011575 calcium Substances 0.000 description 6
- 229910052791 calcium Inorganic materials 0.000 description 6
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 6
- 229920000642 polymer Chemical class 0.000 description 6
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 5
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 5
- 125000000129 anionic group Chemical group 0.000 description 5
- 239000001110 calcium chloride Substances 0.000 description 5
- 229910001628 calcium chloride Inorganic materials 0.000 description 5
- 229910052938 sodium sulfate Inorganic materials 0.000 description 5
- 235000011152 sodium sulphate Nutrition 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 229920000557 Nafion® Polymers 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000003929 acidic solution Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 239000003518 caustics Substances 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 235000006408 oxalic acid Nutrition 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 3
- 239000000920 calcium hydroxide Substances 0.000 description 3
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 3
- 229920001429 chelating resin Polymers 0.000 description 3
- 229960003280 cupric chloride Drugs 0.000 description 3
- 238000004070 electrodeposition Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 238000009285 membrane fouling Methods 0.000 description 3
- 150000002739 metals Chemical group 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 239000012047 saturated solution Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 125000000565 sulfonamide group Chemical group 0.000 description 3
- 125000000542 sulfonic acid group Chemical group 0.000 description 3
- RPAJSBKBKSSMLJ-DFWYDOINSA-N (2s)-2-aminopentanedioic acid;hydrochloride Chemical class Cl.OC(=O)[C@@H](N)CCC(O)=O RPAJSBKBKSSMLJ-DFWYDOINSA-N 0.000 description 2
- PTPLXVHPKMTVIW-FPLPWBNLSA-N (Z)-hydroxyimino-oxido-phenylazanium Chemical compound O\N=[N+](/[O-])c1ccccc1 PTPLXVHPKMTVIW-FPLPWBNLSA-N 0.000 description 2
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- JJLJMEJHUUYSSY-UHFFFAOYSA-L Copper hydroxide Chemical compound [OH-].[OH-].[Cu+2] JJLJMEJHUUYSSY-UHFFFAOYSA-L 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 2
- 238000007743 anodising Methods 0.000 description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 2
- 229910001424 calcium ion Inorganic materials 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 125000002843 carboxylic acid group Chemical group 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229960002089 ferrous chloride Drugs 0.000 description 2
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000005067 remediation Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 2
- MOMKYJPSVWEWPM-UHFFFAOYSA-N 4-(chloromethyl)-2-(4-methylphenyl)-1,3-thiazole Chemical compound C1=CC(C)=CC=C1C1=NC(CCl)=CS1 MOMKYJPSVWEWPM-UHFFFAOYSA-N 0.000 description 1
- 239000005725 8-Hydroxyquinoline Substances 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- PLLZRTNVEXYBNA-UHFFFAOYSA-L cadmium hydroxide Chemical compound [OH-].[OH-].[Cd+2] PLLZRTNVEXYBNA-UHFFFAOYSA-L 0.000 description 1
- QXDMQSPYEZFLGF-UHFFFAOYSA-L calcium oxalate Chemical compound [Ca+2].[O-]C(=O)C([O-])=O QXDMQSPYEZFLGF-UHFFFAOYSA-L 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 125000004965 chloroalkyl group Chemical group 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical class [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 238000004532 chromating Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000012084 conversion product Substances 0.000 description 1
- PWGQHOJABIQOOS-UHFFFAOYSA-N copper;dioxido(dioxo)chromium Chemical compound [Cu+2].[O-][Cr]([O-])(=O)=O PWGQHOJABIQOOS-UHFFFAOYSA-N 0.000 description 1
- 238000006298 dechlorination reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- JGUQDUKBUKFFRO-CIIODKQPSA-N dimethylglyoxime Chemical compound O/N=C(/C)\C(\C)=N\O JGUQDUKBUKFFRO-CIIODKQPSA-N 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000002659 electrodeposit Substances 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229960002449 glycine Drugs 0.000 description 1
- 235000013905 glycine and its sodium salt Nutrition 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 150000001261 hydroxy acids Chemical class 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910052806 inorganic carbonate Inorganic materials 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 238000011070 membrane recovery Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- LRKMVRPMFJFKIN-UHFFFAOYSA-N oxocalcium hydrate Chemical compound [O].O.[Ca] LRKMVRPMFJFKIN-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229960003540 oxyquinoline Drugs 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- 235000013024 sodium fluoride Nutrition 0.000 description 1
- 235000019983 sodium metaphosphate Nutrition 0.000 description 1
- 235000019795 sodium metasilicate Nutrition 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 150000004764 thiosulfuric acid derivatives Chemical class 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Description
ãçºæã®è©³çŽ°ãªèª¬æã
ãç£æ¥äžã®å©çšåéã
æ¬çºæã¯ãæ°Žæ§æ¶²äžã®å¡©ãããåã
ãã¢ããªã³
ã®é
žããã³ããã²ã³ãïŒäŸ¡ã«ããªã³ã®æ°Žé
žåç©ã
ãªãã³ã«å€äŸ¡ã«ããªã³ã®å®è³ªçã«æ°Žæº¶æ§ã®å¡©ãžã®
é»æ°éæå€æã«é¢ãããå
·äœçã«ã¯ãæ¬çºæã¯ã
ã«ããªã³ééæ§èãéããŠãå€äŸ¡ã«ããªã³ãäžæº¶
æ§åãã€ãªã³çã«äžåæ§åïŒimmobi lizeïŒãã
äžåæ§åå€ãå«ãæ°Žæ§æ¶²äžãžãå€äŸ¡ã«ããªã³ãé»
æ°ç§»åããããšã«é¢ãããæ¬çºæã¯ãå€äŸ¡ã«ããª
ã³ã®äžæº¶æ§åå€ãå«æããæ°Žæ§æ¶²äžã§ãé
žïŒãã®
é
žã¯ãïŒèŠå®æ¶²äžã§PHïŒä»¥äžã§ãããããããå€
䟡ã«ããªã³ãšæ°Žæº¶æ§å¡©ã圢æãããã®ãšããïŒã®
å¯æº¶æ§å¡©ã䜿çšããããšãããªããé
žã®å¯æº¶æ§å¡©
ã¯ãå€äŸ¡ã«ããªã³ã®æ°Žäžæº¶æ§å¡©ã«ããã«ããªã³é
éæ§èã®ããããé²æ¢ãããå€äŸ¡ã«ããªã³ã®äžæº¶
æ§åã¯ãé»æ°ååŠã»ã«ã®èäžããã³é°æ¥µäžã®éå±
ã®é»æ°å ç©ïŒããã¯é »ç¹ãªã»ã«ã¡ã³ããã³ã¹ãå¿
èŠãšããïŒãé²æ¢ããããã®çµæãå€äŸ¡ã«ããªã³
ã®å¡©ãããã¢ããªã³ã®é
žããã³ããã²ã³ããªãã³
ã«å€äŸ¡ã«ããªã³ã®å®è³ªçã«æ°Žäžæº¶æ§ã®å¡©ãŸãã¯å€
䟡ã«ããªã³ãšã®ä»ã®ã€ãªã³çäžåæ§åååç©ãž
ã®ã奜ãŸããã¯é£ç¶çãªãå€æçšã®ãå¹æçã§é«
容éã®é»æ°éææ³ãæäŸããããDETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is directed to the production of anionic acids and halogens, monovalent cationic hydroxides,
and the electrodialytic conversion of polyvalent cations to substantially water-soluble salts. Specifically, the present invention:
It relates to the electrotransfer of polyvalent cations through a cation-permeable membrane into an aqueous liquid containing an immobilizing agent that renders the polyvalent cations insoluble and ionically immobilized. In the present invention, an acid (the acid has a pH of 3 or less in a 1N solution and forms a water-soluble salt with the polyvalent cation) is used in an aqueous solution containing an insolubilizing agent for polyvalent cations. ). Soluble salts of acids prevent fouling of cation-permeable membranes by water-insoluble salts of polyvalent cations. Insolubilization of polyvalent cations prevents electrodeposition of metals in the electrochemical cell membrane and on the cathode, which requires frequent cell maintenance. As a result, from the salts of polyvalent cations to the acids and halogens of the anions and substantially water-insoluble salts of polyvalent cations or other ionically immobilized compounds with polyvalent cations, there is preferably a continuous , an effective, high capacity electrodialysis method for conversion is provided.
æ¬çºææ¹æ³ã®ïŒã€ã®æ
æ§ã¯ãã¢ã«ãããŠã éœæ¥µ
é
žåãã«ãããŠã ã®ã¯ãã åïŒchromatingïŒãäº
éããã³é
ã®ã¡ãããéå±ããã³ããªã³ãåè·¯ã®
ãšããã³ã°ããªãã³ã«éå±ããã³ãã©ã¹ããã¯ã®
ã¡ããã«äœ¿çšããã¯ãã é
žããã³ä»ã®é
žã®å€äŸ¡ã«
ããªã³å¡©ã®å€æã«ç¹ã«é©çšããããšãã§ããã One embodiment of the method of the invention includes the use of chromic and other acids for use in aluminum anodizing, cadmium chromating, zinc and copper plating, metal and printed circuit etching, and metal and plastic plating. It is particularly applicable to the conversion of polyvalent cation salts.
æ¬çºææ¹æ³ã®ä»ã®æ
æ§ã¯ãã«ããªã³ééæ§èã§
åé¢ããã宀å°ãªããšãïŒåããã€é»æ°éæã»ã«
ãããªãé»æ°éææ³ã«é¢ããããã®æ
æ§ã¯ãã«ã«
ã·ãŠã ããã³ä»ã®å€äŸ¡ã«ããªã³ã®å¡©ãå«æããå¡©
åãããªãŠã ãã©ã€ã³ãé»è§£ããé«ã»ã«å®¹éãç¶
æãã€ã€å¡©çŽ ããã³é«çŽåºŠèæ§ãœãŒãã補é ãã
ã®ã«ç¹ã«æçšã§ããã Another aspect of the method of the invention relates to an electrodialysis process comprising an electrodialysis cell having at least three chambers separated by a cation-permeable membrane. This embodiment is particularly useful for electrolyzing sodium chloride brines containing salts of calcium and other polyvalent cations to produce chlorine and high purity caustic soda while maintaining high cell capacity.
æ¬çºæã®å€äŸ¡ã«ããªã³å¡©å€æã®ä»ã®æ
æ§ã¯ãå€
䟡ã«ããªã³ã®å¡©ã§ããããã«ããªã³ééæ§èãå
埩ããããã®ãã»ã«å
é»æ°éææ³ã«é¢ãããã«ã
ãªã³ééæ§èã®ãã®ã»ã«å
å埩æ³ã¯ãé°æ¥µæ¶²ç³»ã
é
žã«ã¯äžé©åœã§ããã¯ãã«ã¢ã«ã«ãªã»ã«äžã®ãã
ããã«ããªã³ééæ§èã®å埩ã«ç¹ã«æçšã§ããã Another aspect of the polyvalent cation salt conversion of the present invention relates to an in-cell electrodialysis method for retrieving cation-permeable membranes contaminated with salts of polyvalent cations. This in-cell remediation method of cation-permeable membranes is particularly useful for remediation of contaminated cation-permeable membranes in chlor-alkali cells where the catholyte system is unsuitable for acids.
é»æ°éæã¯åšç¥ã®æè¡ã§ããïŒç±³åœç¹èš±ç¬¬
4325792å·ã第3481851å·ã第3909381å·ã第
4006067å·ã第3983016å·ã第3788959å·ã第
3926759å·ã第4049519å·ã第4057483å·ã第
4111772å·ã第4025405å·ã第4358545å·ã第
3793163å·ã第4253929å·ã第4325798å·ããã³ç¬¬
4439293å·åæ现æžãåç
§ããããïŒãé»æ°éæãš
ã¯ãé»æ°çæšé²åã®çµæãšããŠãã€ãªã³ééæ§è
ãééããã€ãªã³ã®ç§»åã§ããããã®æ¹æ³ã¯ãé
åžžãé»æ°ååŠçã»ã«ã®äžã§å®æœãããåèšã»ã«
ã¯ãé°æ¥µãšé°æ¥µæ¶²ãšãå«ãé°æ¥µæ¶²å®€ãããã³éœæ¥µ
ãšéœæ¥µæ¶²ãšãå«ãéœæ¥µæ¶²å®€ããã¡ãåèšã®é°æ¥µæ¶²
宀ãšéœæ¥µæ¶²å®€ãšã¯ã€ãªã³ééæ§èã«ãã€ãŠåé¢ã
ããŠããã
Electrodialysis is a well-known technique (U.S. Patent No.
No. 4325792, No. 3481851, No. 3909381, No.
No. 4006067, No. 3983016, No. 3788959, No.
No. 3926759, No. 4049519, No. 4057483, No.
No. 4111772, No. 4025405, No. 4358545, No.
No. 3793163, No. 4253929, No. 4325798 and No.
No. 4439293 (please refer to each specification). Electrodialysis is the movement of ions across an ion-permeable membrane as a result of an electrical driving force. The method is typically carried out in an electrochemical cell, the cell having a catholyte compartment containing a cathode and a catholyte, and an anolyte compartment containing an anode and anolyte; and the anolyte chamber are separated by an ion-permeable membrane.
é
žã¯ãååŠæ¥çããšã¬ã¯ãããã¯ã¹æ¥çãé±æ¥
çãé»æ°ã¡ããæ¥çããã³éå±ä»äžæ¥çã«ãããŠ
åºç¯ã«äœ¿çšãããŠããããããã®é
žã¯éå±ããã³
ä»ã®å¡©ãšåå¿ããŠãåã
ã®é
žã®å€äŸ¡ã«ããªã³ãã
ã³ã¢ããªã³ã®å¡©ã圢æãããåŸæ¥æè¡ã®å·¥çšã¯ã
å€äŸ¡ã«ããªã³ãå«æããé
žæ§æº¶æ¶²ãåçã»ç²Ÿè£œ
ãããããŠå€äŸ¡éå±ã«ããªã³ãååããæºè¶³ã§ã
ãæ¹æ³ãæäŸããŠããªããããªãã®è¯å¥œãªçµæ
ã¯ãæ¬çºæè
ã«ããç±³åœç¹èš±ç¬¬4325792å·ããã³
第4439293å·åæ现æžã«èšèŒã®ãããšãããç¡æ©
çé
žå¡©ãŸãã¯çé
žæ°ŽçŽ å¡©ã®æ°Žæº¶æ¶²ã䜿çšããããš
ã«ãã€ãŠåŸããããå€äŸ¡ã«ããªã³ã®å¡©ã®æ°Žæº¶æ¶²ã®
é»æ°éæã«ãããŠãé
žæ§é°æ¥µæ¶²ã䜿çšããå Žåã«
ã¯ãã«ããªã³ãé
žæ§æ¶²ããã«ããªã³ééæ§èãé
ã€ãŠé
žæ§æ¶²äžã«ç§»åãããå€äŸ¡ã«ããªã³ã¯èäžã
ãã³é°æ¥µäžã«éå±ãšããŠé»æ°å ç©ããåŸåãã
ãããã®çµæãã»ã«ã®ã¡ã³ããã³ã¹ãé »ç¹ã«å¿
èŠ
ãšãªããæ¬çºæã®ç®çã¯ãå€äŸ¡ã«ããªã³ã®å¡©ãã
ãã®å¡©ã®ã¢ããªã³ã®é
žããã³ããã²ã³ã«ããªãã³
ã«ãã®å€äŸ¡ã«ããªã³ã®æ°Žé
žåç©ããã³ä»ã®å®è³ªç
ã«æ°Žäžæº¶æ§ã®å¡©ã«é£ç¶çã«å€æãããã®ã«äœ¿çšã
ãããšã®ã§ãããé«å®¹éã®é»æ°éææ³ãæäŸãã
ããšã«ããã Acids are used extensively in the chemical, electronics, mining, electroplating and metal finishing industries where they react with metals and other salts to form polyvalent cations and anions of each acid. form salts. The process of the conventional technology is
It does not provide a satisfactory method for regenerating and purifying acidic solutions containing polyvalent cations and recovering polyvalent metal cations. Considerably better results are obtained by using aqueous solutions of inorganic carbonates or bicarbonates, as described in my US Pat. Nos. 4,325,792 and 4,439,293. When an acidic catholyte is used in electrodialysis of an aqueous solution of a salt of a polyvalent cation, cations migrate from the acidic solution through a cation-permeable membrane into the acidic solution. Multivalent cations tend to electrodeposit as metals in the membrane and on the cathode, resulting in frequent cell maintenance. The object of the present invention is to prepare salts of polyvalent cations,
A high capacity electrodialysis process that can be used to continuously convert the anions of the salts to acids and halogens and the polyvalent cations to hydroxides and other substantially water-insoluble salts. It is about providing.
