JPH0472054A - Method and furnace for forming oxide film on metal - Google Patents
Method and furnace for forming oxide film on metalInfo
- Publication number
- JPH0472054A JPH0472054A JP18375590A JP18375590A JPH0472054A JP H0472054 A JPH0472054 A JP H0472054A JP 18375590 A JP18375590 A JP 18375590A JP 18375590 A JP18375590 A JP 18375590A JP H0472054 A JPH0472054 A JP H0472054A
- Authority
- JP
- Japan
- Prior art keywords
- oxide film
- stage
- furnace
- atmosphere
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 26
- 229910052751 metal Inorganic materials 0.000 title claims description 3
- 239000002184 metal Substances 0.000 title claims description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 52
- 239000007789 gas Substances 0.000 claims abstract description 46
- 230000003647 oxidation Effects 0.000 claims abstract description 30
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 30
- 238000011282 treatment Methods 0.000 claims abstract description 30
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 28
- 238000010438 heat treatment Methods 0.000 claims abstract description 27
- 239000001301 oxygen Substances 0.000 claims abstract description 27
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 27
- 229910052742 iron Inorganic materials 0.000 claims abstract description 26
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910002091 carbon monoxide Inorganic materials 0.000 claims abstract description 17
- 239000001257 hydrogen Substances 0.000 claims abstract description 16
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 16
- 239000007769 metal material Substances 0.000 claims abstract description 16
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 13
- 230000001590 oxidative effect Effects 0.000 claims description 13
- 239000000463 material Substances 0.000 abstract description 38
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 abstract description 12
- 239000010935 stainless steel Substances 0.000 abstract description 6
- 229910001220 stainless steel Inorganic materials 0.000 abstract description 6
- 230000001105 regulatory effect Effects 0.000 abstract 3
- 230000006866 deterioration Effects 0.000 abstract 1
- 230000005855 radiation Effects 0.000 abstract 1
- 229910001374 Invar Inorganic materials 0.000 description 13
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 12
- 239000002131 composite material Substances 0.000 description 11
- 239000000567 combustion gas Substances 0.000 description 10
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 229910002092 carbon dioxide Inorganic materials 0.000 description 6
- 239000001569 carbon dioxide Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 5
- 238000010894 electron beam technology Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- -1 air Chemical compound 0.000 description 1
- UBAZGMLMVVQSCD-UHFFFAOYSA-N carbon dioxide;molecular oxygen Chemical compound O=O.O=C=O UBAZGMLMVVQSCD-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000001012 protector Effects 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Landscapes
- Tunnel Furnaces (AREA)
- Furnace Details (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は金属材料の表面に良質の酸化膜を形成する方法
およびそのための炉に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming a high-quality oxide film on the surface of a metal material and a furnace for the same.
[従来の技術]
近年、カラー陰極線管においては、再現される映像の輝
度向上、鮮明化か市場の要求である。これに対して、輝
度向上策の一つとして、カラー陰極線管の映像を再現す
る映像面を構成する蛍光を発する各絵素に照射する電子
ビームの運動エネルギーを増大させることが行なわれて
いる。[Prior Art] In recent years, in color cathode ray tubes, the market demands improved brightness and clarity of reproduced images. In response, one measure to improve brightness is to increase the kinetic energy of the electron beam that irradiates each picture element that emits fluorescence, which constitutes the image plane that reproduces the image of a color cathode ray tube.
しかしながら、この方法では電子ビームが陰極線管に内
蔵されている色選別電極であるシャドウマスクに衝突す
ることにより、シャドウマスク自体の温度を40〜80
℃上昇させることになり、その結果シャドウマスクが熱
歪を生じ、映像面上で色純度が低下する。However, in this method, the electron beam collides with the shadow mask, which is a color selection electrode built into the cathode ray tube, and the temperature of the shadow mask itself increases by 40 to 80 degrees.
As a result, the shadow mask becomes thermally distorted and color purity decreases on the image plane.
その対策として、鉄材からなるシャドウマスクの表面に
酸化膜(黒錆)を形成させ、熱の輻射率を向上させるこ
とが行なわれている。As a countermeasure, an oxide film (black rust) is formed on the surface of a shadow mask made of iron material to improve the heat emissivity.
鉄材からなるシャドウマスクの表面に酸化膜を形成する
手段としては、水蒸気または炭酸ガスによる高温酸化が
ある。水蒸気による高温酸化では、輻射率を鉄の0.3
から 0.75程度に向上させることができるが、この
水蒸気による高温酸化はバッ子処理になるため生産性が
わるい。これに対して、炭酸ガスによる高温酸化は、ト
ンネル炉で連続的に酸化処理することができる。A means for forming an oxide film on the surface of a shadow mask made of iron material is high-temperature oxidation using water vapor or carbon dioxide gas. In high-temperature oxidation using water vapor, the emissivity is 0.3 that of iron.