æ¬çºæã¯ãå€äŸ¡ã«ããªã³ãäžæº¶æ§åãããã¯ã€
ãªã³çã«äžåæ§åããã€ãªã³ãŸãã¯å€ãå«æãã
氎溶液äžã§ãé
žïŒãã®é
žã¯ãïŒèŠå®æ¶²äžã§PHïŒä»¥
äžããã¡ããããå€äŸ¡ã«ããªã³ã®æ°Žæº¶æ§å¡©ã圢æ
ãããã®ãšããïŒã®å¯æº¶æ§å¡©ã䜿çšããããšã«ã
ã€ãŠãå€äŸ¡ã«ããªã³ã®å¡©ããã¢ããªã³ã®é
žããã³
ããã²ã³ãšå€äŸ¡ã«ããªã³ã®æ°Žäžæº¶æ§å¡©ãšã«é£ç¶ç
ã«å€æããããšã«äœ¿çšããããšã®ã§ããé«å®¹éé»
æ°éææ³ãæäŸãããåèšã®å€æã¯ãå€äŸ¡ã«ããª
ã³ã®åèšå¯æº¶æ§å¡©ãããªãã奜ãŸããã¯é
žæ§ã®ã
äŸçµŠæ¶²ãŸãã¯éœæ¥µæ¶²ãšããŠã®ç¬¬ïŒæ°Žæ§æ¶²ãããã«
ããªã³ééæ§èãéããŠãå¯æº¶æ§å¡©ããã³ã€ãªã³
äŸãã°æ°Žé
žã€ãªã³ããã³å€äŸ¡ã«ããªã³ãäžæº¶æ§å
ãããã®ä»ã®å€ãããªã第ïŒã®æ°Žæ§æ¶²äžãžãå€äŸ¡
ã«ããªã³ãé»æ°ç§»åããããšãããªããåèšç¬¬ïŒ
溶液äžã®å€äŸ¡ã«ããªã³å¡©ã®ã¢ããªã³ã¯ãåã
ã®é
ž
ãŸãã¯ããã²ã³ã«å€ãããé»æ°çã«ç§»åããå€äŸ¡
éå±ã«ããªã³ãåãå
¥ããé°æ¥µæ¶²äžã§ãé
žã®å¯æº¶
æ§å¡©ã䜿çšããããšã«ãããå€äŸ¡ã«ããªã³ã®æ°Žäž
溶æ§å¡©ã§èãããããããšãé²æ¢ããããå€äŸ¡é
å±ã«ããªã³ã®äžæº¶æ§åã¯ãé»è§£ã»ã«ã®é°æ¥µäžãž
ã®ãããã³èäžãŸãã¯èäžãžã®ãéå±ã®é»æ°å ç©
ãæ¬è³ªçã«é€å»ããããã®çµæãå€äŸ¡ã«ããªã³ã®
å¡©ã®é£ç¶çå€æã«äœ¿çšããããšã®ã§ããé«å®¹éé»
æ°éææ³ããããããããçæãããé
žã¯ãéå±
ãšããã³ã°ãéå±ã¡ãããéœæ¥µé
žåããã³ãã®ä»
ã®çšéã«ç¹°è¿ã䜿çšããããšãã§ãããå€äŸ¡ã«ã
ãªã³ã®å®è³ªçã«æ°Žã«äžæº¶æ§ã®å¡©ã¯ã第ïŒã®æ°Žæ§æ¶²
ããåºäœãšããŠååããããšãã§ããå䜿çšãŸã
ã¯å»æ£ããããšãã§ããã
The present invention provides a method for dissolving polyvalent cations in an aqueous solution containing ions or agents that render polyvalent cations insoluble or ionically immobile. used for the continuous conversion of salts of polyvalent cations into water-insoluble salts of polyvalent cations with anionic acids and halogens by using soluble salts of polyvalent cations (which form soluble salts). To provide a high-capacity electrodialysis method that can Said transformation consists of said soluble salt of a polyvalent cation, preferably acidic,
From a first aqueous liquid, as a feed liquid or anolyte, through a cation-permeable membrane into a second aqueous liquid consisting of soluble salts and ions such as hydroxyl ions and other agents that render the multivalent cations insoluble. It consists of electrotransfer of cations. Said first
The anion of the polyvalent cation salt in solution converts to the respective acid or halogen. The use of soluble salts of acids in the catholyte that accepts electrically transferred polyvalent metal cations prevents fouling of the membrane with water-insoluble salts of polyvalent cations. Insolubilization of polyvalent metal cations essentially eliminates electrodeposition of metal onto the cathode and onto or into the membrane of the electrolytic cell. The result is a high capacity electrodialysis process that can be used for continuous conversion of salts of polyvalent cations. The acid produced can be used repeatedly for metal etching, metal plating, anodizing, and other applications. The substantially water-insoluble salt of the polyvalent cation can be recovered as a solid from the second aqueous liquid and can be reused or disposed of.
å€äŸ¡ã«ããªã³ã®å¡©ã®é»æ°éæå€æã®ä»ã®åŽé¢
ã¯ãã«ããªã³ééæ§èã«ãã€ãŠéœæ¥µæ¶²å®€ããã³é°
極液宀ããåé¢ãããŠãããé»è§£ã»ã«ã®åå¿åšå®€
ã«ãããŠãé
žïŒãã®é
žã¯ãïŒèŠå®æ¶²äžã§PHïŒä»¥äž
ããã¡ãããããå€äŸ¡ã«ããªã³ã®æ°Žæº¶æ§å¡©ã圢æ
ãããã®ãšããïŒã®å¯æº¶æ§å¡©äŸãã°å¡©åãããªãŠ
ã ãšå€äŸ¡ã«ããªã³ã®ã€ãªã³çäžåæ§åå€ãšã䜿çš
ããããšã«ãããã«ã«ã·ãŠã ããã°ãã·ãŠã ãé
ããã³ä»ã®å€äŸ¡éå±ã«ããªã³ãå«æããå¡©åãã
ãªãŠã ãã©ã€ã³ã®é»æ°éæã«ãã€ãŠãå¡©çŽ ããã³
å®è³ªçã«å¡©ãå«ãŸãªãèæ§ç©ã補é ããããšã§ã
ããå€äŸ¡ã«ããªã³ããã³ãããªãŠã ã«ããªã³ã¯ã
éœæ¥µãã©ã€ã³ãããã«ããªã³ééæ§èãééã
ãŠãåå¿åšå®€æº¶æ¶²äžã«é»æ°çã«ç§»åããããã®å Ž
ã«ãããŠãåå¿åšå®€äžã®å€äŸ¡ã«ããªã³ã¯ãè² é»è·
ããã€ããŸãã¯é»è·ããããªãæ°Žäžæº¶æ§ã®å¡©ãã
ãã³ãã¬ãŒããŸãã¯è€åäœååç©ãšããŠãã€ãªã³
çã«äžåæ§åãããããããªãŠã ã€ãªã³ã¯ãåèš
ã®åå¿åšå®€æº¶æ¶²äžãããã«ããªã³ééæ§èãéé
ããŠãæ°Žé
žåãããªãŠã ã®æ°Žæ§é°æ¥µæ¶²äžã«é»æ°ç
ã«ç§»åãããéœæ¥µæ¶²äžã«ãããŠå¡©çŽ ãçæããã
ïŒäŸ¡ã«ããªã³ãšå€äŸ¡ã«ããªã³ãšã®å¡©ã®æ··åç©ã¯ã
åèšã®é»æ°éææ³ã«ãããŠãïŒäŸ¡ã«ããªã³ãšå€äŸ¡
ã«ããªã³ãšã®åé¢ããã³å€äŸ¡ã«ããªã³ã®éžæçå
é¢ã䌎ã€ãŠãé»æ°å解ããããšãã§ãããåèšã®
æ¹æ³ã§ã¯ãå€äŸ¡ã«ããªã³ã®æ°Žäžæº¶æ§å¡©ã«ããã«ã
ãªã³ééæ§èã®ãããïŒããã¯ãã»ã«é»å§ãäžæ
ããé»è§£å¹çãäœäžãããïŒã䌎ããã«ãå¹æç
ã«æäœããããã«ãè¶
çŽç²ãªãã©ã€ã³ãå¿
èŠãšã¯
ããªããåèšã®æ¹æ³ã§ã¯ãã€ãªã³äº€æã«ããå€äŸ¡
ã«ããªã³ã®é€å»ãè¡ãªãããã«ãå埪ç°ãã©ã€ã³
ã®è±å¡©çŽ ãŸãã¯äºç¡«é
žåŠçãå¿
èŠãšã¯ããªããæ¬
çºææ¹æ³ã¯ãã«ã«ã·ãŠã ããã°ãã·ãŠã ãéãé
ããã³ä»ã®å€äŸ¡ã«ããªã³ãå«ããã©ã€ã³ãªãã³ã«
ä»ã®éå±å¡©ã®é»è§£ã®å¹æçãªæ¹æ³ã§ããã Another aspect of the electrodialytic conversion of salts of polyvalent cations is that an acid (the acid is soluble salts of polyvalent cations (having a pH below 3 in a normal solution and forming water-soluble salts of polyvalent cations), such as by using sodium chloride and an ionic immobilizer of polyvalent cations. , producing a chlorine and substantially salt free caustic by electrodialysis of a sodium chloride brine containing magnesium, iron and other polyvalent metal cations. Polyvalent cations and sodium cations are
From the anode brine, it is transferred electrically through a cation-permeable membrane and into the reactor chamber solution. In situ, the polyvalent cations in the reactor chamber are ionically immobilized as negatively or uncharged water-insoluble salts and chelates or complex compounds. Sodium ions are electrically transferred from the reactor chamber solution through a cation-permeable membrane into the aqueous sodium hydroxide catholyte. Chlorine is produced in the anolyte.
A mixture of salts of monovalent and polyvalent cations is
In the electrodialysis method described above, electrolysis can be performed with separation of monovalent cations and polyvalent cations and selective separation of polyvalent cations. The method described above requires ultrapure membranes to operate effectively without fouling of the cation-permeable membrane by water-insoluble salts of polyvalent cations, which increases cell voltage and reduces electrolysis efficiency. No additional brine is required. The process described above does not require dechlorination or sulfite treatment of the recycled brine to effect the removal of polyvalent cations by ion exchange. The method of the present invention is an effective method for the electrolysis of brines and other metal salts containing calcium, magnesium, iron, copper and other polyvalent cations.
å€äŸ¡ã«ããªã³ã®æ°Žäžæº¶æ§å¡©ã§ããããã«ããªã³
ééæ§èã®å埩ã¯ãããããèã®é°æ¥µåŽã«ãã
ãŠãé
žïŒãã®é
žã¯ãïŒèŠå®æ¶²äžã§PHïŒä»¥äžãã
ã¡ãããããå€äŸ¡ã«ããªã³ã®æ°Žæº¶æ§å¡©ãå°ãªããš
ã圢æãããã®ãšããïŒã®å¯æº¶æ§å¡©äŸãã°å¡©åã
ããªãŠã ã®æ°Žæº¶æ¶²ã䜿çšãããããŠãåèšã®ãã
ããèã®éœæ¥µåŽã«ãããŠãé
žæ§æ¶²ã䜿çšãããã
ãŠãããããèãããåèšã®é
žã®å¯æº¶æ§å¡©ãããª
ãæ°Žæ§æ¶²äžãžãå€äŸ¡ã«ããªã³ãé»æ°çã«ç§»åãã
ããšã«ãã€ãŠãã»ã«å
ã§é»æ°éæçã«å®æœããã
ãšãã§ãããåèšã®æ¹æ³ã¯ãèã®æž
æµåã«åŒ·é
žã
䜿çšããããšãé©åœã§ã¯ãªãé°æ¥µæ¶²ç³»ããã€ã¯ã
ã«âã¢ã«ã«ãªã»ã«äžã®ãããããã«ããªã³ééæ§
èã®å埩ã«ç¹ã«æçšã§ããã Recovery of a cation-permeable membrane contaminated with water-insoluble salts of polyvalent cations is achieved by using an acid (this acid has a pH of 3 or less in a 1N solution, and a water-soluble salt of polyvalent cations) on the cathode side of the contaminated membrane. using an aqueous solution of, for example, sodium chloride, and using an acidic solution on the anode side of said soiled membrane, and removing said acid from said soiled membrane. It can be carried out electrodialytically in a cell by electrically transferring multivalent cations into an aqueous liquid consisting of soluble salts. The method described above is particularly useful for the recovery of contaminated cation permeable membranes in chlor-alkali cells with catholyte systems in which it is not appropriate to use strong acids to clean the membranes.
ã«ããªã³ééæ§èãééããŠé»æ°çã«ç§»åãã
ãã«ããªã³ãšããŠã¯ã溶液äžã«å¯æº¶æ§ïŒã€ãªã³ç
ã«å¯åæ§ïŒã§ããã溶液ãšèãšã®çé¢ã«ãããŠè
ã«å
¥ã蟌ã¿ãããªããŒèæ§é ãééããŠã€ãªã³ç
ã«å¯åæ§ã§ãããããããèããæ°Žæ§æ¶²äžãžåºã
ããšãå¿
èŠã§ãããäžèšã®èŠä»¶ã¯ãã¹ãŠãïŒäŸ¡ã«
ããªã³ã®å¡©ã®é»æ°éæã«ã¯å®¹æã«æºãããããïŒ
䟡ã«ããªã³ã¯ãã«ããªã³ééæ§èãããããªãæ°Ž
溶æ§å¡©ããã³æ°Žæº¶æ§æ°Žé
žåç©ãçæãããããã«
察ããŠãå€äŸ¡ã«ããªã³ã¯ãæ°Žé
žã€ãªã³ããã³ä»ã®
å€ãã®ã¢ããªã³ãšå®è³ªçã«æ°Žäžæº¶æ§ã®å¡©ãçæ
ããå€äŸ¡ã«ããªã³ãšå®è³ªçã«æ°Žäžæº¶æ§ã®å¡©ãçæ
ããã¢ããªã³ãããªãæ°Žæ§æ¶²äžãžèãééããŠã€
ãªã³çã«ç§»åããªãåŸåããããèã®äžããã³äž
ã«æ²æŸ±ç©ãé«ãå²åã§çæããå Žåã«ã¯ãã€ãªã³
移åãå®è³ªçã«åŠšå®³ãããèã®æ絶ãèµ·ããããš
ã«ãªããããªããäžè¬ã«ãå€äŸ¡ã«ããªã³ã¯ãPHç¯
å²çŽïŒããã³ãã以äžã«ãããŠãæ°Žé
žåç©æ²æŸ±ã
çæããã The cations that are electrically transferred across the cation-permeable membrane are soluble (ionically mobile) in the solution, enter the membrane at the solution-membrane interface, and pass through the polymer membrane structure to form ions. It needs to be physically mobile and able to exit the membrane into the aqueous liquid. All of the above requirements are easily met for electrodialysis of salts of monovalent cations. 1
Valent cations produce water-soluble salts and hydroxides that do not foul cation-permeable membranes. In contrast, polyvalent cations form substantially water-insoluble salts with hydroxide ions and many other anions, and aqueous solutions consisting of polyvalent cations and anions that form substantially water-insoluble salts They tend not to migrate ionically through the membrane into the membrane. If a high rate of precipitate forms in and on the membrane, ion transport may be substantially impeded and membrane discontinuation may occur. Generally, polyvalent cations form hydroxide precipitates in the PH range of about 3 and above.
æ¬çºæè
ã¯ãå€äŸ¡ã«ããªã³ãäžæº¶æ§åããã€ãª
ã³ãŸãã¯å€ãããªãé°æ¥µæ¶²äžã«ãããŠãé
žïŒãã®
é
žã¯ãïŒèŠå®æ¶²äžã§PHïŒä»¥äžã§ãããããããå€
䟡ã«ããªã³ãšæ°Žæº¶æ§å¡©ã圢æãããã®ãšããïŒã®
å¯æº¶æ§å¡©ã䜿çšããããšã«ãã€ãŠãé«ã»ã«å®¹éã
éæãç¶æããããšãã§ããããããå€äŸ¡ã«ããª
ã³ã®å¡©ããã¢ããªã³ã®é
žãŸãã¯ããã²ã³ããªãã³
ã«å€äŸ¡ã«ããªã³ã®æ°Žé
žåç©ãŸãã¯ä»ã®å®è³ªçã«æ°Ž
äžæº¶æ§ã®å¡©ã«é»æ°éæå€æãããããšãã§ããã
ãšãèŠåºãããïŒãŸãã¯ãã以äžã«å宀ãããé»
æ°éæã»ã«ã®åå¿åšå®€äžã«ãããŠãé
žã®å¯æº¶æ§å¡©
ã䜿çšããããšã«ãããïŒäŸ¡ããã³å€äŸ¡ã«ããªã³
ã®å¡©ã®æ··åç©ããå€äŸ¡ã«ããªã³ã®ã€ãªã³çäžåæ§
åã䌎ã€ãŠããããŠåæã«ãåèšå¡©ã®ã¢ããªã³ã
é
žãŸãã¯ããã²ã³ã«ãããã³ïŒäŸ¡ã«ããªã³ãå®è³ª
çã«çŽç²ãªæ°Žé
žåç©ã«å€æããªãããé»è§£ããæ¹
æ³ãæäŸããããé
žã®å¯æº¶æ§å¡©ã¯ãã«ããªã³éé
æ§èãéããŠæ°Žé
žã€ãªã³å«ææ°Žæ§æ¶²äžãžé«æ¿åºŠã®
å€äŸ¡ã«ããªã³ãé»æ°çã«ç§»åãããäžæ¹ã§ãèã®
ãããããã³ã»ã«å®¹éã®æ¬ æãé²ãã®ã«é©ããã»
ã©æå¹ã§ãããé
žã®å¯æº¶æ§å¡©ã¯ãã»ã«å®¹éæ¬ æã®
é²æ¢ã«é¢ããçé
žãããªãŠã ãŸãã¯çé
žæ°ŽçŽ ãã
ãªãŠã ã®æ°Žæº¶æ¶²ã«ãããŠãäœæ¿åºŠäŸãã°çŽ
200ppm以äžã§æå¹ã§ãããé
žã®å¯æº¶æ§å¡©ã®æå¹
æ§ã¯ãé
žã®åŒ·ããšå€äŸ¡ã«ããªã³ã®å¡©ããã³å¯æº¶æ§
å¡©ã®é
žã®æº¶è§£åºŠãšã«äŒŽã€ãŠå¢å ãããäœæ¿åºŠã«ã
ããå¯æº¶æ§å¡©ã®æå¹æ§ã¯ãé
žã®å¯æº¶æ§å¡©ãããªã
æ°Žæ§æ¶²ãšèãšã®çé¢ã«ãããŠãå¡©ã®ã¢ããªã³ãæ¿
çž®ãããããšã瀺ããŠãããããã¯ãå¯æº¶æ§å¡©ã®
ã¢ããªã³ã®èãã€ã«ã ããããããããã¯å€äŸ¡ã«
ããªã³ã«å¯Ÿããã€ãªã³çå¯åæ§æ¥ç¶ãšããŠäœçš
ããèããæ°Žæ§æ¶²ã«æåºãããããã§äžæº¶æ§åã
ãããé
žã®å¯æº¶æ§å¡©ã¯ãæ°Žæ§æ¶²ãŸãã¯é°æ¥µæ¶²äžã«
ãããŠãå€äŸ¡ã«ããªã³ã®äžæº¶æ§åãææã«ã¯è¡ãª
ããªããäžèšã®èª¬æã¯ãé
žã®å¯æº¶æ§å¡©ãå€äŸ¡ã«ã
ãªã³ã®é»æ°ç移åãè¡ãªãçç±ã®èãããããïŒ
ã€ã®èª¬æãšããŠèšèŒãããã®ã§ãããäžèšã®èª¬æ
ã¯æ¬çºæã®éå®ãæå³ãããã®ã§ã¯ãªãã The present inventor discovered that an acid (this acid has a pH of 3 or less in a 1N solution and forms a water-soluble salt with a polyvalent cation) in a catholyte consisting of an ion or an agent that makes polyvalent cations insoluble. High cell capacity can be achieved and maintained by using soluble salts of polyvalent cations, including salts of polyvalent cations, as well as anionic acids or halogens, as well as hydroxides of polyvalent cations. or other substantially water-insoluble salts. In the reactor chamber of an electrodialysis cell divided into three or more compartments, a mixture of salts of monovalent and polyvalent cations is prepared by using a soluble salt of an acid with ionic immobilization of the polyvalent cations. Concomitantly, and simultaneously, a method is provided for electrolyzing the salt while converting the anion to an acid or halogen and the monovalent cation to a substantially pure hydroxide. Soluble salts of acids are surprisingly effective in electrically transporting high concentrations of polyvalent cations through cation-permeable membranes into hydroxide-containing aqueous fluids while preventing membrane fouling and loss of cell capacity. It is. Soluble salts of acids are useful for preventing cell capacity loss in aqueous solutions of sodium carbonate or sodium bicarbonate at low concentrations, e.g.