However, this high-temperature oxidation using water vapor results in a backlash process, resulting in poor productivity. On the other hand, high-temperature oxidation using carbon dioxide gas can be carried out continuously in a tunnel furnace.
このトンネル炉は、第4図に示されるような一般に金属
材料の表面に酸化膜を形成するために用いられている酸
化膜形成炉であり、図中、囚は予熱帯、[B)は加熱帯
、[C)は除゛冷帯、(5)は表面処理する鉄材を炉内
へ導くメツシュベルト(稼動部は図示せず) 、02)
は炉内へ導入された燃焼ガスで充たされている空間、(
6)は炉内の雰囲気を排出する煙塔、(1)、(2)、
(3)はいずれも燃焼ガスを炉内へ導入する位置を示す
。鉄材はメツシュベルト(5)上に載せられて、囚から
(B)、(0へと移動する。第5図に、この炉により材
料が高温酸化される際の実体温度を示す。This tunnel furnace is an oxide film forming furnace that is generally used to form an oxide film on the surface of metal materials, as shown in Figure 4. Tropical, [C] is a cold zone, (5) is a mesh belt that guides the iron material to be surface-treated into the furnace (moving parts are not shown), 02)
is the space filled with combustion gas introduced into the furnace, (
6) is a smoke tower that exhausts the atmosphere inside the furnace, (1), (2),
(3) both indicate the position where combustion gas is introduced into the furnace. The iron material is placed on the mesh belt (5) and moves from the container to (B) to (0). Fig. 5 shows the actual temperature when the material is oxidized at high temperature by this furnace.
前記炉内に供給される燃焼ガスは天然ガスと空気を混合
燃焼させたDXガスで、その組成(容積%)は、COz
10.5%、GO1,5%、)121.2%、)12
00.8%、残部がN2である。The combustion gas supplied into the furnace is DX gas obtained by mixing and burning natural gas and air, and its composition (volume %) is COz
10.5%, GO1.5%, )121.2%, )12
00.8%, the remainder being N2.
しかしながら、このような方法では、適当な処理温度(
600℃程度)下では充分な膜厚の酸化膜を形成するこ
とができない。However, in such a method, an appropriate processing temperature (
(approximately 600° C.), an oxide film of sufficient thickness cannot be formed.
これに対して、この燃焼ガスの酸化雰囲気で450〜6
00℃で処理するとともに、さらに空気を添加して処理
し、酸化膜の質を向上させる方法が特開昭61−116
734号公報に開示されている。また、それに関連して
炉内の雰囲気に酸素などを添加することが特開昭46−
767号公報、特開昭57−57448号公報、特公昭
58−18734号公報などに開示されている。On the other hand, in the oxidizing atmosphere of this combustion gas, the
A method of improving the quality of the oxide film by treating it at 00°C and further adding air was disclosed in Japanese Patent Application Laid-Open No. 61-116.
It is disclosed in Japanese Patent No. 734. In addition, in connection with this, it is possible to add oxygen, etc. to the atmosphere inside the furnace.
This method is disclosed in Japanese Patent Publication No. 767, Japanese Patent Application Laid-open No. 57-57448, Japanese Patent Publication No. 18734-1987, and the like.
[発明か解決しようとする課題]
しかしながら、これらの炭酸ガスによる処理は、第4図
に示すようなトンネル炉で連続的に行なうことができる
が、鉄材の輻射率が低いと0.3〜0.4、A<でも
0.5〜0.6種度にしがならないという欠点がある。[Problem to be solved by the invention] However, although these treatments with carbon dioxide gas can be carried out continuously in a tunnel furnace as shown in Fig. 4, if the emissivity of the iron material is low, the emissivity is 0.3 to 0. .4, A<but
It has the disadvantage of not being able to maintain a degree of 0.5 to 0.6 degree.
一方、熱歪によるシャドウマスクの変形を抑えるために
、熱膨張係数が小さいインバー材(N13B%を含有す
る鉄材)を用いる方法もあるが、インバー材を炭酸ガス
により高温酸化しても輻射率が0.3〜0.4と低い酸
化膜しがえられていないのが実情である。On the other hand, in order to suppress the deformation of the shadow mask due to thermal strain, there is a method of using Invar material (iron material containing N13B%) with a small coefficient of thermal expansion, but even if the Invar material is oxidized at high temperature with carbon dioxide gas, the emissivity remains low. The reality is that the oxide film, which is as low as 0.3 to 0.4, cannot be replaced.
また、カラー陰極線管に用いられるシャドウマスクは、
カラー陰極線管製造工程で空気中、350〜450℃で
2〜3回熱処理されるが、この熱処理工程で酸化膜が黒
錆がら赤錆に変化したり、輻射率が0.1前後劣化する
欠点がある。In addition, the shadow mask used in color cathode ray tubes is
In the color cathode ray tube manufacturing process, heat treatment is performed in air at 350 to 450 degrees Celsius two to three times, but this heat treatment process has the disadvantage that the oxide film changes from black rust to red rust and that the emissivity deteriorates by around 0.1. be.