Effective at 200ppm or less. The effectiveness of soluble salts of acids increases with the strength of the acid and the acid solubility of the polyvalent cation salt and soluble salt. The availability of soluble salts at low concentrations indicates that the anion of the salt becomes concentrated at the interface between the membrane and the aqueous liquid consisting of the soluble salt of the acid. This results in a thin film of soluble salt anions, which act as ionically mobile connections for the multivalent cations, and are expelled from the membrane into the aqueous fluid, where they become insolubilized. Soluble salts of acids do not significantly render polyvalent cations insoluble in aqueous or catholyte solutions. The above explanation is one possible reason why soluble salts of acids undergo electrotransfer of polyvalent cations.
The above description is not intended to be a limitation of the invention.
é
žïŒãã®é
žã¯ãïŒèŠå®æ¶²äžã§PHïŒä»¥äžããã¡ã
ããããå€äŸ¡ã«ããªã³ã®æ°Žæº¶æ§å¡©ã圢æãããã®
ãšããïŒã®ä»»æã®å¯æº¶æ§å¡©ããæ¬çºæã®é»æ°éæ
æ³ã«äœ¿çšããããšãã§ãããå€äŸ¡éå±ã«ããªã³ã§
圢æãããå¡©ã¯ããããã«æ°Žæº¶æ§ã§ããããšã ã
ãå¿
èŠã§ãããããªãã¡ãèäžã§ã®äžæº¶æ§å€äŸ¡é
å±å¡©ã®çæãæå°ã«ããããšã§å
åã§ãããå°ãª
ããšã2000ppmã®æº¶è§£åºŠã奜ãŸããã奜ãŸããé
ž
ã®å¯æº¶æ§å¡©ã¯ãã€ãªãŠãããã²ã³ãçªçŽ ããªã³ã
ãã³ççŽ ã®é
žïŒãã®é
žã¯ã0.1èŠå®æ¶²äžã§PHïŒæª
æºããã奜ãŸããã¯ïŒãŸãã¯ãã以äžããã¡ãå€
䟡ã«ããªã³å¥œãŸããã¯é»æ°éæã»ã«ã®äŸçµŠæ¶²ãŸã
ã¯éœæ¥µæ¶²äžã«ååšããå€äŸ¡ã«ããªã³ãšæ°Žæº¶æ§å¡©ã
圢æãããã®ãšããïŒã®ã¢ã«ã«ãªå¡©ã§ãããå€äŸ¡
ã«ããªã³ã®å¡©ã®æ··åç©ãåŠçããå Žåã«ã¯ãç°ãª
ãã«ããªã³ããã³ã¢ããªã³ã®é
žã®å¯æº¶æ§å¡©ã®æ··å
ç©ã䜿çšããŠãã»ã«å®¹éã®ä¿æãè¡ãªãããšãã§
ãããå€äŸ¡ã«ããªã³ã®å¡©ã®æ··åç©ã®åŠçã«ã¯ãé
ž
ïŒãã®é
žã¯ãéœæ¥µæ¶²äžã«ãããŠããã¹ãŠã®å€äŸ¡ã«
ããªã³ãšæ°Žæº¶æ§å¡©ã圢æãããã®ãšããïŒã®å¯æº¶
æ§å¡©ã䜿çšããããšã奜ãŸãããåèšã®å€åœ¢ãã
ã³åæ§ã®å€åœ¢ã¯åœæ¥è
ã«ã¯æããã§ãããã®ãšè
ããã Acid (this acid has a pH of 3 or less in a 1N solution,
Moreover, any soluble salts of polyvalent cations (which form water-soluble salts of polyvalent cations) can be used in the electrodialysis method of the present invention. Salts formed with polyvalent metal cations need only be slightly water soluble. That is, it is sufficient to minimize the formation of insoluble polyvalent metal salts on the membrane, and a solubility of at least 2000 ppm is preferred. Preferred soluble salts of acids include sulfur, halogen, nitrogen, phosphorous and carbon acids, which have a pH of less than 3, more preferably 2 or less in 0.1 normal solution, and which have a PH of less than 3, more preferably 2 or less, in a polyvalent cation, preferably an electrodialysis cell. (shall form water-soluble salts with polyvalent cations present in the feed solution or anolyte). When treating mixtures of polyvalent cation salts, a mixture of soluble salts of different cationic and anionic acids can be used to provide cell capacity retention. For the treatment of mixtures of salts of polyvalent cations, it is preferred to use soluble salts of acids, which should form water-soluble salts with all polyvalent cations in the anolyte. It is believed that the above and similar variations will be apparent to those skilled in the art.
æ°Žæ§æ¶²ãŸãã¯é°æ¥µæ¶²äžã®é
žã®å¯æº¶æ§å¡©ã®æ¿åºŠ
ã¯ã飜å溶液ããçŽ200ppmã®åºãç¯å²ã«äºã€ãŠ
å€åããããšãã§ãããé«æ¿åºŠã®é
žã®å¯æº¶æ§å¡©ã
䜿çšããŠãäœã»ã«é»å§äžã«ãããŠé«ã»ã«å®¹éïŒé«
é»æµå¯åºŠïŒã§æäœããããšã奜ãŸãããé
žã®å¯æº¶
æ§å¡©ã®ã¢ããªã³ãæ°Žæ§æ¶²ãŸãã¯é°æ¥µæ¶²ããé移å
ããŠéœæ¥µæ¶²ã®å質ã«æªåœ±é¿ãäžããå Žåã«ã¯ãäœ
æ¿åºŠã®é
žã®å¯æº¶æ§å¡©ã䜿çšãããããŠçé
žãŸãã¯
çé
žæ°ŽçŽ ãããªãŠã ã§å°é»åºŠã調ç¯ããããšã奜
ãŸãããåœæ¥è
ã«ã¯æãããªããšã§ãããšèãã
ããé
žã®å¯æº¶æ§å¡©ã®æ¿åºŠã¯ãæ°Žæ§æ¶²ãŸãã¯é°æ¥µæ¶²
ã«ãããŠå€äŸ¡ã«ããªã³ãäžæº¶æ§åããã€ãªã³ãŸã
ã¯å€ãèããããåŸåãæå°éã«ããã®ã«å
åã§
ããããšãå¿
èŠã§ããã The concentration of the soluble salt of the acid in the aqueous or catholyte solution can vary over a wide range from a saturated solution to about 200 ppm. It is preferred to use high concentrations of soluble salts of acids and operate at high cell capacities (high current densities) at low cell voltages. If the anion of the soluble salt of the acid migrates back from the aqueous or catholyte solution and adversely affects the quality of the anolyte, use a lower concentration of the soluble salt of the acid and increase the conductivity with carbonate or sodium bicarbonate. It is preferable to adjust. As will be apparent to those skilled in the art, the concentration of the soluble salt of the acid is sufficient to minimize the tendency of ions or agents that render polyvalent cations insoluble in the aqueous or catholyte solution to foul the membrane. It is necessary that
æ¬çºæã®é»æ°éæã»ã«ã¯å®€ãïŒä»¥äžãã€ããšã
ã§ãããïŒå®€ã»ã«ã¯ãã«ããªã³ééæ§èã§åé¢ã
ããéœæ¥µæ¶²å®€ãšé°æ¥µæ¶²å®€ãšããã€ãéœæ¥µæ¶²å®€ã¯ã
å€äŸ¡ã«ããªã³ã®å¯æº¶æ§å¡©ãŸãã¯ïŒäŸ¡ããã³å€äŸ¡ã«
ããªã³ãªãã³ã«ã¢ããªã³ã®å¡©ã®æ··åç©ãããªãæ°Ž
æ§éœæ¥µæ¶²ãšéœæ¥µãšããã€ãé°æ¥µæ¶²å®€ã¯ãé
žïŒãã®
é
žã¯ãïŒèŠå®æ¶²äžã§PHïŒä»¥äžããã¡ããããå€äŸ¡
ã«ããªã³ã®æ°Žæº¶æ§å¡©ã圢æãããã®ãšããïŒã®å¯
溶æ§å¡©ããã³å€äŸ¡ã«ããªã³äžæº¶æ§åå€ãããªãæ°Ž
æ§æ§é°æ¥µæ¶²ãšé°æ¥µãšããã€ãïŒå®€ã»ã«ã¯ãã«ããª
ã³ééæ§èã§åé¢ãããé°æ¥µæ¶²å®€ãšåå¿åšå®€ãšé°
極液宀ãšããã€ãéœæ¥µæ¶²å®€ã¯ãå€äŸ¡ã«ããªã³ã®å¡©
ãããªãæ°Žæ§æ¶²ãšéœæ¥µãšãå«ã¿ããããŠåå¿åšå®€
ã¯ãé
žã®å¯æº¶æ§å¡©ããã³å€äŸ¡ã«ããªã³ã®ã€ãªã³ç
äžåæ§åå€ãããªãæ°Žæ§æ¶²ãå«ããé°æ¥µæ¶²å®€ã¯ã
é
žïŒãã®é
žã¯ãïŒèŠå®æ¶²äžã§PHïŒä»¥äžããã€ãã®
ãšããïŒã®å¯æº¶æ§å¡©ããã³å€äŸ¡ã«ããªã³äžæº¶æ§å
å€ãããªãæ°Žæ§æ¶²ãŸãã¯é
žæ§æ°Žæ§æ¶²ãŸãã¯å¯æº¶æ§
æ°Žé
žåç©ãçé
žå¡©ãããã¯çé
žæ°ŽçŽ é
žå¡©ãããªã
氎溶液ãšé°æ¥µãšããã€ãïŒå®€ã»ã«ã¯ãã«ããªã³é
éæ§èã«ãã€ãŠåé¢ããããéœæ¥µæ¶²å®€ãšäŸçµŠæ¶²å®€
ãšé°æ¥µæ¶²å®€ãšããã€ããšãã§ãããéœæ¥µæ¶²ã¯ãå¯
溶æ§å¡©ãå«ãããŸãã¯å«ãŸãªãé
žæ§æ°Žæ§æ¶²ã§ãã
ããšãã§ããäŸçµŠæ¶²ã¯ãå€äŸ¡ã«ããªã³ã®å¯æº¶æ§å¡©
ãããªãæ°Žæ§æ¶²ã§ããããããŠé°æ¥µæ¶²ã¯ãé
žã®å¯
溶æ§å¡©ããã³å€äŸ¡ã«ããªã³ã®äžæº¶æ§åå€ã®æ°Žæ§æ¶²
ã§ãããïŒå®€ãããå€ã宀ããã€æ¬çºæã®ã»ã«
ã¯ãéœæ¥µæ¶²ãšæ¬¡ã®å®€ãšã®éã®èãã«ããªã³éžææ§
ã§ããéããã«ããªã³âã¢ããªã³âäžæ§ã€ãªã³é
éæ§èãšå€åæ§éé¢æ¿ãšã®çµåãã«ãããããã
ãã¯ãã¹ãŠã«ããªã³ééæ§èã«ãã€ãŠåé¢ããã
ãšãã§ãããé
žïŒãã®é
žã¯ãïŒèŠå®æ¶²äžã§PHïŒä»¥
äžããã€ãã®ãšããïŒã®å¯æº¶æ§å¡©ã䜿çšããŠãå€
䟡ã«ããªã³äžæº¶æ§åå€ãããªãæ°Žæ§æ¶²äžãžã«ããª
ã³ééæ§èãéããŠå€äŸ¡ã«ããªã³ãé»æ°çã«ç§»å
ãããããšãä¿é²ããŠããç¹ãããã³åèšã®æ¡ä»¶
ãååšããåèšå®€äžã«ãããŠé
žã®å¯æº¶æ§å¡©ã䜿çš
ããç¹ã¯ãåœæ¥è
ã«æããã§ãããã®ãšèããã
å€äŸ¡ã«ããªã³ã®å¡©ãããªãäŸçµŠæ¶²ãŸãã¯éœæ¥µæ¶²å®€
ãšé°æ¥µæ¶²å®€ãšã®éã®å®€ã¯é°æ¥µãšé»æ°çã«é£çµ¡ããŠ
ããããšãå¿
èŠã§ããããšãããã³å®€ãã«ããªã³
ééæ§ã®éé¢æ¿ã«ãã€ãŠåé¢ãããŠããããšãå¿
èŠã§ããããšãåœæ¥è
ã«ã¯æããã§ããããæŽ
ã«ãåèšã®èããåå¿å€ããã³å€æçæç©ã«ãã
ååŠçæ»æã«å¯ŸããŠæµææ§ã®ãããã®ããéžæã
ãããšãæããã§ããããåŸã€ãŠãäŸçµŠæ¶²ãå¡©å
ãããªãŠã ãã©ã€ã³ãå«ã¿ããããŠé»è§£ã«ãã€ãŠ
éœæ¥µæ¶²äžã«å¡©çŽ ãçæããå Žåã«ã¯ããããšæ¥è§Š
ããèã¯ãå¡©çŽ ã«ããæ害ãªæ»æã«å¯ŸããŠæµææ§
ã®ãããã®ã§ããã The electrodialysis cell of the present invention can have two or more chambers. A two-chamber cell has an anolyte compartment and a catholyte compartment separated by a cation-permeable membrane. The anolyte chamber is
It has an aqueous anolyte and an anode consisting of a soluble salt of a polyvalent cation or a mixture of salts of monovalent and polyvalent cations and anions. The catholyte chamber is an aqueous solution consisting of a soluble salt of an acid (the acid must have a pH of 3 or less in a 1N solution and form a water-soluble salt of a polyvalent cation) and a polyvalent cation insolubilizing agent. It has a catholyte and a cathode. A three-compartment cell has a catholyte compartment, a reactor compartment, and a catholyte compartment separated by a cation-permeable membrane. The anolyte chamber contains an aqueous liquid consisting of a salt of a polyvalent cation and an anode, and the reactor chamber contains an aqueous liquid consisting of a soluble salt of an acid and an ionic immobilizer of a polyvalent cation. The catholyte chamber is
Aqueous liquids or acidic aqueous liquids or soluble hydroxides, carbonates or bicarbonates consisting of soluble salts of acids (the acids shall have a pH of 3 or less in 1N liquid) and polyvalent cation insolubilizing agents. It has an aqueous solution consisting of and a cathode. A three-compartment cell can also have an anolyte compartment, a feed compartment, and a catholyte compartment separated by a cation-permeable membrane. The anolyte can be an acidic aqueous solution with or without soluble salts, the feed solution is an aqueous solution consisting of soluble salts of polyvalent cations, and the catholyte is an aqueous solution consisting of soluble salts of acids and polyvalent cations. It is an aqueous solution of a cationic insolubilizing agent. Cells of the invention with more than three chambers can be constructed using a cation-anion-neutral ion permeable membrane and a porous separator, as long as the membrane between the anolyte and the next chamber is cation-selective. They can be combined or all separated by cation-permeable membranes. A soluble salt of an acid (the acid shall have a pH of 3 or less in a 1N solution) is used to electrolyze polyvalent cations through a cation-permeable membrane into an aqueous solution consisting of a polyvalent cation insolubilizing agent. The use of soluble salts of acids in the chamber where the conditions described above are present will be apparent to those skilled in the art.
The feed solution consisting of a salt of a polyvalent cation or the chamber between the anolyte and catholyte chambers must be in electrical communication with the cathode and the chamber must be provided with a cation-permeable separator. It will also be clear to those skilled in the art that it is necessary to separate the It will furthermore be obvious that said membranes are chosen to be resistant to chemical attack by reactants and conversion products. Therefore, if the feed solution contains a sodium chloride brine and chlorine is produced in the anolyte by electrolysis, the membrane in contact with it should be resistant to harmful attack by the chlorine. .
æ¬çºæã®ïŒä»¥äžã®å®€ããã€é»æ°éæã»ã«ã®åå¿
åšå®€ã¯ãé
žïŒãã®é
žã¯ãïŒèŠå®æ¶²äžã§PHïŒä»¥äžã
ãã¡ãããããå€äŸ¡ã«ããªã³ãšæ°Žæº¶æ§å¡©ã圢æã
ããã®ãšããïŒã®å¯æº¶æ§å¡©ãšå€äŸ¡ã«ããªã³ã®éžæ
çãªã€ãªã³æ§äžåæ§åå€ãšã®æ°Žæ§æ¶²ãå«ããå€äŸ¡
ã«ããªã³ã¯ãè² é»è·ããã€ããŸãã¯é»è·ããããª
ãæ°Žäžæº¶æ§ã®å¡©ããã¬ãŒãããã³è€åäœååç©ãš
ããŠã€ãªã³çã«äžåæ§åããããé
žã®å¯æº¶æ§å¡©ã
ãã³å€äŸ¡ã«ããªã³ã®ã€ãªã³çäžåæ§åå€ã®æ¿åºŠã¯
å€åãããããšãã§ãããäžè¬ã«ãå€äŸ¡ã«ããªã³
ã®äžæº¶æ§åå€ãäœæ¿åºŠã§äœ¿çšããŠãåèšå€ãèã
ãããåŸåãæå°ã«ããããšãæãŸãããé
žã®å¯
溶æ§å¡©ãé«æ¿åºŠã§äœ¿çšããŠäœã»ã«é»å§äžã§é«ã»ã«
容éãåŸãããšãæãŸãããå€äŸ¡ã«ããªã³ãã€ãª
ã³çã«äžåæ§åããããã«äœ¿çšããããšã®ã§ãã
å€ã¯å€æ°ååšããäŸãã°ãå¯æº¶æ§æ°Žé
žåç©ãçé
ž
å¡©ãçé
žæ°ŽçŽ å¡©ãã·ãŠãŠé
žããã³ãã®å¯æº¶æ§å¡©ã
ããåæ°ŽçŽ é
žããã³ãã®æ°Žæº¶æ§å¡©ããªã³é
žãç¡«å
æ°ŽçŽ ãç¡«åã¢ã«ã«ãªãããªç¡«é
žå¡©ãéåäœé
žããª
ãã³ã«ã€ãªã³äº€ææš¹èã§ãããè² é»è·ïŒã¢ããª
ã³ïŒããã€ãããŸãã¯é»è·ããããªããå€äŸ¡ã«ã
ãªã³ã®ãã¬ãŒãããã³è€åäœååç©ã圢æããã®
ã«äœ¿çšããããšã®ã§ããååç©ã¯å€æ°ååšãã
ïŒP.C.L.Thorneããã³E.R.Robertsã«ãã
Inorganic ChemistryãFritz Ephraimã15çã
è±åœãã³ãã³ã®Gurney and Jackson.289ã322
é ãåç
§ããããïŒãå€äŸ¡ã«ããªã³ãã€ãªã³çã«
äžåæ§åãããã¬ãŒãããã³è€åäœååç©ã¯ãäŸ
ãã°ã¢ããé
¢é
žããšãã¬ã³ãžã¢ããåé
¢é
žãαâ
ããããã·é
žããžã¡ãã«ã°ãªãªãã·ã ãããããœ
ããšãã«ããããã·ã«ã¢ãã³ãã¢ã»ãã«ã¢ã»ã
ã³ãïŒâããããã·ãããªã³ããã³ã¢ã«ã«ãªã·ã¢
ããã®ãããªå€ã«ãã€ãŠåœ¢æããããšãã§ããã
å€äŸ¡ã«ããªã³ã®ã€ãªã³çäžåæ§åã¯ãã»ã«äžã«ã
ããŠããŸãã¯ã»ã«ã®å€åŽã®è£
眮äžã«ãããŠå®æœã
ãããšãã§ãããå€äŸ¡ã«ããªã³ãéžæçã«äžæº¶æ§
åããã¬ãŒãåããã³è€åäœåããŠãé»æ°ç移
åãæœåºãæ¿Ÿéãé»æ°å ç©ãã€ãªã³äº€æãããã³
ä»ã®ååŠæ©æ¢°çæ¹æ³ã«ãã€ãŠåé¢ãè¡ãªãããšã
ã§ãããäŸãã°ãïŒçš®ãŸãã¯ãã以äžã®å€äŸ¡ã«ã
ãªã³ãåå¿åšå®€å
ã§éžæçã«äžåæ§åãããããŠ
ä»ã®å€äŸ¡ã«ããªã³ãé»æ°çã«ç§»åãããŠç¬¬ïŒã®ãŸ
ãã¯é°æ¥µæ¶²å®€ãžå
¥ããŠããã§äžæº¶æ§åããŠãç°ãª
ãå€äŸ¡ã«ããªã³ã®åé¢ãè¡ãªãããšãã§ãããå
å¿åšå®€ã¯å€äŸ¡ã«ããªã³ãã€ãªã³çã«äžåæ§åããŠ
å€äŸ¡ã«ããªã³ãšïŒäŸ¡ã«ããªã³ãšã®åé¢ãå¯èœã«ã
ãããã«äœ¿çšããããšãããã³ãïŒãããå€ãã»
ã«å
åå¿åšå®€ãŸãã¯å€éšåå¿åšã䜿çšããããšã
ã§ããããšã¯åœæ¥è
ã«ã¯æããã§ãããã The reactor chamber of the electrodialysis cell of the present invention having three or more chambers is an acid (the acid has a pH of 3 or less in a 1N solution and forms a water-soluble salt with a polyvalent cation). and a selective ionic immobilizing agent for polyvalent cations. Multivalent cations are ionically immobilized as negatively charged or uncharged water-insoluble salts, chelates, and complex compounds. The concentration of soluble salts of acids and ionic immobilizers of polyvalent cations can be varied. It is generally desirable to use low concentrations of polyvalent cation insolubilizing agents to minimize the tendency of the agents to foul the membrane. It is desirable to use soluble salts of acids at high concentrations to obtain high cell capacity at low cell voltages. There are a number of agents that can be used to ionically immobilize polyvalent cations, such as soluble hydroxides, carbonates, bicarbonates, oxalic acid and its soluble salts,
Hydrofluoric acid and its water-soluble salts, phosphoric acid, hydrogen sulfide, alkali sulfides, thiosulfates, polymer acids, and ion exchange resins. There are a number of compounds that can be used to form chelates and complex compounds of polyvalent cations, with or without a negative charge (anion) (see PCLThorne and ER Roberts).
Inorganic Chemistry, Fritz Ephraim, 15th edition,
Gurney and Jackson, London, UK.289-322
(see page). Chelates and complex compounds that ionically immobilize polyvalent cations include, for example, aminoacetic acid, ethylenediaminotetraacetic acid, α-
It can be formed with agents such as hydroxy acids, dimethylglyoxime, nitrosophenylhydroxylamine, acetylacetone, 8-hydroxyquinoline, and alkali cyanides.
Ionic immobilization of polyvalent cations can be carried out in the cell or in a device outside the cell. Multivalent cations can be selectively insolubilized, chelated, and complexed to effect separation by electrotransfer, extraction, filtration, electrodeposition, ion exchange, and other chemical-mechanical methods. For example, one or more polyvalent cations may be selectively immobilized within the reactor chamber, and other polyvalent cations may be electrically transferred into a third or catholyte compartment where they become insoluble. , separation of different polyvalent cations can be performed. The reactor chamber is used to ionically immobilize polyvalent cations to enable separation of polyvalent and monovalent cations, and more than one in-cell reactor chamber or external reactor It will be obvious to those skilled in the art that it is possible to use
æ¬çºæã®ïŒå®€é»æ°éæã»ã«ã®éœæ¥µæ¶²ã¯ãå€äŸ¡ã«
ããªã³ã®å¯æº¶æ§å¡©ãŸãã¯ïŒäŸ¡ããã³å€äŸ¡ã«ããªã³
ã®å¡©ã®æ··åç©ãããªãæ°Žæ§æ¶²ã§ãããåèšã®æ¶²ã¯
é
žæ§ãããªãã¡ãPHïŒä»¥äžããã¡ã奜ãŸããã¯PH
ïŒä»¥äžããã€ãå€äŸ¡ã«ããªã³ã®å¡©ã®æ¿åºŠã¯ãæ°
ppmãã飜å溶液ãŸã§å€åããããšãã§ãããéœ
極液ã¯ãè€åäœã€ãªã³ãžã®ä»å ç©ãå«ã¿ãå¡©ãå¯
溶æ§åãããããŠäžçŽç©ã湿最å€ãæŽæµå€ãªãã³
ã«éå±ããã³ãã©ã¹ããã¯ã®ä»äžã«äœ¿ãä»ã®æ·»å
å€ãæ²æŸ±ãããããšãã§ãããéœæ¥µæ¶²ãé»æ°éæ
ã»ã«ãžã®äŸçµŠæ¶²ã§ã¯ãªãå Žåã«ã¯ãéœæ¥µæ¶²ã¯ãå¯
溶æ§å¡©ãå«ãããŸãã¯å«ãŸãªãé
žæ§æ¶²ã§ããããš
ãã§ãããã»ã«ãžã®äŸçµŠæ¶²ã¯ãéœæ¥µæ¶²ã«é¢ããŠå
èšããå€äŸ¡ã«ããªã³ã®å¯æº¶æ§å¡©ãããªãæ°Žæ§æ¶²ã§
ããã The anolyte of the two-compartment electrodialysis cell of the present invention is an aqueous liquid consisting of soluble salts of polyvalent cations or a mixture of salts of monovalent and polyvalent cations. Said liquid is acidic, i.e. has a pH of 7 or less, preferably a pH of 7 or less.
Have 3 or less. The concentration of polyvalent cation salts is
Can vary from ppm to saturated solution. The anolyte can contain adducts to complex ions, solubilize salts, and precipitate impurities, wetting agents, detergents, and other additives used in metal and plastic finishes. If the anolyte is not the feed to the electrodialysis cell, the anolyte can be an acidic liquid with or without soluble salts. The feed liquid to the cell is an aqueous liquid consisting of soluble salts of polyvalent cations as described above with respect to the anolyte.
å€å®€ç³»ã®é»æ°éæã»ã«ãžã®äŸçµŠæ¶²ã¯ãäŸçµŠæ¶²å®€
ãéããŠãéåžžã埪ç°ãããŠãããéœæ¥µæº¶åºæ¶²äž
ã«çºçããé
žã¯ååããããåæ§ã«ãé°æ¥µæ¶²ã¯ã
é°æ¥µæ¶²å®€ãéã€ãŠåŸªç°ããããšãã§ããæ²æŸ±ãã
ãŸãã¯ã€ãªã³çã«äžåæ§åãããå€äŸ¡ã«ããªã³å
åç©ã¯ã溶åºæ¶²ããäŸãã°æ²éãæ¿Ÿéãã€ãªã³äº€
æãŸãã¯å€ã®éåžžã®æ段ã«ãã€ãŠååããããå
æ§ã«ãïŒå®€ãŸãã¯ãã以äžã®å®€ã®ã»ã«ã®åå¿åšå®€
äžã®æ¶²äœã¯åŸªç°ããããšãã§ãã溶åºæ¶²ãåŠçã
ãŠå€äŸ¡ã«ããªã³ææãååãããåœæ¥è
ã«ã¯æã
ãã§ãããšèããããæµéãéžæããŠãåå¿çæ
ç©ã®ååã«é¢ããŠã°ãã€ãããªãé»è§£ã«å
åãªæ
éãå¯èœã«ããããã«ããã The feed to a multichamber electrodialysis cell is typically circulated through feed chambers and the acid generated in the anode eluate is recovered. Similarly, the catholyte is
The precipitated or ionically immobilized polycationic compounds may be circulated through the catholyte compartment and recovered from the eluate by, for example, precipitation, filtration, ion exchange, or any other conventional means. Ru. Similarly, the liquid in the reactor chamber of a three or more chamber cell can be circulated and the eluate treated to recover polyvalent cation material. As will be apparent to those skilled in the art, the flow rate is chosen to allow sufficient time for electrolysis without variation with respect to recovery of reaction products.
æ¬çºæã®é»æ°éæã»ã«ã®å®€ã®åé¢ã«ã¯ãä»»æã®
ã«ããªã³ééæ§èã䜿çšããããšãã§ãããåèš
ã®ã«ããªã³ééæ§èã¯ãããªããŒãããªã¯ã¹äžã«
åæ£ããè² é»è·ãåºå®ããæ£é»è·ã€ãªã³ã«å¯ŸããŠ
ééæ§ã§ãããåèšã®èãšããŠã¯ãé
žããã³é
žèª
å°äœãå«ãçåæ°ŽçŽ ããã³ããççŽ ããªããŒã®è
ã奜ãŸãããç¹ã«é©åœãªé
žããªããŒã¯ããã³ãã³
ãã¹ã«ãã³é
žåºãã¹ã«ãã³ã¢ããåºããã³ã«ã«ã
ã³é
žåºãå«ããã«ããççŽ ããªããŒã§ãããåèš
ã®èã¯ãç°ãªãããªããŒã®å€å±€æ§é ã§ããããšã
ã§ãããããŠå
å¡«æã匷åæãããã³ååŠçå€æ§
å€ãå«ãã§ããããšãã§ããã奜ãŸããèã¯ãå·¥
çšæ¡ä»¶ã«å¯ŸããŠå®è³ªçã«ååŠçã«å®å®ã§ãããé»
æ°éææ³ã®çµæžçãªæäœããã³ãã¶ã€ã³ã«é¢ãã
æ©æ¢°çã«é©ãããã®ã§ããã匷é
žåæ§åªè³ªã«å¯Ÿã
ã奜ãŸããèã¯ããã«ãã«ãªãççŽ èãäŸãã°
NafionïŒDopont補ïŒã§ãããããã¯ã¹ã«ãã³é
ž
åºãã«ã«ãã³é
žåºãŸãã¯ã¹ã«ãã³ã¢ããåºãå«ã
ãã®ã§ãããåå¿åšå®€ããã€æ¬çºæã®é»æ°éæã»
ã«äžã®å¡©åãããªãŠã ãã©ã€ã³ã®é»è§£çšã®å¥œãŸã
ãèã¯ãåå¿åšå®€ããã®éœæ¥µæ¶²ãã©ã€ã³åé¢çš
ã®ãå€äŸ¡ã«ããªã³ã®é«é»æ°ç§»åæ§ããã³é«å°é»æ§
ã®ãã«ãã«ãªãççŽ èããªãã³ã«ãé°æ¥µæ¶²å®€ãã
ã®åå¿åšå®€åé¢çšã®ãé«ããŒã ïŒpermïŒéžææ§
ïŒé«é»è§£å¹çïŒã®çåæ°ŽçŽ ãŸãã¯ãã«ãã«ãªãç
çŽ èã§ããã Any cation permeable membrane can be used to separate the chambers of the electrodialysis cell of the present invention. The cation permeable membrane fixes the negative charges dispersed in the polymer matrix and is permeable to positively charged ions. Preferred membranes are membranes of hydrocarbon and halocarbon polymers containing acids and acid derivatives. Particularly suitable acid polymers are perhalocarbon polymers containing pendant sulfonic acid groups, sulfonamide groups and carboxylic acid groups. The membrane can be a multilayer structure of different polymers and can contain fillers, reinforcements, and chemical modifiers. Preferred membranes are substantially chemically stable to the process conditions and are conducive to economical operation and design of the electrodialysis process;
Mechanically suitable. Preferred membranes for strongly oxidizing media are perfluorocarbon membranes, e.g.
Nafion (manufactured by Dopont), which contains sulfonic acid, carboxylic acid, or sulfonamide groups. Preferred membranes for the electrolysis of sodium chloride brine in electrodialysis cells of the invention having a reactor chamber are perfluorinated membranes with high electromobility of polyvalent cations and high conductivity for separation of the anolyte brine from the reactor chamber. Carbon membranes as well as high perm selectivity (high electrolytic efficiency) hydrocarbon or perfluorocarbon membranes for separation of the reactor compartment from the catholyte compartment.