本発明は、上記のような課題を解決するためになされた
ものであり、炭酸ガスによる高温酸化により、輻射率が
高く、空気中で400℃前後で熱処理しても輻射率が劣
化しない良質の酸化膜を形成する酸化膜形成法および酸
化膜形成炉をつることを目的とする。The present invention was made to solve the above-mentioned problems, and it is made of high-quality material that has a high emissivity through high-temperature oxidation with carbon dioxide gas and whose emissivity does not deteriorate even when heat treated in air at around 400°C. The purpose of this study is to establish an oxide film forming method and an oxide film forming furnace for forming an oxide film.
[課題を解決するための手段]
本発明は
鉄を主成分とする金属材料表面に、加熱酸化処理により
酸化膜を形成する方法であって、加熱酸化処理の初期段
階の雰囲気を、一酸化炭素および水素のうちの少なくと
も1種を含む状態の場に\酸素または酸素を含む気体を
導入した雰囲気にしたことを特徴とする金属の酸化膜形
成法および鉄を主成分とする金属材料を加熱酸化処理す
る炉であって、加熱酸化処理の雰囲気を該処理の前段と
後段とで異なるようにする手段を設けたことを特徴とす
る金属の酸化膜形成炉
に関する。[Means for Solving the Problems] The present invention is a method for forming an oxide film on the surface of a metal material containing iron as a main component by thermal oxidation treatment. A method for forming an oxide film on a metal, characterized in that an atmosphere containing at least one of hydrogen and hydrogen is introduced into an atmosphere containing oxygen or a gas containing oxygen, and a method for heating and oxidizing a metal material containing iron as a main component. The present invention relates to a metal oxide film forming furnace, which is characterized in that it is provided with means for making the atmosphere of the heating oxidation treatment different between the first stage and the second stage of the treatment.
[作用・実施例コ
本発明の方法においては、加熱酸化処理が燃焼ガス中な
どの酸化雰囲気中で行なわれるが、その処理の初期段階
の雰囲気が、一酸化炭素および水素のうちの少なくとも
1種を含む状態の場に、酸素または空気などの酸素を含
む気体を導入した雰囲気にされる。前記初期段階とは、
たとえばインバー材をベルトスピード30011111
/分で処理するばあいトンネル炉の入口がら内部5m程
度までの段階をいう。[Function/Example] In the method of the present invention, the heating oxidation treatment is carried out in an oxidizing atmosphere such as in combustion gas, and the atmosphere at the initial stage of the treatment contains at least one of carbon monoxide and hydrogen. An atmosphere is created in which oxygen or a gas containing oxygen, such as air, is introduced into a field containing conditions. The initial stage is
For example, when using Invar material, the belt speed is 30011111.
In the case of processing at 1/min, this refers to the stage from the entrance of the tunnel furnace to about 5 m inside.
加熱雰囲気に導入される酸素は、弐〇)またはfll)
で示される反応により燃焼ガスなどに含まれる還元性組
成物である水素、一酸化炭素を酸化性組成物に変化させ
る。(水素の燃焼開始温度は580〜600℃、一酸化
炭素の燃焼開始温度は640〜660℃である。)
2(H2) + (02) −2(H2O)
(I12(Co) + (02) −2(CO2)
(11金属材料に含まれている鉄は加熱
雰囲気内の気体により、
H2,0系は
< Pe> + (H2O) −< FeO
> + (H2) [[)3
< PeO> + (H2O) −< Pe5o4>
+ (H2) ([V)2< Pe304> +
(H2O)−3< Fe2O3> + (H2)
CO2系は
< Pe> 十(CO2) −< FeO> +(Co
) (gD3<PeO) +(CO2)
−<Pe5O4> +(Co) m2< F
e3O4> + (CO2) −3< Fe2e3>
+ (Co)■
o2系は
2< Pe> + (02)= 2< FeO>
E6< FeO> + (0
2) −2< Fe50< > (X)
4< Pe5Oa > + (02) −6<
Pe203> (XI)に示されるようにそれぞ
れ反応して酸化か進むか、本発明では、金属材料の表面
に、酸化、還元に対して一般にFe2O3やFeOより
も安定なFe304(黒錆)の酸化膜をうろことを目的
として、温度、雰囲気、時間などの条件か加熱酸化処理
の前段において酸化性を強め、後段においてFe2O3
をFe50+に還元させる条件になるように制御される
。The oxygen introduced into the heating atmosphere is
Hydrogen and carbon monoxide, which are reducing compositions contained in combustion gas, are changed into oxidizing compositions by the reaction shown in . (The combustion start temperature of hydrogen is 580 to 600°C, and the combustion start temperature of carbon monoxide is 640 to 660°C.) 2(H2) + (02) −2(H2O)
(I12(Co) + (02) -2(CO2)
(11 The iron contained in the metal material becomes
> + (H2) [[)3
<PeO> + (H2O) -<Pe5o4>
+ (H2) ([V)2<Pe304> +
(H2O)-3<Fe2O3> + (H2)
The CO2 system is <Pe> 10 (CO2) - <FeO> + (Co
) (gD3<PeO) +(CO2)
−<Pe5O4> +(Co) m2<F
e3O4> + (CO2) -3<Fe2e3>
+ (Co)■ o2 system is 2<Pe> + (02)= 2<FeO>
E6<FeO> + (0
2) −2<Fe50<> (X)
4< Pe5Oa > + (02) −6<
In the present invention, oxidation of Fe304 (black rust), which is generally more stable than Fe2O3 and FeO against oxidation and reduction, is applied to the surface of the metal material. In order to scale the film, the oxidizing property is strengthened in the first stage of the thermal oxidation treatment under conditions such as temperature, atmosphere, and time, and the Fe2O3
The conditions are controlled to reduce Fe50+ to Fe50+.