æ¬çºæã¯ãæ°Žæ§æ¶²äžã®å€äŸ¡ã«ããªã³ããªãã³ã«
ïŒäŸ¡ããã³å€äŸ¡ã«ããªã³å¡©ã®æ··åç©ã®é»æ°éæåŠ
çã®ããã®ãã®ã§ãããé
žïŒãã®é
žã¯ãïŒèŠå®æ¶²
äžã§PHïŒä»¥äžããã€ãã®ãšããïŒã®å¯æº¶æ§å¡©ãã
é»æ°éæã»ã«ã®é°æ¥µãšé»æ°çã«é£çµ¡ããŠããéœæ¥µ
液ãŸãã¯æ°Žæ§æ¶²äžã§äœ¿çšãããã®ã§ãããå€äŸ¡ã«
ããªã³ã®å¡©ããªãã³ã«å€äŸ¡ããã³ïŒäŸ¡ã«ããªã³ã®
å¡©ã®æ··åç©ã®æ°Žæ§æ¶²ã¯ãååŠæ¥çããšã¬ã¯ããã
ã¯ã¹æ¥çãé±æ¥çãéå±ä»äžæ¥ççã®å
šè¬ã«èŠã
ãããã®ã§ãããæã溶液ã«ãããŠã¯ãæãŸãã
æåãå€äŸ¡ã«ããªã³ã§ãããä»ã®äŸçµŠæ¶²ã«ãããŠ
ã¯ãå€äŸ¡ã«ããªã³ã¯äžçŽç©ã§ãã€ãŠã粟補ããã
é
žãæãŸããæåã§ãããã¯ãã«âã¢ã«ãã«æ³ã«
ãããŠã¯ãå€äŸ¡ã«ããªã³ã¯ãé£ç¶çé«åŠç容éã
æãŸããå Žåã«ãããŠãèããããäžçŽç©ã§ã
ããä»ã®èŠ³ç¹ã«ããã°ãå€äŸ¡ã«ããªã³ã®å¡©ã®æ··å
ç©ããå€äŸ¡ã«ããªã³ãåé¢ãåé¢ããããšã¯æãŸ
ããããšã§ãããæŽã«ä»ã®èŠ³ç¹ã¯ãïŒäŸ¡ããã³å€
䟡ã«ããªã³ã®å¡©ã®æ··åç©ãããïŒäŸ¡ããã³å€äŸ¡ã«
ããªã³ãåé¢ããŠçŽç²ãªïŒäŸ¡ã«ããªã³æ°Žé
žåç©ã
補é ããããšã§ãããå€äŸ¡ã«ããªã³ã®å¡©ã§ããã
ãèãå埩ããããšãæãŸããããšã§ãããæ¬çº
æã®åèšã®èŠ³ç¹ããã³ä»ã®èŠ³ç¹ã¯åœæ¥è
ã«ã¯æã
ãã§ãããã®ãšèããã The present invention is for the electrodialysis treatment of polyvalent cations and mixtures of monovalent and polyvalent cation salts in aqueous liquids, including acids (the acids having a pH of 3 or less in 1N liquid). soluble salt of)
It is intended for use in an anolyte or aqueous solution that is in electrical communication with the cathode of an electrodialysis cell. Aqueous solutions of salts of polyvalent cations and mixtures of salts of polyvalent and monovalent cations are commonly found in the chemical industry, electronics industry, mining industry, metal finishing industry, etc. In some solutions, the desired component is the polyvalent cation; in other feed solutions, the polyvalent cation is an impurity and the purified acid is the desired component. In the chloro-alkyl process, polyvalent cations are impurities that foul the membrane in cases where continuous high throughput is desired. According to another aspect, it is desirable to separate and isolate polyvalent cations from mixtures of their salts. Yet another aspect is to separate monovalent and polyvalent cations from a mixture of monovalent and polyvalent cation salts to produce pure monovalent cation hydroxides. It is also desirable to restore fouled membranes with polyvalent cation salts. These and other aspects of the invention will be apparent to those skilled in the art.
æ¬çºææ¹æ³ã®æ
æ§ã®ïŒã€ã¯ãå€äŸ¡ã«ããªã³å«æ
ãã©ã€ã³ãé»è§£ïŒããäžè¬çã«èšãã°ãïŒäŸ¡ãã
ã³å€äŸ¡ã«ããªã³å¡©ã®æ··åç©ã®é»æ°éæå€æïŒã«ã
ã€ãŠãå¡©çŽ ããã³å®è³ªçã«çŽç²ãªæ°Žé
žåãããªãŠ
ã ã補é ããããšã§ããããã®æ
æ§ã¯ãïŒå®€é»è§£
ã»ã«ã®åå¿åšå®€ã«ãããŠãé
žã®å¯æº¶æ§å¡©ïŒå¡©åã
ããªãŠã ïŒãšå€äŸ¡ã«ããªã³ã®ã€ãªã³çäžåæ§åå€
ãšã䜿çšããããšãããªããå¯æº¶æ§å¡©ã¯èã®ãã
ããæå°ã«ãããããŠå€äŸ¡ã«ããªã³ã®ã€ãªã³æ§äž
åæ§åã¯ãåå¿åšå®€ããé°æ¥µæ¶²å®€ãžã®ãããªãŠã
ã®ã€ãªã³ã®éžæçãªé»æ°ç移åãå¯èœã«ãããæ¬
çºæã®ãã®èŠ³ç¹ã«é¢ããæ
æ§ã説æããããã«ã
éœæ¥µãå«ãéœæ¥µæ¶²å®€ãšãåå¿åšå®€ãšãé°æ¥µãå«ã
é°æ¥µæ¶²å®€ãšããã€é»æ°éæã»ã«ãçµç«ãŠãã宀ã¯
ã«ããªã³ééæ§èã§åé¢ãããåèšã»ã«ã¯é»è§£é
åçŽ58cm2ïŒ9in2ïŒããã¡ãéœæ¥µæ¶²ãéœæ¥µæ¶²å®€ãžã
åå¿åšæ¶²ãåå¿åšå®€ãžããããŠé°æ¥µæ¶²ïŒäŸãã°
æ°ŽïŒãé°æ¥µæ¶²å®€ãžé£ç¶çã«å ããããã®æ段ãå
ããŠãããã®ã§ãã€ããéœæ¥µã¯ãElectrode
CorporationããåŸãããã¯ãã«âã¢ã«ã«ãªã»ã«
çšã®ã«ãããŠã ããŒã¹éœæ¥µã§ãããé°æ¥µã¯ã¹ãã³
ã¬ã¹ã¹ããŒã«ã¡ãã·ãŠã§ãã€ããã«ããªã³ééæ§
èã¯ãéœæ¥µæ¶²å®€ãšåå¿åšå®€ãšãåé¢ããNafion
è417ãããã³é°æ¥µæ¶²å®€ãšåå¿åšå®€ãšãåé¢ãã
Nafion324èã§ãã€ããåèšã®èã¯Dupont瀟ã
ãåŸããã®ã§ãã€ããéœæ¥µâé°æ¥µåèšã®ã€ããã¯
çŽ0.76cmïŒ0.3inïŒãã»ã«æž©åºŠã¯80ã85âãé»æµå¯
床ã¯çŽ0.31ã¢ã³ãã¢ïŒcm2ïŒïŒã¢ã³ãã¢ïŒin2ïŒã§
ãã€ããã»ã«é»å§ã¯ãéœæ¥µâé°æ¥µåèšé»å§ã§ãã€
ããå¡©çŽ ã¯éœæ¥µã«çæãããèæ§å¹çã¯ãçŽæµé»
æ°åäœåœãã®çæããèæ§ãœãŒãã«ãã€ãŠæž¬å®ã
ããçŽæµé»æºã¯Hewlett Packard補ã§ãããäž
å®é»æµããã³å¯å€é»å§ã§å®éšããæ段ãåããŠã
ãã察ç
§çšã®çŽç²ãã©ã€ã³ãšããŠäœ¿çšãããã©ã€
ã³ã¯ãã«ã«ã·ãŠã ã€ãªã³0.5ppmæªæºãå«ã¿ãã
ãŠPHïŒä»¥äžã®23ééïŒ
å¡©åãããªãŠã ïŒé£œå溶
液ïŒã§ãã€ããã«ã«ã·ãŠã ããã°ãã·ãŠã ãé
ã
éããã³ä»ã®å€äŸ¡ã«ããªã³ã®è©Šè¬ççŽå¡©åç©å¡©
ããåèšã®çŽç²ãã©ã€ã³ã«å ããŠãææã®çµæã®
éœæ¥µæ¶²ãåŸããåå¿åšæ¶²ãæ¿Ÿéããåå¿åšå®€ãé
ããŠåŸªç°ãããããŠãé°æ¥µæ¶²å®€ããã®æ°Žé
žã€ãªã³
ã®é移åã溶液ã®PHãäžæããããšãé€ããŠãå®
éšãéããŠæåã®çµæã倧ããç¶æãããææã«
ãããå¯æº¶æ§å¡©ã®é
žãæ·»å ããããšã«ãã€ãŠãPH
ã調ç¯ãç¶æãããåå®æœäŸã¯ãé°æ¥µæ¶²çµæãæ¬
質çã«äžå®ã«ä¿ã¡ïŒæ°Žã®æ·»å ã«ãã€ãŠèª¿ç¯ããïŒã
éœæ¥µæ¶²ããã³åå¿åšå®€æ¶²ã®çµæã以äžã®ããã«å€
åãããäžé£ã®å®éšãããªããåå®éšã¯çŽïŒæ¥é
ã«äºã€ãŠå®æœãããå®éšã®éã®ãã»ã«é»å§ã®å¢å
ã¯ãèã®ããçšåºŠã®ãããããã³ã»ã«å®¹éã®æ¬ æ
ã瀺ããã®ã§ããã One embodiment of the method of the present invention is to electrolytically transform a brine containing polyvalent cations (more generally, electrodialytic conversion of a mixture of monovalent and polyvalent cation salts) into chlorine and substantially pure chlorine. The purpose is to produce sodium hydroxide. This embodiment consists of using a soluble salt of an acid (sodium chloride) and an ionic immobilizer of polyvalent cations in the reactor chamber of a three-compartment electrolytic cell. The soluble salts minimize fouling of the membrane, and the ionic immobilization of the polyvalent cations allows selective electrotransfer of sodium ions from the reactor chamber to the catholyte chamber. To illustrate aspects related to this aspect of the invention:
An electrodialysis cell was constructed having an anolyte chamber containing the anode, a reactor chamber, and a catholyte chamber containing the cathode. The chambers were separated by a cation-permeable membrane. The cell has an electrolytic area of about 58 cm 2 (9 in 2 ) and transports the anolyte into the anolyte chamber;
Means was provided for continuously adding reactor liquid to the reactor chamber and catholyte (eg water) to the catholyte chamber. Anode is Electrode
The cathode was a stainless steel mesh. The cation-permeable membrane separates the anolyte and reactor chambers from Nafion.
membrane 417 and separating the catholyte and reactor chambers;
It was Nafion324 membrane. The membrane was obtained from Dupont. The total anode-to-cathode gap was approximately 0.76 cm (0.3 in), the cell temperature was 80-85°C, and the current density was approximately 0.31 amps/cm 2 (2 amps/in 2 ). Cell voltage was the anode-cathode total voltage. Chlorine is formed at the anode. Caustic efficiency was measured by the amount of caustic soda produced per unit of DC electricity. The DC power supply was from Hewlett Packard and had the means to experiment with constant current and variable voltage. The brine used as a control pure brine was 23% by weight sodium chloride (saturated solution) containing less than 0.5 ppm calcium ions and having a pH below 3. calcium, magnesium, copper,
Reagent grade chloride salts of iron and other polyvalent cations were added to the pure brine described above to obtain the anolyte of the desired composition. The reactor liquid was filtered and circulated through the reactor chamber, and the initial composition was largely maintained throughout the experiment, except that back migration of hydroxide ions from the catholyte chamber increased the PH of the solution. Optionally, adjust the pH by adding soluble salts of acids.
was adjusted and maintained. Each example maintains catholyte composition essentially constant (adjusted by addition of water);
It consists of a series of experiments in which the compositions of the anolyte and reactor chamber fluids are varied as follows. Each experiment was conducted over approximately 4 days. During the experiment, an increase in cell voltage is indicative of some fouling of the membrane and loss of cell capacity.
äŸ ïŒ
ïŒå®€ç³»ã«ãããŠãçŽç²ãã©ã€ã³ãéœæ¥µæ¶²å®€ãã
ã³åå¿åšå®€ã«å ããé°æ¥µæ¶²å®€äžã®æ°Žé
žåãããªãŠ
ã ã®æ¿åºŠã20ééïŒ
ã«èª¿ç¯ãããåæã»ã«é»å§ã¯
4.2ãã«ãã§ãã€ããïŒæ¥éã®æäœåŸã«ãã»ã«é»
å§ã¯4.4ãã«ãã«äžæãããåå¿åšæ¶²ã¯PH10.5ã§
ãããå°éã®çœè²æ²æŸ±ç©ïŒåæã®çµæãæ°Žé
žåã«
ã«ã·ãŠã ã§ãã€ãïŒãå«æããŠãããé»æµå¹æ
ã¯ã91ïŒ
ã§ãã€ãã次ã«ãé°æ¥µæ¶²ãã10ééïŒ
å¡©
åãããªãŠã ããã³ïŒééïŒ
æ°Žé
žåãããªãŠã ã«
å€ãããåå¿åšæ¶²ã22ééïŒ
å¡©åãããªãŠã ãã
ã³ïŒééïŒ
ã·ãŠãŠé
žã«å€ãããåæã»ã«é»å§ã¯
4.5ã§ãããïŒæéã®æäœåŸã«ãé»å§ã¯4.2ãã«ã
ã«äœäžãããé°æ¥µæ¶²ã20ééïŒ
æ°Žé
žåãããªãŠã
ã«å€ããæäœãç¶ãããåæã»ã«é»å§ã¯4.1ãã«
ãã§ãã€ããïŒæ¥åŸãã»ã«é»å§ã¯4.0ãã«ãã§ã
ããé»æµå¹çã¯92ïŒ
ã§ãã€ããåå¿åšæ¶²äžã«çœè²
æ²æŸ±ãçæããããã¯åæã®çµæãã·ãŠãŠé
žã«ã«
ã·ãŠã ãšæ°Žé
žåã«ã«ã·ãŠã ãšã®æ··åç©ã§ãã€ãã
ïŒæ¥éã®é»è§£åŸã®åå¿åšæ¶²ã®PHã¯10ã§ãã€ãã次
ã«ããã©ã€ã³äžã«å¡©åã«ã«ã·ãŠã ãå ããã«ã«ã·
ãŠã ã€ãªã³5000ppmã®ãã©ã€ã³äŸçµŠæ¶²ãåŸããã»
ã«æäœãïŒæ¥éç¶ããããã®éãåå¿åšæ¶²ã®PHã
çŽïŒã«ç¶æãããã»ã«é»å§ã4.0ã4.1ãã«ãã«äž
å®ã«ç¶æãããé»æµå¹çã¯91ïŒ
ã§ãã€ãã
Example 1 In a three-chamber system, pure brine was added to the anolyte compartment and the reactor compartment, and the concentration of sodium hydroxide in the catholyte compartment was adjusted to 20% by weight. The initial cell voltage is
It was 4.2 volts. After 4 days of operation, the cell voltage increased to 4.4 volts. The reactor liquid had a pH of 10.5 and contained a small amount of white precipitate (which upon analysis was calcium hydroxide). The current effect was 91%. The catholyte was then changed to 10% by weight sodium chloride and 2% by weight sodium hydroxide. The reactor liquor was changed to 22% by weight sodium chloride and 2% by weight oxalic acid. The initial cell voltage is
4.5 and after 2 hours of operation the voltage dropped to 4.2 volts. The catholyte was changed to 20% by weight sodium hydroxide and the operation continued. The initial cell voltage was 4.1 volts. After 4 days, the cell voltage was 4.0 volts and the current efficiency was 92%. A white precipitate formed in the reactor liquid, which upon analysis was a mixture of calcium oxalate and calcium hydroxide.
The pH of the reactor liquid after 4 days of electrolysis was 10. Next, calcium chloride was added to the brine to obtain a brine feed solution containing 5000 ppm of calcium ions. Cell operation continued for 3 days. At this time, the pH of the reactor liquid was maintained at about 5. Cell voltage was kept constant at 4.0-4.1 volts. The current efficiency was 91%.