たとえば、加熱酸化処理が、後述する第1図に示すよう
な処理雰囲気を前段と後段とて異なるようにしうる炉を
用い、
■加熱酸化処理の前段の酸素濃度を後段の酸素濃度より
も高くした雰囲気および(または)■加熱酸化処理の後
段の還元性気体濃度を前段の還元性気体濃度よりも高く
した雰囲気
で行なわれる。For example, the heating oxidation treatment can be carried out using a furnace in which the treatment atmosphere can be made different for the first stage and the second stage, as shown in Figure 1, which will be described later. Atmosphere and/or (1) It is carried out in an atmosphere in which the reducing gas concentration in the latter stage of the thermal oxidation treatment is higher than the reducing gas concentration in the earlier stage.
本発明に用いる鉄を主成分とする金属材料としては、鉄
材(鉄を99%以上含有するもの、以下同様)、インバ
ー材(Niを36%含有する鉄材、以下同様)、ステン
レス材などのシャドウマスクとして一般に用いられる材
料のほか、酸化膜を形成させうる種々の材料があげられ
る。Metal materials containing iron as a main component used in the present invention include iron materials (those containing 99% or more of iron, the same shall apply hereinafter), Invar materials (iron materials containing 36% Ni, the same shall apply hereinafter), stainless steel materials, etc. In addition to materials commonly used as masks, there are various materials that can form an oxide film.
前記一酸化炭素および水素の少なくとも1種を含む雰囲
気としては、燃焼ガス(炭化水素ガスと空気との燃焼ガ
ス)などの一酸化炭素および水素のうちの少なくとも1
種を、一酸化炭素であれば1〜2重量%、水素であれば
0.5〜1.5重量%含有した雰囲気があげられる。The atmosphere containing at least one of carbon monoxide and hydrogen may include at least one of carbon monoxide and hydrogen, such as combustion gas (combustion gas of hydrocarbon gas and air).
Examples include an atmosphere containing 1 to 2% by weight of carbon monoxide species and 0.5 to 1.5% by weight of hydrogen species.
一酸化炭素および水素のうちの少なくとも1種の含有量
が前記下限未満や上限をこえるガスは、反応塔で製造し
にくい。なお、金属材料として鉄材を用いるばあい、水
素を含有させるのが反応速度向上の点から好ましく、イ
ンバー材を用いるばあい、一酸化炭素または一酸化炭素
と水素とを含有させるのが酸化力か強くなるので好まし
い。Gases in which the content of at least one of carbon monoxide and hydrogen is less than the lower limit or higher than the upper limit are difficult to produce in the reaction tower. In addition, when iron material is used as the metal material, it is preferable to contain hydrogen from the viewpoint of improving the reaction rate, and when using Invar material, it is preferable to contain carbon monoxide or carbon monoxide and hydrogen to increase the oxidizing power. It is preferable because it becomes stronger.
前記雰囲気の露点は、鉄材を用いるばあい35〜45℃
が好ましい。該露点が35℃未満では、充分な酸化力が
えに<<、45℃をこえると酸化しやすく実用化しにく
い。また、インバー材を用いるばあいは40〜50℃が
好ましい。露点と水蒸気量との関係を第6図に示す。The dew point of the atmosphere is 35 to 45°C when iron material is used.
is preferred. If the dew point is less than 35°C, sufficient oxidizing power may not be obtained, whereas if it exceeds 45°C, oxidation is likely to occur and it is difficult to put it into practical use. Moreover, when using Invar material, the temperature is preferably 40 to 50°C. Figure 6 shows the relationship between dew point and water vapor amount.
前記のごとき雰囲気を形成する燃焼ガスなどは、酸素お
よび金属材料との反応により消費されるため、たとえば
開口部か1.5〜2 m X 0.2m程度の炉では
315〜385Nm /時程度で供給され続ける。The combustion gas that forms the atmosphere described above is consumed by reaction with oxygen and metal materials, so for example, in a furnace with an opening of approximately 1.5 to 2 m x 0.2 m, the combustion gas is approximately 315 to 385 Nm/hour. continue to be supplied.
前記酸素または酸素を含む気体の導入量は13.5〜1
B、5 NTl1/時が好ましい。The amount of oxygen or oxygen-containing gas introduced is 13.5 to 1
B, 5NTl1/hour is preferred.
このように加熱酸化処理の初期段階にのみ酸素または酸
素を含む気体を導入することにより、処理の前段の雰囲
気の酸化性を強められて酸化が促進され、Fe304の
酸化膜が形成される。By introducing oxygen or a gas containing oxygen only in the initial stage of the thermal oxidation treatment, the oxidizing nature of the atmosphere in the first stage of the treatment is strengthened, oxidation is promoted, and an oxide film of Fe304 is formed.
酸素または酸素を含む気体が導入される場の設定温度は
、鉄材を用いるばあい580℃以上が好ましく、580
〜600℃がさらに好ましい。該温度が580℃未満で
は水素が燃焼しにくくなる。また、インバー材を用いる
ばあいは640℃以上、さらには640〜650℃であ
るのが水素、一酸化炭素ともに燃焼させうるという点か
ら好ましい。なお、処理される金属材料の実体温度は、
前記反応により設定温度よりも50〜100℃程度高く
な0゜前記加熱時間は、鉄材を用いるばあいσ゛f′<
の前段(酸素濃度が高いおよび(または)還元性気体濃
度が低い)は10〜30分が好ましく、11〜19分が
さらに好ましく、13〜17分がとくに好ましい。The temperature setting in the place where oxygen or a gas containing oxygen is introduced is preferably 580°C or higher when iron material is used;
-600 degreeC is more preferable. If the temperature is less than 580°C, hydrogen becomes difficult to burn. Further, when using an Invar material, the temperature is preferably 640° C. or higher, and more preferably 640 to 650° C., since both hydrogen and carbon monoxide can be burned. The actual temperature of the metal material being processed is
Due to the reaction, the temperature is about 50 to 100°C higher than the set temperature.The heating time is σ゛f′<
The first stage (where the oxygen concentration is high and/or the reducing gas concentration is low) is preferably 10 to 30 minutes, more preferably 11 to 19 minutes, and particularly preferably 13 to 17 minutes.
該時間が10分未満では酸化不足になりやすく、30分
をこえると剥離しやすくなる。また、後段(酸素濃度が
低いおよび(または)還元性気体濃度が高い)は5〜3
0分が好ましく、3〜11分がさらに好ましく、6〜9
分がとくに好ましい。該処理時間が5分未満では還元が
不充分になりやすく、30分をこえると剥離にしやすく
なる。If the time is less than 10 minutes, oxidation tends to be insufficient, and if it exceeds 30 minutes, peeling tends to occur. In addition, the latter stage (low oxygen concentration and/or high reducing gas concentration) is 5 to 3
0 minutes is preferable, 3 to 11 minutes is more preferable, 6 to 9 minutes
minutes is particularly preferred. If the treatment time is less than 5 minutes, reduction tends to be insufficient, and if it exceeds 30 minutes, peeling tends to occur.
一方、インバー材を用いるばあいは処理の前段は15〜
25分が好ましく、18〜22分がさらに好ましく、後
段は5〜15分が好ましく、8〜12分がさらに好まし
い。On the other hand, when using Invar material, the first stage of treatment is
25 minutes is preferable, 18 to 22 minutes is more preferable, and the second stage is preferably 5 to 15 minutes, and even more preferably 8 to 12 minutes.
なお、加熱酸化処理の前後には、適宜予熱および除冷が
行なわれる。Note that preheating and gradual cooling are performed as appropriate before and after the heating and oxidation treatment.
鉄材に酸化膜を形成するばあいは、インバー材(または
ステンレス材)に酸化膜を形成するばあいに比べ、前記
のように露点が低くなるようにし、加熱時間を0.3〜
0.5倍にすることが、酸化膜厚を厚くしすぎないとい
う点から好ましい。酸化膜厚が3−をこえると剥離が生
じやすくなり、カラー陰極線管内で電子ビームを発射加
速させる電極間(25kV)の放電現象のおこるおそれ
が生じる。When forming an oxide film on iron material, the dew point should be lower as described above, and the heating time should be 0.3 to
It is preferable to increase the thickness by 0.5 times in order to avoid making the oxide film too thick. When the oxide film thickness exceeds 3 -, peeling tends to occur, and there is a possibility that a discharge phenomenon between the electrodes (25 kV) that accelerates the emission of electron beams in the color cathode ray tube may occur.