äŸ ïŒ
äŸïŒã®çµç«é»è§£ã»ã«ã䜿çšãããéœæ¥µæ¶²ã¯ãïŒ
ïŒ
å¡©åã«ã«ã·ãŠã ãå«ãçŽç²ãã©ã€ã³ã§ãããé°
極液ã¯20ééïŒ
æ°Žé
žåãããªãŠã ã§ããããããŠ
åå¿åšæ¶²ã¯ã22ééïŒ
å¡©åãããªãŠã ãå«æããŠ
ãããåæã»ã«é»å§ã¯4.3ã§ãã€ããåå¿åšæ¶²ã
ã€ãªã³äº€ææš¹èã«ãŒããªããžã«éããŠåºåœ¢åãé€
å»ããç¶ããŠAmberlite IRC 718ã€ãªã³äº€ææš¹
èã«ã©ã ã«éããŠã«ã«ã·ãŠã ãé€å»ãããåå¿åš
液ã®PHã¯å®éšãéããŠ9.5ã10ã§ãã€ããã»ã«é»
å§ã4.2ãã«ãã®äžå®ã«ç¶æããïŒæ¥éã®é»æµå¹
çã¯92ïŒ
ã§ãã€ãããã€ã«ã¿ãŒã«ãŒããªããžã¯çœ
è²æ²æŸ±ãå«ãã§ããããããã¯åæã®çµæãé
žå
ã«ã«ã·ãŠã æ°Žåç©ã§ãã€ããå¡©é
žã«ããåçã«ã
ã€ãŠãAmberlite IRC 718æš¹èããã«ã«ã·ãŠã
ãé€å»ãããæäœãç¶ããåå¿åšæ¶²ã¯22ééïŒ
å¡©
åãããªãŠã ãïŒééïŒ
ããåãããªãŠã ãïŒé
éïŒ
ã·ãŠãŠé
žããã³ïŒééïŒ
ã¡ã¿ã±ã€é
žãããªãŠ
ã ã«å€ãããåå¿åšæ¶²ã®PHããå¡©é
žã§ïŒã«èª¿ç¯
ããïŒæ¥éç¶æãããã»ã«é»å§ã4.2ã§äžå®ã«ç¶
æããé»æµå¹çã¯91ïŒ
ã§ãã€ããæäœãç¶ããå
å¿åšæ¶²ã¯ã22ééïŒ
å¡©åãããªãŠã ãïŒééïŒ
ã¡
ã¿ãªã³é
žãããªãŠã ããã³ïŒééïŒ
次äºãªã³é
žã«
å€ãããPHã11ã«èª¿ç¯ããïŒæ¥éçŽ11ã«ç¶æã
ããã«ãŒããªããžãã€ã«ã¿ãŒã«ã¯ãŒã©ãã³ç¶æ²æŸ±
ç©ãå«ãŸããŠãããããã¯ãªã³é
žã«ã«ã·ãŠã ãã
ã³æ°Žé
žåã«ã«ã·ãŠã ãå«ãã§ãããåæã»ã«é»å§
ã¯4.2ã§ãããïŒæ¥åŸã®ã»ã«é»å§ã¯4.3ãã«ãã§ã
ã€ããæäœãç¶ããåå¿åšæ¶²ã¯22ééïŒ
å¡©åãã
ãªãŠã ã«å€åããåå¿åšæ¶²ã®PHãïŒã«èª¿ç¯ããçŽ
ïŒã«ç¶æãããåæã»ã«é»å§ã¯4.3ã§ãã€ããïŒ
æéã®æäœåŸã«ã»ã«é»å§ã¯4.8ã«äžæããïŒæé
åŸã«9.5ã«ãªã€ããé°æ¥µæ¶²ãåžéããŠïŒééïŒ
æ°Ž
é
žåãããªãŠã ãšããç¡«é
žãããªãŠã ãå ããŠçŽ
ïŒééïŒ
æ°Žé
žåãããªãŠã ããã³ïŒééïŒ
ç¡«é
žã
ããªãŠã ãå«æãã溶液ãåŸããç¡«é
žãããªãŠã
ã®æ·»å åŸããã«ãã»ã«é»å§ãäœäžãéå§ãã30å
åŸã«ãã»ã«é»å§ã¯4.5ãã«ãã«ãªã€ããé°æ¥µæ¶²ã¯
çœè²æ²æŸ±ç©ãå«ãã§ãããæäœãç¶ããåå¿åšå®€
液ã22ééïŒ
å¡©åãããªãŠã 溶液ã«å€ãããã®æº¶
液ããã€ã«ã¿ãŒããã³Amberlite IRC 718æš¹è
ã«éããŠåŸªç°ããããã®æº¶æ¶²ã®PHã10ã«èª¿ç¯ãã
ãã®å€ãç¶æãããé°æ¥µæ¶²ã20ééïŒ
æ°Žé
žåãã
ãªãŠã ã«å€ãããåæã»ã«é»å§ã¯4.2ã§ãããïŒ
æ¥åŸã«4.1ã«äœäžãããé»æµå¹çã¯92ïŒ
ã§ãã€ãã
å®éšãçµäºãããäžèšã®å®éšã¯ãåå¿åšå®€ãšé°æ¥µ
宀ãšãåé¢ãããããããNafion324èã®å埩ã
瀺ããã®ã§ãããExample 2 The assembled electrolytic cell of Example 1 was used. The anolyte is 1
% calcium chloride, the catholyte was 20% sodium hydroxide by weight, and the reactor liquid contained 22% sodium chloride by weight. The initial cell voltage was 4.3. The reactor liquor was passed through an ion exchange resin cartridge to remove solids, followed by an Amberlite IRC 718 ion exchange resin column to remove calcium. The pH of the reactor liquid was between 9.5 and 10 throughout the experiment. The cell voltage was kept constant at 4.2 volts and the current efficiency for 4 days was 92%. The filter cartridge contained a white precipitate, which upon analysis was determined to be calcium oxide hydrate. Calcium was removed from Amberlite IRC 718 resin by regeneration with hydrochloric acid. As the operation continued, the reactor liquor was changed to 22% by weight sodium chloride, 1% by weight sodium fluoride, 1% by weight oxalic acid, and 1% by weight sodium metasilicate. The pH of the reactor liquid was adjusted to 4 with hydrochloric acid and maintained for 3 days. The cell voltage was kept constant at 4.2 and the current efficiency was 91%. As operation continued, the reactor liquor was changed to 22% by weight sodium chloride, 2% by weight sodium metaphosphate, and 1% by weight hypophosphorous acid. The PH was adjusted to 11 and maintained at approximately 11 for 3 days. The cartridge filter contained a gelatinous precipitate, which contained calcium phosphate and calcium hydroxide. The initial cell voltage was 4.2 and the cell voltage after 3 days was 4.3 volts. As the operation continued, the reactor liquor changed to 22% sodium chloride by weight and the reactor liquor PH was adjusted to 3 and maintained at about 3. The initial cell voltage was 4.3. 1
After the time operation the cell voltage increased to 4.8 and after 2 hours it was 9.5. The catholyte was diluted to 2% by weight sodium hydroxide and sodium sulfate was added to yield a solution containing approximately 2% by weight sodium hydroxide and 4% by weight sodium sulfate. Immediately after the addition of sodium sulfate, the cell voltage began to drop and after 30 minutes, the cell voltage was 4.5 volts. The catholyte contained a white precipitate. Continuing the operation, the reactor chamber liquid was changed to a 22% by weight sodium chloride solution and this solution was circulated through the filter and Amberlite IRC 718 resin. Adjust the pH of this solution to 10,
That value was maintained. The catholyte was changed to 20% by weight sodium hydroxide. The initial cell voltage is 4.2 and 3
It dropped to 4.1 after a day. The current efficiency was 92%.
The experiment has ended. The above experiment demonstrates the recovery of a soiled Nafion 324 membrane separating the reactor and cathode chambers.
äŸ ïŒ
äŸïŒã®çµç«é»è§£ã»ã«ã䜿çšãããéœæ¥µæ¶²ã¯ãïŒ
ééïŒ
å¡©åã«ã«ã·ãŠã ãå«ãçŽç²ãã©ã€ã³ã§ã
ããé°æ¥µæ¶²ã¯20ééïŒ
æ°Žé
žåãããªãŠã ã§ããã
ãããŠåå¿åšæ¶²ã¯ã22ééïŒ
å¡©åãããªãŠã ã§ã
ã€ããåæã»ã«é»å§ã¯4.2ã§ãã€ããåèšã®ãã©
ã€ã³ã«å¡©å第äºé
ãšå¡©å第äžéãšãå ããŠãïŒé
éïŒ
å¡©å第äºé
ãšïŒééïŒ
å¡©å第äžéãš24ééïŒ
å¡©åãããªãŠã ãšã®ãéœæ¥µå®€ãžã®ããã©ã€ã³äŸçµŠ
液ãåŸãããã©ã€ã³ã®PHã¯2.5ã§ãã€ããåå¿åš
宀液ã¯ããããPH10ã«èª¿ç¯ãããããŠããã¯ïŒé
éïŒ
äºç¡«é
žãããªãŠã ãå«ãã§ãããåæã»ã«é»
å§ã¯4.2ã§ããããããïŒæ¥éäžå®ã«ç¶æããã
åå¿åšæ¶²ã¯é»è€è²æ²æŸ±ç©ãå«æããŠãããããã
ãã€ã«ã¿ãŒäžã«éããŠåæãããšãããé
ãéã
ã€ãªãŠããã³é
žçŽ ãå«ãã§ãããå¡©ã®æ··åç©ã§ã
ãããšã瀺ãããé°æ¥µæ¶²ã¯æ²æŸ±ç©ãå«ãŸããç¡è²
ã§ãã€ããé»æµå¹çã¯91ïŒ
ã§ãã€ããæäœãç¶
ããåå¿åšæ¶²ã¯22ééïŒ
å¡©åãããªãŠã ããã³
0.5ééïŒ
ããããœããšãã«ããããã·ã«ã¢ãã³
ã«å€åãããåæã»ã«é»å§ã¯4.2ã§ãããïŒæ¥é
å®è³ªçã«4.2ã«ç¶æãããåå¿åšå®€äžã«æ²æŸ±ç©ã
çæãããããã«ãŒããªããžãã€ã«ã¿ãŒäžã«éã
ããé°æ¥µæ¶²ã¯æ²æŸ±ç©ãå«ãŸããç¡è²ã§ãã€ããæ
äœãçµäºãããExample 3 The assembled electrolytic cell of Example 1 was used. The anolyte is 1
Pure brine containing % calcium chloride by weight, catholyte 20% sodium hydroxide by weight,
The reactor liquid was then 22% by weight sodium chloride. The initial cell voltage was 4.2. Add cupric chloride and ferrous chloride to the above brine to obtain 1% by weight cupric chloride, 1% by weight ferrous chloride and 24% by weight.
A brine feed to the anode chamber with sodium chloride was obtained. The pH of the brine was 2.5. The reactor chamber liquid was adjusted to a pH of 10 and contained 3% by weight sodium sulfite. The initial cell voltage was 4.2 and was kept constant for 4 days.
The reactor liquid contained a dark brown precipitate, which was collected on a filter and analyzed, and it was found that copper, iron,
It contained sulfur and oxygen, indicating that it was a mixture of salts. The catholyte was free of precipitates and colorless. The current efficiency was 91%. Continuing the operation, the reactor liquid was reduced to 22% by weight sodium chloride and
Converted to 0.5% by weight nitrosophenylhydroxylamine. The initial cell voltage was 4.2 and remained substantially at 4.2 for 3 days. A precipitate formed in the reactor chamber and was collected on a cartridge filter. The catholyte was free of precipitates and colorless. The operation has ended.
äŸ ïŒ
äŸïŒã®çµç«é»æ°ååŠã»ã«ã䜿çšãããéœæ¥µæ¶²
ã¯ãïŒééïŒ
å¡©åã«ã«ã·ãŠã ãå«ã25ééïŒ
çŽç²
ãã©ã€ã³ã§ãããåå¿åšå®€ã¯ã10ééïŒ
æ°Žé
žåã
ããªãŠã ãå«æããŠããããããŠé°æ¥µå®€ã¯20éé
ïŒ
æ°Žé
žåãããªãŠã ãå«æããŠãããåæã»ã«é»
å§ã¯4.3ã§ãã€ããã»ã«é»å§ã¯æ¥éã«äžæãå§ãã
20ååŸã«11.5ãã«ãã«ãªã€ããåå¿åšæ¶²ã22éé
ïŒ
å¡©åãããªãŠã ããã³ïŒééïŒ
ã·ãŠãŠé
žã«å€
ããPHã8.5ã«èª¿ç¯ããŠç¶æãããåæã»ã«é»å§
ã¯11.2ã§ããããã®é»å§ã¯æ¥æ¿ã«äœäžãå§ããã
ïŒæéåŸã«ã¯ã»ã«é»å§ã¯4.2ã«ããããŠïŒæ¥åŸã«
ã¯4.1ã«ãªã€ããé»æµå¹çã¯92ïŒ
ã§ãã€ããæ¬äŸ
ã¯ããã©ã€ã³äžã®ã«ã«ã·ãŠã ã®ã»ã«é»å§ããã³è
ãããã«å¯Ÿããå¹æã瀺ããŠãããããã¯ãéœæ¥µ
宀ãšåå¿åšå®€ãšãåé¢ããèã®å埩ã瀺ããã®ã§
ããããExample 4 The assembled electrochemical cell of Example 1 was used. The anolyte was 25 wt% pure brine containing 1 wt% calcium chloride, the reactor chamber contained 10 wt% sodium hydroxide, and the catholyte chamber contained 20 wt% sodium hydroxide. Ta. The initial cell voltage was 4.3. The cell voltage begins to rise rapidly,
After 20 minutes it was 11.5 volts. The reactor liquor was changed to 22% by weight sodium chloride and 3% by weight oxalic acid and the pH was adjusted and maintained at 8.5. The initial cell voltage was 11.2 and this voltage began to drop rapidly.
After 1 hour the cell voltage was 4.2 and after 2 days it was 4.1. The current efficiency was 92%. This example shows the effect of calcium in brine on cell voltage and membrane fouling. This also indicates the recovery of the membrane separating the anode and reactor chambers.
åèšã®åå®æœäŸã¯ãå€äŸ¡ã«ããªã³ã®å«ãå¡©åã
ããªãŠã ãã©ã€ã³ã®é»è§£ã«ãã€ãŠå¡©çŽ ããã³å¡©å
ãããªãŠã ã補é ããããšã®å®¹ææ§ããã³å¹çã
瀺ããã®ã§ãããå€äŸ¡ã«ããªã³ã®ã€ãªã³æ§äžç§»å
æ§åã¯ãïŒäŸ¡ããã³å€äŸ¡ã«ããªã³ã®åé¢ã蚱容
ããç¶ããŠãïŒäŸ¡ã«ããªã³ã®é«çŽåºŠæ°Žé
žåç©ã®è£œ
é ã蚱容ãããé
žã®å¯æº¶æ§å¡©ã¯ãåé¢èã®ããã
ããã³ããããèã®å埩ãé²æ¢ããã The foregoing examples demonstrate the ease and efficiency of producing chlorine and sodium chloride by electrolysis of a sodium chloride brine containing polyvalent cations. Ionic immobilization of polyvalent cations allows separation of monovalent and polyvalent cations and subsequent production of high purity hydroxides of monovalent cations. Soluble salts of acids prevent fouling of separation membranes and recovery of fouled membranes.
æ¬çºæã®ä»ã®æ
æ§ã説æããããã«ãã«ãããŠ
ã ããŒã¹ã®éœæ¥µã«ä»£ããŠè±åœIMIããåŸããã
Ebonexéå
åé
žåãã¿ã³éœæ¥µãæ¡çšããããšä»¥
å€ã¯äŸïŒãšåãçµç«ã»ã«ã䜿çšãããéœæ¥µå®€ã¯ã
ç¡«é
žãããªãé
žæ§æ°Žæ§æ¶²ãå«ãã§ãããåå¿åšå®€
ïŒããã§ã¯ãäŸçµŠå®€ïŒäžã®æ°Žæ§æ¶²ã®çµæã¯ä»¥äžã®
ããã«å€åãããé°æ¥µæ¶²äžã®æ°Žæ§æ¶²ã¯é
žã®å¯æº¶å¡©
ããæããé»è§£å¹çã枬å®ããããšã¯è¡ãªããªã
ã€ããåé»è§£ã¯ïŒæ¥ãããŠå®æœãããéœæ¥µæ¶²çµæ
ã¯ãæ°Žãå ããããšã«ãã€ãŠèª¿ç¯ãããé°æ¥µæ¶²çµ
æã¯é»è§£ã«ãã€ãŠå€åãããå€äŸ¡ã«ããªã³ãäžæº¶
æ§åããïŒäŸ¡ã«ããªã³ã¯å¯æº¶æ§æ°Žé
žåç©ãçæã
ããã»ã«é»å§ã®äœäžã¯ãé°æ¥µæ¶²ãŸãã¯äŸçµŠæ¶²çµæ
ç©ã®å°é»çã®äžæã瀺ããŠãããæ°Žæ§æ¶²ïŒäŸçµŠ
液ïŒããéœæ¥µå®€ã«éããªãããäžå®é床ã§ã»ã«ã«
äŸçµŠãããã»ã«é»å§ã®äžæã¯ã«ããªã³ééæ§èã®
ãããã瀺ããŠããã To illustrate another aspect of the invention, instead of a ruthenium-based anode, a
The same assembled cell as in Example 1 was used except that an Ebonex reduced titanium oxide anode was employed. The anode chamber is
It contained an acidic aqueous liquid consisting of sulfuric acid. The composition of the aqueous liquid in the reactor chamber (here the feed chamber) was varied as follows. The aqueous liquid in the catholyte consists of soluble salts of acids. No measurement of electrolytic efficiency was performed. Each electrolysis was performed over one day. Anolyte composition was adjusted by adding water. The catholyte composition changed with electrolysis. Multivalent cations became insoluble, and monovalent cations produced soluble hydroxides. A decrease in cell voltage is indicative of an increase in the conductivity of the catholyte or feed fluid composition. An aqueous liquid (feed liquid) was fed to the cell at a constant rate while passing through the anode chamber. An increase in cell voltage indicates fouling of the cation-permeable membrane.
äŸ ïŒ
äžèšã®ãšããã«å€ããäŸïŒã®çµç«ã»ã«ã䜿çšã
ããéœæ¥µæ¶²ã¯4.7ééïŒ
ç¡«é
žæ°Žæº¶æ¶²ã§ãããé°æ¥µ
液ã¯ïŒééïŒ
ç¡«é
žãããªãŠã ããã³é°æ¥µã§åœ¢æã
ããæ°Žé
žåã€ãªã³ãããªã氎溶液ã§ãããäŸçµŠæ¶²
ã¯ïŒééïŒ
ã¯ãã é
žãïŒééïŒ
ç¡é
žãïŒééïŒ
é
¢
é
žãããªãŠã ããã³ïŒééïŒ
解é¢åã«ãããŠã é
å±ãããªã氎溶液ã§ãã€ããåæã»ã«é»å§ã¯ãçŽ
0.03ã¢ã³ãã¢ïŒcm2ïŒ0.2ã¢ã³ãã¢ïŒin2ïŒã«ãããŠ
6.2ã§ãã€ããã»ã«é»å§ã¯ã24æéã«äºãã6.2ã
6.0ã«å®è³ªçã«äžå®ã«ç¶æãããé°æ¥µæ¶²ã¯ãçœè²
æ²æŸ±ç©ãå«æããŠããããããã¯åæã®çµæãæ°Ž
é
žåã«ãããŠã ã§ãã€ããäŸçµŠæ¶²ããïŒééïŒ
ã¯
ãã é
žãšïŒééïŒ
å¡©å第äºé
ãšïŒééïŒ
ã¯ãã é
ž
第äºé
ãšïŒééïŒ
ããŠé
žãšãããªã氎溶液ã«å€ã
ããåæã»ã«é»å§ã¯ã0.3ã¢ã³ãã¢ïŒin2ã«ãããŠ
6.8ã§ããã28æéã®é»è§£ã«ãããŠ6.8ãã«ãã§äž
å®ã«ç¶æãããé°æ¥µæ¶²ã¯æ°Žé
žå第äºé
ã®æ²æŸ±ãå«
æããŠãããéœæ¥µã«ãããŠã¯ãæ€åºã§ããå¡©çŽ ã¯
çºçããªãã€ããå®éšãçµäºããèãã»ã«ããé€
å»ããå ç©ç©ãæ€æ»ãããèã¯ãéå±ãŸãã¯å¡©ã®
å ç©ç©ãå®è³ªçã«å«ãã§ããªãã€ããé°æ¥µã¯æž
æµ
ã§ãããå ç©ç©ããªãã€ããExample 5 The assembly cell of Example 1 was used, modified as described above. The anolyte is an aqueous solution of 4.7 wt.% sulfuric acid, the catholyte is an aqueous solution consisting of 5 wt.% sodium sulfate and hydroxide ions formed at the cathode, and the feed solution is 3 wt.% chromic acid, 2 wt.% nitric acid, 2 wt. % sodium acetate and 5% by weight dissociated cadmium metal. The initial cell voltage is approximately
At 0.03 amps/cm 2 (0.2 amps/in 2 )
It was 6.2. Cell voltage ranged from 6.2 to 6.2 over 24 hours.
remained virtually constant at 6.0. The catholyte contained a white precipitate, which upon analysis was cadmium hydroxide. The feed solution was changed to an aqueous solution consisting of 5% by weight chromic acid, 3% by weight cupric chloride, 5% by weight cupric chromate, and 2% by weight boric acid. Initial cell voltage is 0.3 amps/in 2
6.8 and was maintained constant at 6.8 volts during 28 hours of electrolysis. The catholyte contained a precipitate of cupric hydroxide. No detectable chlorine was generated at the anode. The experiment was terminated, the membrane was removed from the cell, and the deposits were inspected. The membrane was substantially free of metal or salt deposits. The cathode was clean and free of deposits.