本発明の方法は、第1図に示すような処理の前段と後段
とで雰囲気か異なるようにしうる炉を用いる方法に限定
されるものではなく、処理の前段用の炉と後段用の炉と
を用い、2つの炉にて処理をしてもよい。The method of the present invention is not limited to a method using a furnace in which the atmosphere can be made different between the first stage and the second stage of treatment, as shown in FIG. The treatment may be carried out in two furnaces.
以上のごとき本発明の方法により、厚さ0.5〜3虜の
より緻密なFe304(黒錆)を主成分とする酸化膜を
金属材料表面に形成することができ、輻射率で表現する
ならば、従来の複合ガスの酸化処理では鉄材で0.5、
インバー材やステンレス材で0.3〜0.4台にしかな
らなかったものを、いずれも 0.6〜0.7程度に増
加させることかできる。By the method of the present invention as described above, a denser oxide film mainly composed of Fe304 (black rust) with a thickness of 0.5 to 3 mm can be formed on the surface of a metal material. For example, in conventional composite gas oxidation treatment, iron material has a
Invar and stainless steel materials, which were only in the 0.3 to 0.4 range, can be increased to about 0.6 to 0.7.
ここで、インバー材を用いたシャドウマスクの輻射率と
、局部ドーミング量率(カラー陰極線管の画質を示す電
子ビーム動作中の熱歪による移動量)との関係を第7図
に示す。第7図から、本発明の方法により酸化膜が形成
されたインバー材からなるシャドウマスクは輻射率が0
.6〜0.7程度であるため、輻射率が0.4のときに
比べ、局部ドーミング量率が約30%改善されたことが
わかる。Here, FIG. 7 shows the relationship between the emissivity of a shadow mask using an Invar material and the local doming rate (the amount of movement due to thermal strain during electron beam operation, which indicates the image quality of a color cathode ray tube). From FIG. 7, it can be seen that the emissivity of the shadow mask made of Invar material on which the oxide film is formed by the method of the present invention is 0.
.. Since the emissivity is about 6 to 0.7, it can be seen that the local doming rate is improved by about 30% compared to when the emissivity is 0.4.
つぎに前記酸化膜形成法の実施に適した本発明の酸化膜
形成炉を、その代表例である第1図に基づいて説明する
。Next, an oxide film forming furnace of the present invention suitable for carrying out the above-mentioned oxide film forming method will be explained based on FIG. 1, which is a typical example thereof.
第1図中、囚は予熱帯、(Bl)および(B2)は加熱
帯、(C)は除冷帯であり、加熱帯(Bl)および(B
2)は凸状壁0)により区分されている。(1)は酸素
または酸素を含む気体を炉内へ供給する位置、[2)、
+31はいずれも酸化性ガスである炭酸ガスを主体とし
た複合ガスなどを供給する位置を示している。(4)は
炉内へ導入された複合ガスで満たされている空間である
。加熱帯(B1)の温度は少なくとも 650℃とする
。上下の凸状壁■)の間は大きさ、形状にとくに限定は
なく、少なくともメツシュベルト(5)および被処理金
属材料が通過しうるようなものであればよい。第1図に
示す装置では、メツシュベルト(5)により人、(B1
)、(B2)、(C)の順に被処理物が送られる。排気
塔(6)には炉内圧を調節する制御弁(7)か設けられ
ており、炉内の雰囲気圧は凸状壁(D)を境に、(B1
)と(B2)とが同等か(B2)の方が高くなるように
雰囲気圧が設定される。さらに炉の出口、入口部にはス
テンレス製の薄板のれん(8)を少なくとも1枚メツシ
ュベルト(5)上にたらせている。薄板のれん(8)は
、外気の侵入を防止するという点から、複数枚が数(至
)のピッチで設けられているのが好ましい。In Figure 1, the preheating zone is the preheating zone, (Bl) and (B2) are the heating zone, and (C) is the cooling zone.
2) is separated by a convex wall 0). (1) is the position where oxygen or oxygen-containing gas is supplied into the furnace; [2);
+31 indicates a position where a composite gas mainly composed of carbon dioxide, which is an oxidizing gas, is supplied. (4) is a space filled with the composite gas introduced into the furnace. The temperature of the heating zone (B1) shall be at least 650°C. The size and shape of the space between the upper and lower convex walls (2) are not particularly limited, as long as they allow passage of at least the mesh belt (5) and the metal material to be processed. In the device shown in FIG. 1, a person (B1
), (B2), and (C) are sent in this order. The exhaust tower (6) is provided with a control valve (7) for adjusting the pressure inside the furnace, and the atmospheric pressure inside the furnace is controlled by the convex wall (D) as a boundary (B1).
The atmospheric pressure is set so that ) and (B2) are equal or (B2) is higher. Further, at least one stainless steel thin plate curtain (8) is hung on the mesh belt (5) at the outlet and inlet portions of the furnace. It is preferable that a plurality of thin plate curtains (8) be provided at a pitch of several (up to) in order to prevent outside air from entering.
第1図に示す装置においては、前記凸状壁(DJのごと
き加熱炉内の断面積か他の部分よりも小さい境界部が設
けられているので、各気体の供給量を、たとえば前段、
後段でそれぞれ100±10 Nm37時、350±l
ONm’/時に調整することにより、加熱酸化処理の前
段と後段とで雰囲気が異なるようにすることができる。In the apparatus shown in FIG. 1, since the convex wall (the cross-sectional area inside the heating furnace such as a DJ) is provided with a boundary portion that is smaller than other portions, the supply amount of each gas is controlled, for example, in the front stage,
100±10 Nm at 37 hours and 350±l in the latter stage, respectively.
By adjusting ONm'/hour, it is possible to make the atmosphere different between the first stage and the second stage of the thermal oxidation treatment.
なお、後段の雰囲気圧を前段の雰囲気圧よりも高くすれ
ば、凸状壁[Dlのごとき境界部を設けなくても処理の
前段と後段とで雰囲気が異なるようにすることができる
。Note that if the atmospheric pressure in the latter stage is made higher than the atmospheric pressure in the former stage, the atmosphere can be made different between the former stage and the latter stage of the treatment without providing a boundary such as a convex wall [Dl].
本発明の酸化膜形成炉の他の例として、加熱酸化処理の
前段の空気を導入した酸素の多い気体と、後段の空気を
導入しない酸化性の弱い還元性組成(CO,H2)の気
体とから、酸化、還元の作用を行なう雰囲気をより効果
的に実現しうる炉として、第3図に示すような、前段と
後段の加熱雰囲気を分離し、制御弁(7)を有する排気
口(9)を設けた炉があげられる。なお、前段と後段と
の境界は第3図に示すようにステンレス材などからなる
厚板01)を用いて雰囲気の分離を行なうのが好ましい
。As another example of the oxide film forming furnace of the present invention, a gas rich in oxygen is introduced into which air is introduced in the first stage of the heating oxidation process, and a gas with a weakly oxidizing and reducing composition (CO, H2) is used in which air is not introduced into the second stage. As shown in Fig. 3, the furnace can more effectively realize an atmosphere in which oxidation and reduction can take place.The heating atmosphere in the first and second stages is separated, and an exhaust port (9) having a control valve (7) is used. ) can be used as a furnace. As shown in FIG. 3, it is preferable to separate the atmosphere by using a thick plate 01 made of stainless steel or the like at the boundary between the front stage and the rear stage.
実施例1
第1図に示す炉を用い、板厚0.2mmのインバー材か
らなるシャドウマスクに酸化膜を形成した。Example 1 Using the furnace shown in FIG. 1, an oxide film was formed on a shadow mask made of Invar material with a plate thickness of 0.2 mm.
炉内雰囲気は囚を150±10℃、(B1)および(B
2)を650±10℃、(C)を 200±IO℃に制
御した。The atmosphere inside the furnace was 150±10℃, (B1) and (B
2) was controlled at 650±10°C, and (C) was controlled at 200±IO°C.
(1)の位置からバイブにて空気(相対湿度65〜75
%)を15NTIl/時の流量で導入し、(2)の位置
から第1表に示す組成で露点を48±3℃に制御した複
合ガス(天然ガスからえたDXガス)を1.05NTI
i/時の流量で導入し、(3)の位置から第1表に示す
組成で露点を48±3℃に制御した複合ガスを35〇八
・rd7時の流量で導入した。なお、処理中のCO濃度
と02濃度は(B1)の前半がCo: 0.0%、0
2:6.7%、後半がCo: 0.1%、02・10
%、(B2)かCO・ 1,1%、02 : 6400
ppmてあった。From position (1), use a vibrator to air (relative humidity 65-75)
%) was introduced at a flow rate of 15NTIl/hour, and from position (2), a composite gas (DX gas obtained from natural gas) with the composition shown in Table 1 and the dew point controlled at 48±3°C was added at 1.05NTI/hour.
A composite gas with a composition shown in Table 1 and a dew point controlled at 48±3° C. was introduced from position (3) at a flow rate of 3508·rd7 hours. In addition, the CO concentration and 02 concentration during treatment are as follows: (B1) The first half is Co: 0.0%, 0
2: 6.7%, second half Co: 0.1%, 02.10
%, (B2) or CO・1.1%, 02: 6400
It was ppm.