åèšã®äŸïŒã¯ãå€äŸ¡ã«ããªã³ããã³ã¢ããªã³ã®
å¡©ãäŸãã°ã¯ãã é
žå¡©ãå¡©åç©ãããŠé
žå¡©ãé
¢é
ž
å¡©ããã³ç¡é
žå¡©ããé£ç¶çãªé«ãã»ã«å®¹éã«ãã
ãŠãå€äŸ¡ã«ããªã³ã®å®è³ªçã«æ°Žäžæº¶æ§ã®æ°Žé
žåç©
ããã³ã¢ããªã³ã®é
žã«åã
å€ããããšã®å®¹ææ§ã
瀺ããã®ã§ãããé
žã®å¯æº¶æ§å¡©ïŒç¡«é
žãããªãŠ
ã ïŒã¯ãå€äŸ¡ã«ããªã³ã®é»æ°ç§»åãä¿é²ããèã®
ããããé²æ¢ãããé°æ¥µã«çºçããæ°Žé
žã€ãªã³ã«
ããå€äŸ¡ã«ããªã³ã®äžæº¶æ§åã¯ãé°æ¥µæ¶²ã®é·æã«
äºã䜿çšãå¯èœã«ããåºäœãšããŠäœ¿çšããå€äŸ¡ã«
ããªã³æ°Žé
žåç©ã®ååãå¯èœã«ããã Example 5 above shows that salts of polyvalent cations and anions, such as chromates, chlorides, borates, acetates and nitrates, are added to the substantially water-insoluble form of the polyvalent cations at continuous high cell volumes. This shows the ease of converting into hydroxide and anionic acids, respectively. Soluble salts of acids (sodium sulfate) promote electromigration of polyvalent cations and prevent membrane fouling. Insolubilization of polyvalent cations by hydroxide ions generated at the cathode enables long-term use of the catholyte and recovery of polyvalent cation hydroxide for use as a solid.
æ¬çºææ¹æ³ã®ä»ã®æ
æ§ã¯ãå€äŸ¡ã«ããªã³ã®å¡©ã«
ãã€ãŠããããèã®å埩ã§ãããæ¬çºæã®ãã®èŠ³
ç¹ã«ã€ããŠå®æœã説æããããã«ãäŸïŒã®ã»ã«ã
ãåå¿åšå®€ãåãé€ãããšã«ãã€ãŠãïŒå®€é»æ°é
æã»ã«ãçµç«ãŠããéœæ¥µå®€ãšé°æ¥µå®€ãšããã«ããª
ã³ééæ§èãããªãã¡ãNafionéããåè901ã
ãã³203ã«ãã€ãŠåé¢ãããåèšã®901èã¯ã¹ã«ã
ã³é
žåºãšã«ã«ãã³é
žåºãšãããªããåèšã®204è
ã¯ã¹ã«ãã³é
žåºããã³ã¹ã«ãã³ã¢ããåºãå«ãã§
ãããäž¡èãšããã¯ãã«âã¢ã«ã«ãªé»è§£ã«å¯Ÿãã
é«èæ§å¹çèã§ãããéœæ¥µæ¶²ã¯ãPHïŒããã¡ãïŒ
ééïŒ
å¡©åã«ã«ã·ãŠã ãš20ééïŒ
å¡©åãããªãŠã
ãšãããªã氎溶液ã§ãã€ããïŒçš®ã®é°æ¥µæ¶²ã䜿çš
ãããé°æ¥µæ¶²(1)ã¯ãé»è§£ããã³ããããèã®å埩
çšã§ãïŒééïŒ
æ°Žé
žåãããªãŠã ããã³20ééïŒ
å¡©åãããªãŠã ãããªããé°æ¥µæ¶²(2)ã¯ãèã®ãã
ãçšã§ã20ééïŒ
èæ§ç©æ°Žæº¶æ¶²ãããªããé»è§£æ¡
件ã¯äŸïŒã®æ¡ä»¶ã䜿çšãããã»ã«ã¯ãé°æ¥µæ¶²(1)ã«
ãããåæé»å§ããšãåã¯ïŒæéããããŠæçµé»
å§ããšãåã¯çŽ24æéãæäœãããé°æ¥µæ¶²(1)ãé°
極液(2)ã§çœ®ãæããé»å§ãçŽ10ãã«ãã«éãããŸ
ã§ã»ã«é»å§ã芳å¯ããã次ã«ãé°æ¥µæ¶²(2)ãé°æ¥µæ¶²
(1)ãšçœ®ãæãããã»ã«ãçŽ24æéæäœããé»å§ã
èšé²ãããæ°åã®ãããããã³å埩ãµã€ã¯ã«ã®çµ
æã¯éåžžã«ãã䌌ããã®ã§ãã€ããçµæã¯ä»¥äžã®
ãšããã§ãã€ãã(a)è901ïŒåæé»å§4.0ãé°æ¥µæ¶²
(2)ã§30åé11.5ãé°æ¥µæ¶²(1)ã§28æé3.9ãã«ãã
(b)è204ïŒåæé»å§3.9ãé°æ¥µæ¶²(2)ã§60åé12.8ã
ã«ããé°æ¥µæ¶²(1)ã§24æé3.9ãã«ããäžèšã®çµæ
ã¯ãé
žã®å¯æº¶æ§å¡©ïŒäŸãã°å¡©åãããªãŠã ïŒã«ã
ããããããèã®å埩ã«ãããæå¹æ§ããªãã³
ã«ãã«ããªã³ééæ§èãééããæ°Žé
žã€ãªã³å«æ
氎溶液ãžã®å€äŸ¡ã«ããªã³ã®é»æ°ç§»åã«ãããæå¹
æ§ã瀺ããã®ã§ãããåæ§ã®å®éšããéœæ¥µæ¶²ãæ°Ž
æ§äŸçµŠæ¶²ãïŒäŸ¡ããã³å€äŸ¡ã«ããªã³å¡©ãé°æ¥µæ¶²ã
éœæ¥µãé°æ¥µãèãäžæº¶æ§åå€ãã€ãªã³çäžåæ§äœ
çšããã€ãã¬ãŒãããã³è€åäœå€äŸ¡ã«ããªã³ã®ä»
ã®çµåãã«ã€ããŠè¡ãªã€ããäžèšã®å®éšã®çµæ
ã¯ãå€äŸ¡ã«ããªã³ã®äžæº¶æ§åå€ãå«ã¿ãé°æ¥µãšé»
æ°çã«é£çµ¡ããæ°Žæ§æ¶²äžã§é
žã®å¯æº¶æ§å¡©ã䜿çšã
ãããšã«ãããã«ããªã³ééæ§èã®ããããé²æ¢
ããã«ããªã³ééæ§èãééããå€äŸ¡ã«ããªã³ã®
é£ç¶çé«å®¹éé»æ°ç§»åãæäŸããããšã瀺ãã Another aspect of the method of the invention is the recovery of membranes contaminated by polyvalent cation salts. To illustrate the practice of this aspect of the invention, a two-chamber electrodialysis cell was constructed by removing the reactor chamber from the cell of Example 1. The anode and cathode compartments were separated by cation permeable membranes, namely Nafion perfluorinated membranes 901 and 203. The 901 membrane described above consists of a sulfonic acid group and a carboxylic acid group, and the 204 membrane described above contains a sulfonic acid group and a sulfonamide group. For both membranes, against chlor-alkali electrolysis,
High caustic efficiency membrane. The anolyte has a pH of 2 and 5
It was an aqueous solution consisting of 20% by weight of calcium chloride and 20% by weight of sodium chloride. Two catholytes were used. The catholyte (1) is for electrolysis and dirty membrane recovery and contains 2% by weight sodium hydroxide and 20% by weight.
The catholyte (2) is for cleaning the membrane and consists of a 20% by weight aqueous caustic solution. The electrolytic conditions used were those of Example 1. The cell was operated with catholyte (1) for 2 hours before taking the initial voltage and for about 24 hours before taking the final voltage. The catholyte (1) was replaced with the catholyte (2) and the cell voltage was observed until the voltage reached approximately 10 volts. Next, add the catholyte (2) to the catholyte.
Replaced with (1). The cell was operated for approximately 24 hours and the voltage was recorded. The results of several soil and recovery cycles were very similar. The results were as follows. (a) Membrane 901: initial voltage 4.0, catholyte
(2) at 11.5 volts for 30 minutes and catholyte (1) at 3.9 volts for 28 hours.
(b) Membrane 204: initial voltage 3.9, 12.8 volts for 60 minutes with catholyte (2), 3.9 volts for 24 hours with catholyte (1). The above results demonstrate the effectiveness of soluble salts of acids (e.g., sodium chloride) in the recovery of fouled membranes, as well as in the electrotransfer of polyvalent cations through cation-permeable membranes into aqueous solutions containing hydroxide ions. This shows that. Similar experiments were performed on the anolyte, aqueous feed, monovalent and polyvalent cation salts, catholyte,
Other combinations of anodes, cathodes, membranes, insolubilizing agents, chelates with ionic immobilizing effects, and complex polyvalent cations were investigated. The results of the above experiments demonstrate that the use of a soluble salt of an acid in an aqueous liquid containing a polyvalent cation insolubilizer and in electrical communication with the cathode prevents fouling of the cation-permeable membrane and allows cation permeation. The present invention is shown to provide continuous high-capacity electrotransfer of multivalent cations across membranes.
Claims (1)
ïŒäŸ¡ã«ããªã³ã®å¡©ã®æº¶æ¶²ãšããéžã°ããã第ïŒã®
æ°Žæ§ã®äŸçµŠæ¶²ãŸãã¯éœæ¥µæ¶²äžã®å€äŸ¡éå±ã«ããªã³
ã®å¡©ãããã®å¡©ã¢ããªã³ã®é žã«ããŸãã¯ãã®å¡©ã¢
ããªã³ããã©ã€ãã®å Žåã«ã¯ããã²ã³ã«ãé»æ°é
æå€æããæ¹æ³ã§ãã€ãŠã åèšæ°Žæ§æ¶²ããã®ã«ããªã³ããã«ããªã³ééæ§
èãéããŠã (a) é žïŒãã®é žã¯ãïŒèŠå®æ¶²äžã§PHïŒä»¥äžã§ã
ããããããåèšå€äŸ¡ã«ããªã³ã®æ°Žæº¶æ§å¡©ã圢
æãããã®ãšããïŒã®å¯æº¶æ§å¡©ãš (b) åèšå€äŸ¡ã«ããªã³ãšéžæçã«åå¿ããŠãåèš
å€äŸ¡éå±ã«ããªã³ã®æ²æŸ±ãè€åäœããã³ãã¬ãŒ
ãããéžã°ããã€ãªã³çäžåæ§ç©è³ªãçæãã
ããšã®ã§ããäžåæ§åå€ãš ãå«ã第ïŒã®æ°Žæ§æ¶²äžãžé»æ°ç§»åããããšãå«ã
ã§ãªããåèšã®é»æ°éæå€ææ³ã ïŒ åèšã®ç¬¬ïŒæ°Žæ§æ¶²äžã®é žã®å¯æº¶æ§å¡©ãã€ãª
ãŠãããã²ã³ãçªçŽ ããªã³ããã³ççŽ ã®é žïŒãã®
é žã¯ã0.1N液äžã§ãPHïŒä»¥äžã§ãããã®ãšããïŒ
ã®ã¢ã«ã«ãªéå±å¡©ããéžã°ãããã®ã§ããç¹èš±è«
æ±ã®ç¯å²ç¬¬ïŒé èšèŒã®æ¹æ³ã ïŒ åèšã®ç¬¬ïŒã®æ°Žæ§æ¶²ããåèšå€äŸ¡éå±ã«ããª
ã³ãšåå¿ããŠæ²æŸ±ãçæãããå¯æº¶æ§ã®æ°Žé žã€ãª
ã³ãçé žã€ãªã³ãçé žæ°ŽçŽ ã€ãªã³ãŸãã¯ãããã®
æ··åç©ãããªãç¹èš±è«æ±ã®ç¯å²ç¬¬ïŒé èšèŒã®æ¹
æ³ã ïŒ åèšã®å¯æº¶æ§å¡©ãã0.1N液äžã§PHïŒä»¥äžã§
ããé žã®å¡©ã§ããç¹èš±è«æ±ã®ç¯å²ç¬¬ïŒé èšèŒã®æ¹
æ³ã ïŒ åèšã®äžåæ§åå€ããã¢ã«ã«ãªã·ã¢ããã€ãª
ã³ããžã¡ãã«ã°ããã·ã ã€ãªã³ããšãã¬ã³ãžã¢ã
ãåé ¢é žã€ãªã³ãããããœããšãã«ããããã·ã¢
ãã³ã€ãªã³ãæ°Žé žã€ãªã³ãçé žã€ãªã³ãçé žæ°ŽçŽ
ã€ãªã³ãã·ãŠãŠé žã€ãªã³ãã±ã€é žã€ãªã³ããã«ãª
ã©ã€ãã€ãªã³ããªã³é žã€ãªã³ãã¹ã«ãã€ãã€ãª
ã³ãããªç¡«é žã€ãªã³ãã€ãªã³äº€ææš¹èææããã³
ãããã®æ··åç©ããéžã°ããç¹èš±è«æ±ã®ç¯å²ç¬¬ïŒ
é èšèŒã®æ¹æ³ã ïŒ åèšã®ç¬¬ïŒã®æ°Žæ§æ¶²ããå€äŸ¡ã«ããªã³ã®ïŒéš
åã®ã€ãªã³çäžåæ§åå€ãå«ãã§ãããä»ã®å€äŸ¡
ã«ããªã³ã¯äžåæ§åãããã«åèšã®ç¬¬ïŒã®æ°Žæ§æ¶²
ãããã«ããªã³ééæ§èãéã€ãŠã(a)é žïŒãã®é ž
ã¯ãïŒèŠå®æ¶²äžã§PHïŒä»¥äžã§ãããããããåèš
å€äŸ¡ã«ããªã³ãšæ°Žæº¶æ§å¡©ã圢æãããã®ãšããïŒ
ã®å¯æº¶æ§å¡©ãš(b)åèšå€äŸ¡ã«ããªã³ãšéžæçã«åå¿
ããŠãåèšå€äŸ¡éå±ã«ããªã³ã®æ²æŸ±ãè€åäœãã
ã³ãã¬ãŒãããéžã°ããã€ãªã³çäžåæ§ååç©ã
çæããããšã®ã§ããäžåæ§åå€ãšã®æ°Žæ§æ¶²ã§ã
ã€ãŠãé»æ°éæã»ã«ã®é°æ¥µãšé»æ°çã«é£çµ¡ããŠã
ãæ°Žæ§æ¶²ãå«ã第ïŒã®å®€ãžé»æ°ç§»åãããç¹èš±è«
æ±ã®ç¯å²ç¬¬ïŒé èšèŒã®æ¹æ³ã ïŒ åèšã®ç¬¬ïŒã®æ°Žæ§æ¶²ããå€äŸ¡éå±ã«ããªã³ã®
å¡©ã®ä»ã«ïŒäŸ¡éå±ã«ããªã³ã®å¡©ãå«ãã§ããã第
ïŒã®å®€äžã®åèšïŒäŸ¡éå±ã«ããªã³ãã«ããªã³éé
æ§èãééããŠãïŒãã倧ããPHããã€æ°Žæ§æ¶²ãš
é»æ°éæã»ã«çšé°æ¥µãšãå«ã第ïŒã®å®€ãžç§»åãã
ãç¹èš±è«æ±ã®ç¯å²ç¬¬ïŒé èšèŒã®æ¹æ³ã ïŒ éœæ¥µæ¶²ãšããŠã®ç¬¬ïŒã®æ°Žæ§æ¶²äžã®å€äŸ¡ã«ããª
ã³ããã³ïŒäŸ¡ã«ããªã³ã®å¡©ã®æ··åç©ã«é»æ°éæå€
æãé©çšããæ¹æ³ã§ãã€ãŠãåèšã®ïŒäŸ¡ããã³å€
䟡ã«ããªã³ããåèšã®ç¬¬ïŒã®æ°Žæ§æ¶²ãããã«ããª
ã³ééæ§èãéããŠã(a)é žïŒãã®é žã¯ïŒèŠå®æ¶²äž
ã§PHïŒä»¥äžã§ãããããããåèšå€äŸ¡ã«ããªã³ãš
å¯æº¶æ§å¡©ã圢æãããã®ãšããïŒã®å¯æº¶æ§å¡©ãš(b)
åèšå€äŸ¡ã«ããªã³ãšéžæçã«åå¿ããã«ããªã³é
éæ§èãéããŠåèšå€äŸ¡éå±ã«ããªã³ã®ã€ãªã³ç
äžåæ§åãè¡ãªãããšã®ã§ããäžåæ§åå€ãšãå«
ã第ïŒã®æ°Žæ§æ¶²äžãžé»æ°ç§»åãããããŠåèšïŒäŸ¡
éå±ã«ããªã³ããåèšã®ç¬¬ïŒã®æ°Žæ§æ¶²ãããä»ã®
ã«ããªã³ééæ§èãéããŠãé°æ¥µãšé»æ°çã«é£çµ¡
ãæ°Žé žã€ãªã³ãå«ã第ïŒã®æ°Žæ§æ¶²äžãžé»æ°ç§»å
ããããã«ãã€ãŠãæ°Žæ§æ¶²äžã®ïŒäŸ¡ããã³å€äŸ¡ã«
ããªã³ã®é»æ°éæåé¢ããé«ã»ã«å®¹éäžã§å¹æç
ã«å®æœå¯èœãšãããç¹èš±è«æ±ã®ç¯å²ç¬¬ïŒé èšèŒã®
æ¹æ³ã ïŒ åèšã®ç¬¬ïŒã®æ°Žæ§æ¶²äžã®äžåæ§åå€ããåèš
å€äŸ¡éå±ã«ããªã³ãšéžæçã«åå¿ããŠãé»è·ãã
ããªãããããã¯è² é»è·ããã€ãã¬ãŒããŸãã¯è€
åäœååç©ãçæããããšã®ã§ããç©è³ªããéžã°
ããç¹èš±è«æ±ã®ç¯å²ç¬¬ïŒé èšèŒã®æ¹æ³ã ïŒïŒ åèšã®ç¬¬ïŒã®æ°Žæ§æ¶²äžã®åèšäžåæ§åå€
ããåèšå€äŸ¡ã«ããªã³ãšåå¿ããŠæ²æŸ±ãŸãã¯æ°Žäž
溶æ§å¡©ãçæããããšã®ã§ããç©è³ªããéžã°ãã
ç¹èš±è«æ±ã®ç¯å²ç¬¬ïŒé èšèŒã®æ¹æ³ã ïŒïŒ ååšããå€äŸ¡éå±ã«ããªã³ãšãã¬ãŒããŸã
ã¯è€åäœååç©ãçæããããšã®ã§ããåèšäžå
æ§åå€ããã¢ã«ã«ãªã·ã¢ãŒãããžã¡ãã«ã°ããã·
ã ããšãã¬ã³ãžã¢ããåé ¢é žãŸãã¯ããããœããš
ãã«ããããã·ã¢ãã³ã§ããç¹èš±è«æ±ã®ç¯å²ç¬¬ïŒ
é èšèŒã®æ¹æ³ã ïŒïŒ åèšå€äŸ¡ã«ããªã³ãã€ãªã³çã«äžåæ§å
ããåèšå€äŸ¡ã«ããªã³ãšæ²æŸ±ãŸãã¯æ°Žäžæº¶æ§åå
ç©ãçæããããšã®ã§ããåèšã®äžåæ§åå€ãã
å¯æº¶æ§ã®æ°Žé žã€ãªã³ãçé žã€ãªã³ãçé žæ°ŽçŽ ã€ãª
ã³ãã·ãŠãŠé žã€ãªã³ããã«ãªã©ã€ãã€ãªã³ãã±ã€
é žã€ãªã³ããªã³é žã€ãªã³ãã¹ã«ãã€ãã€ãªã³ãã
ãªç¡«é žã€ãªã³ãéåäœé žãã€ãªã³äº€æææããã
ã³ãããã®æ··åç©ããéžã°ããç¹èš±è«æ±ã®ç¯å²ç¬¬
ïŒïŒé èšèŒã®æ¹æ³ã ïŒïŒ åèšã®ïŒäŸ¡ã«ããªã³ã®å¡©ãã¢ã«ã«ãªéå±ã
ãã²ã³åç©ã§ãããïŒäŸ¡ããã³å€äŸ¡éå±ã«ããªã³
ãåå¿åšå®€äžã®ç¬¬ïŒã®æ°Žæ§æ¶²äžãžé»æ°ç§»åããç¹
èš±è«æ±ã®ç¯å²ç¬¬ïŒé èšèŒã®æ¹æ³ã ïŒïŒ åèšã®ã¢ã«ã«ãªéå±ããã²ã³åç©ãå¡©åã
ããªãŠã ã§ããç¹èš±è«æ±ã®ç¯å²ç¬¬ïŒïŒé èšèŒã®æ¹
æ³ã ïŒïŒ é°æ¥µæ¶²ãæ°Žé žåãããªãŠã 氎溶液ã§ããç¹
èš±è«æ±ã®ç¯å²ç¬¬ïŒïŒé èšèŒã®æ¹æ³ã ïŒïŒ åèšå€äŸ¡éå±ã«ããªã³ãäžæº¶æ§åããæ¿Ÿé
ãŸãã¯ã€ãªã³äº€æã«ãã€ãŠåå¿åšå®€äžã®æ°Žæ§æ¶²ã
ãé€å»ããç¹èš±è«æ±ã®ç¯å²ç¬¬ïŒïŒé èšèŒã®æ¹æ³ã ïŒïŒ (a)ããããèã®é°æ¥µåŽãšæ¥è§Šãããé žïŒã
ã®é žã¯ãïŒèŠå®æ¶²äžã§PHïŒä»¥äžã§ããããããã
å€äŸ¡ã«ããªã³ã®æ°Žæº¶æ§å¡©ã圢æãããã®ãšããïŒ
ã®å¯æº¶æ§å¡©ã®æ°Žæ§æ¶²ãšã(b)åèšã®ããããèã®éœ
極åŽãšæ¥è§Šããé žæ§æ°Žæ§æ¶²ãšããã€é»æ°éæã»ã«
ã«é»æµãéããããã«ãã€ãŠå€äŸ¡ã«ããªã³ãåèš
ã®ããããèãããé žã®å¯æº¶æ§å¡©ãããªãæ°Žæ§æ¶²
äžãžé»æ°ç§»åããããšã«ãããèãããããŠãã
å€äŸ¡éå±ã«ããªã³ãå€æãèããé€å»ããç¹èš±è«
æ±ã®ç¯å²ç¬¬ïŒé èšèŒã®æ¹æ³ã ïŒïŒ åèšã®é žã®å¯æº¶æ§å¡©ããã€ãªãŠãããã²
ã³ãçªçŽ ããªã³ããã³ççŽ ã®é žïŒãã®é žã¯ã
0.1N液äžã§PHïŒä»¥äžã§ãããåèšå€äŸ¡ã«ããªã³
ãšæ°Žæº¶æ§å¡©ã圢æãããã®ãšããïŒã®ã¢ã«ã«ãªé
å±å¡©ããéžã°ãããã®ã§ããç¹èš±è«æ±ã®ç¯å²ç¬¬ïŒ
ïŒé èšèŒã®æ¹æ³ã ïŒïŒ åèšã®é žæ§æ°Žæ§æ¶²äžã®é žããã€ãªãŠããã
ã²ã³ãçªçŽ ããªã³ããã³ççŽ ã®é žïŒãã®é žã¯ã
0.1N液äžã§PHïŒä»¥äžã§ãããã®ãšããïŒãŸãã¯
ãã®æ··åç©ããéžã°ãããã®ã§ããç¹èš±è«æ±ã®ç¯
å²ç¬¬ïŒïŒé èšèŒã®æ¹æ³ã ïŒïŒ å°ãªããšãé°æ¥µå®€ãšéœæ¥µå®€ãšãå«ã¿ãå€äŸ¡
éå±ã«ããªã³ã®å¯æº¶æ§å¡©ãå«ãã§ãªãé žæ§æ°Žæ§æ¶²
ãå«ã¿ãéœæ¥µå®€ã§ããããšã¯ã§ãããé°æ¥µå®€ã§ã
ãããšã¯ã§ããªã宀ãšãæ°Žé žã€ãªã³ãçé žã€ãª
ã³ãçé žæ°ŽçŽ ã€ãªã³ãŸãã¯ãããã®æ··åç©ãå«
ã¿ãé°æ¥µå®€ã§ããããšã¯ã§ãããéœæ¥µå®€ã§ããã
ãšã¯ã§ããªãä»ã®å®€ãšãåèšå®€ãåé¢ããã«ããª
ã³ééæ§èãšãå«ãé»æ°éæã»ã«ã«ãé»æµãéã
ããšãããªãç¹èš±è«æ±ã®ç¯å²ç¬¬ïŒé èšèŒã®æ¹æ³ãClaims: 1. A salt of a polyvalent metal cation in a first aqueous feed solution or anolyte, selected from a solution of a salt of a polyvalent metal cation and a solution of said salt and a salt of a monovalent cation. to its salt anion acid, or to a halogen if the salt anion is a halide, the method comprising: passing a cation from said aqueous liquid through a cation-permeable membrane; (b) selectively reacts with the polyvalent cation; and electrotransferring the multivalent metal cation into a second aqueous liquid comprising an immobilizing agent capable of producing an ionically immobile material selected from precipitates, complexes, and chelates of the multivalent metal cation. Electrodialysis conversion method as described above. 2 The soluble salt of the acid in the second aqueous liquid is a sulfur, halogen, nitrogen, phosphorus, and carbon acid (this acid shall have a pH of 2 or less in the 0.1N liquid)
The method according to claim 1, wherein the alkali metal salt is selected from the group consisting of alkali metal salts of 3. The second aqueous liquid comprises soluble hydroxide ions, carbonate ions, bicarbonate ions, or a mixture thereof, which reacts with the polyvalent metal cation to form a precipitate. the method of. 4. The method according to claim 1, wherein the soluble salt is a salt of an acid having a pH of 2 or less in a 0.1N solution. 5 The immobilizing agent is an alkali cyanide ion, dimethyl gloxime ion, ethylene diamino tetraacetic acid ion, nitrosophenylhydroxyamine ion, hydroxide ion, carbonate ion, bicarbonate ion, oxalate ion, silicate ion , fluoride ions, phosphate ions, sulfide ions, thiosulfate ions, ion exchange resin materials, and mixtures thereof.
The method described in section. 6. Said second aqueous liquid contains an ionic immobilizer for a portion of the polyvalent cations, and the cations are removed from said second aqueous liquid without immobilization of the other polyvalent cations. Through a permeable membrane, (a) an acid (the acid must have a pH of 3 or less in a 1N solution and form a water-soluble salt with the polyvalent cation);
(b) an immobilizing agent capable of selectively reacting with said polyvalent cation to produce an ionically immobile compound selected from precipitates, complexes and chelates of said polyvalent metal cation; 2. The method of claim 1, wherein the aqueous liquid is electrotransferred to a third chamber containing the aqueous liquid, the aqueous liquid being in electrical communication with the cathode of the electrodialysis cell. 7. The first aqueous liquid contains a salt of a monovalent metal cation in addition to a salt of a polyvalent metal cation, and the monovalent metal cation in the second chamber passes through a cation-permeable membrane. . The method of claim 1, wherein the third chamber contains an aqueous liquid having a pH greater than 7 and a cathode for an electrodialysis cell. 8. A method of applying electrodialytic conversion to a mixture of salts of polyvalent and monovalent cations in a first aqueous liquid as an anolyte, the method comprising: An aqueous solution is passed through a cation-permeable membrane to form a soluble salt of (a) an acid (the acid must have a pH of 3 or less in a 1N solution and form a soluble salt with the polyvalent cation) and (b) )
and an immobilizing agent capable of selectively reacting with the polyvalent cations and effecting ionic immobilization of the polyvalent metal cations through a cation-permeable membrane; and electrotransferring the monovalent metal cations from the second aqueous liquid through another cation-permeable membrane into a third aqueous liquid in electrical communication with the cathode and containing hydroxyl ions; The method according to claim 1, wherein the electrodialytic separation of monovalent and polyvalent cations in an aqueous liquid can be carried out effectively under high cell capacity. 9. The immobilizing agent in the second aqueous liquid selectively reacts with the polyvalent metal cation to form an uncharged or negatively charged chelate or complex compound. 9. The method according to claim 8, wherein the method is selected from materials that can be used. 10. The method of claim 8, wherein the immobilizing agent in the second aqueous liquid is selected from substances capable of reacting with the polyvalent cation to form a precipitate or a water-insoluble salt. Method. 11. The immobilizing agent capable of forming a chelate or complex compound with the polyvalent metal cation present is an alkali shead, dimethyl gloxime, ethylene diamino tetraacetic acid or nitrosophenyl hydroxyamine. 9
The method described in section. 12. The immobilizing agent capable of ionically immobilizing the polyvalent cation and forming a precipitate or a water-insoluble compound with the polyvalent cation,
selected from soluble hydroxide ions, carbonate ions, bicarbonate ions, oxalate ions, fluoride ions, silicate ions, phosphate ions, sulfide ions, thiosulfate ions, polymeric acids, ion exchange materials, and mixtures thereof. The method according to claim 10. 13. The method of claim 8, wherein the monovalent cation salt is an alkali metal halide and the monovalent and polyvalent metal cations are electrotransferred into the second aqueous liquid in the reactor chamber. 14. The method according to claim 13, wherein the alkali metal halide is sodium chloride. 15. The method according to claim 13, wherein the catholyte is an aqueous sodium hydroxide solution. 16. The method of claim 13, wherein the polyvalent metal cation is made insoluble and removed from the aqueous liquid in the reactor chamber by filtration or ion exchange. 17 (a) An acid in contact with the cathode side of the dirty membrane (this acid has a pH of 3 or less in a 1N solution, and
shall form water-soluble salts of polyvalent cations)
(b) an acidic aqueous solution in contact with the anode side of the contaminated membrane, thereby removing polyvalent cations from the contaminated membrane. 2. The method of claim 1, wherein polyvalent metal cations contaminating the membrane are converted and removed from the membrane by electrotransfer into an aqueous solution comprising a soluble salt of an acid. 18 Soluble salts of the above acids include sulfur, halogen, nitrogen, phosphorus and carbon acids (this acid is
Claim 1, which is selected from alkali metal salts having a pH of 2 or less in a 0.1N solution and forming a water-soluble salt with the polyvalent cation.
The method described in Section 7. 19 The acid in the acidic aqueous liquid is a sulfur, halogen, nitrogen, phosphorus and carbon acid (this acid is
18. The method according to claim 17, wherein the method is selected from PH of 2 or less in a 0.1N solution or a mixture thereof. 20 A chamber comprising at least a cathode chamber and an anode chamber, containing an acidic aqueous liquid comprising a soluble salt of a polyvalent metal cation, and capable of being an anode chamber but not a cathode chamber, hydroxide ions, an electrodialysis cell comprising a cation permeable membrane separating said chamber from another chamber containing carbonate ions, bicarbonate ions or mixtures thereof and which can be a cathode chamber but not an anolyte chamber; 2. A method according to claim 1, comprising passing an electric current.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US56889784A | 1984-01-06 | 1984-01-06 | |
US568897 | 1984-01-06 | ||
US665052 | 1984-10-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60172308A JPS60172308A (en) | 1985-09-05 |
JPH047250B2 true JPH047250B2 (en) | 1992-02-10 |
Family
ID=24273192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4085A Granted JPS60172308A (en) | 1984-01-06 | 1985-01-05 | Electrodialytic conversion method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60172308A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57167706A (en) * | 1981-03-09 | 1982-10-15 | Jiei Bauhan Danieru | Electrodialytic refining method |
-
1985
- 1985-01-05 JP JP4085A patent/JPS60172308A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57167706A (en) * | 1981-03-09 | 1982-10-15 | Jiei Bauhan Danieru | Electrodialytic refining method |
Also Published As
Publication number | Publication date |
---|---|
JPS60172308A (en) | 1985-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4707240A (en) | Method and apparatus for improving the life of an electrode | |
US3222267A (en) | Process and apparatus for electrolyzing salt solutions | |
US3764503A (en) | Electrodialysis regeneration of metal containing acid solutions | |
EP0149917B1 (en) | Electrodialytic conversion of multivalent metal salts | |
EP0247713B1 (en) | Method for the purification of zinc sulphate electrolyte | |
US4636295A (en) | Method for the recovery of lithium from solutions by electrodialysis | |
US5162076A (en) | Method for purification of acids from materials comprising acid and salt | |
US6024855A (en) | Electrosynthesis of hydroxylammonium salts and hydroxylamine using a mediator | |
US3135673A (en) | Process and apparatus for electrolyzing salt solutions | |
JPH09503956A (en) | Conversion of metal cation complexes and salts by electrodialysis. | |
WO1998035748A1 (en) | Process for recovering organic hydroxides from waste solutions | |
US4999095A (en) | Recovery of mixed acids from mixed salts | |
KR100966215B1 (en) | Purification of onium hydroxides by electrodialysis | |
JPS5920483A (en) | Removal of chlorate from electrolytic cell brine | |
US3766049A (en) | Recovery of metal from rinse solutions | |
US4976838A (en) | Method for purification of bases from materials comprising base and salt | |
US3394068A (en) | Electrodialysis of pickle liquor using sequestrants | |
US4439293A (en) | Electrodialytic purification process | |
US5135626A (en) | Method for purification of bases from materials comprising base and salt | |
JPH0356687A (en) | Method and apparatus for recovery of hybrid chrome | |
CA1272982A (en) | Method for the recovery of lithium from solutions by electrodialysis | |
JP2726657B2 (en) | Recovery of mixed acids from mixed salts | |
US4325792A (en) | Purification process | |
JPH02233126A (en) | Desalination method by electric dialysis of electrolyte liquid with solvent | |
US6217743B1 (en) | Process for recovering organic hydroxides from waste solutions |