[以下余白]
(B1)と(B2)との雰囲気の境界部である凸状壁(
D)は、予熱部(8)、除冷部fc)の空間とほぼ同程
度の大きさとした。(B1.)と(B2)の炉内圧はそ
れぞれの排気口(6)の制御弁(7)を調整し、少なく
とも同程度の内圧になるようにした。ベルトスピードは
(Bl)の加熱時間か約18分、(B2)の加熱時間が
約12分になるよう 300mm/分に調整した。[Left below] The convex wall (which is the boundary between the atmospheres of (B1) and (B2))
D) was approximately the same size as the space of the preheating section (8) and slow cooling section fc). The internal pressures of the furnaces (B1.) and (B2) were adjusted by adjusting the control valves (7) of the respective exhaust ports (6) so that the internal pressures were at least the same. The belt speed was adjusted to 300 mm/min so that the heating time for (Bl) was approximately 18 minutes and the heating time for (B2) was approximately 12 minutes.
えられたシャドウマスクには、厚さ1uIrlのPe3
04を主体とする酸化膜(X線回折強度による割合:
Fe5Oa / Fe2O3/ Fe−30/ O/
7[])か形成されており、輻射率が0.65であった
。えられたシャドウマスクを用いてカラー陰極線管を製
造することにより、従来法によるシャドウマスク(輻射
率0.45)を用いたものに比べ、画質が約3090改
善されたカラー陰極線管かえられた。The resulting shadow mask contains Pe3 with a thickness of 1uIrl.
Oxide film mainly composed of 04 (ratio based on X-ray diffraction intensity:
Fe5Oa / Fe2O3 / Fe-30 / O /
7[]) was formed, and the emissivity was 0.65. By manufacturing a color cathode ray tube using the obtained shadow mask, a color cathode ray tube with image quality improved by about 3090 points compared to a conventional method using a shadow mask (emissivity 0.45) was obtained.
実施例1の処理におけるンヤドウマスクの実体温度傾向
を第2図に示す。第2図の横軸は酸化処理する時間の経
過、縦軸(目盛りの1は100℃、5は650℃を示す
)は実体温度を示し、tは測定結果を標準化するだめの
ファクターを示す。二の実体温度カーブでE)の部分が
、本発明の重要な部分の1つである。この位置(空気が
導入される位置(1))の雰囲気の温度は、酸化処理す
るシャドウマスクの存在しないときで、設定温度より1
0〜30℃高いことを熱電対により確認し・た。また、
シャドウマスクの実体温度および雰囲気温度はほぼ同一
の温度で、設定温度より50〜100℃高くなっていた
。これは炉内へ空気を導入している空気濃度の高い部分
で、空気に含まれている酸素(o2)と複合ガス中に含
まれている一酸化炭素(CO)、水素(H2)とが前記
式(It)または式+1)て示すように炉内の温度で燃
焼を生じ、還元性気体は酸化性気体に転換し、他の酸化
性気体(酸素、二酸化炭素、水蒸気)とともに前記式(
Il[l〜(XI)で示される反応が生していることを
示す。そしてつぎの(B2)部の複合ガス雰囲気により
、高価の酸化はFe2O3からFe3O4に還元される
。FIG. 2 shows the actual temperature trend of the Nyadou mask in the treatment of Example 1. In FIG. 2, the horizontal axis shows the elapsed time for oxidation treatment, the vertical axis (1 on the scale indicates 100°C, 5 indicates 650°C) shows the actual temperature, and t shows the factor for standardizing the measurement results. Part E) of the second solid temperature curve is one of the important parts of the present invention. The temperature of the atmosphere at this position (position (1) where air is introduced) is 1° below the set temperature when there is no shadow mask to be oxidized.
It was confirmed with a thermocouple that the temperature was 0 to 30°C higher. Also,
The actual temperature of the shadow mask and the ambient temperature were almost the same, and were 50 to 100° C. higher than the set temperature. This is the part where air is introduced into the furnace and has a high air concentration, where the oxygen (O2) contained in the air and the carbon monoxide (CO) and hydrogen (H2) contained in the composite gas are mixed. Combustion occurs at the temperature in the furnace as shown in the above equation (It) or equation +1), and the reducing gas is converted to an oxidizing gas, and together with other oxidizing gases (oxygen, carbon dioxide, water vapor), the above equation (
It shows that the reaction shown by Il[l~(XI) is occurring. Then, in the next part (B2), the complex gas atmosphere reduces the expensive oxidation from Fe2O3 to Fe3O4.
実施例2
板厚0.2+++mの鉄材からなるシャドウマスクを用
い、設定温度を600℃に変え、複合ガスの露点を40
±30℃に変え、(B1)の加熱時間および(B2)の
加熱時間を実施例1の0.75倍にしたほかは、実施例
1と同様にして厚さ1左のPe304を主体とする酸化
膜(X線回折強度による割合: Fe50* / Fe
20s /Fe −40/ 20/ 40)が形成され
た輻射率が0.7のシャドウマスクを製造した。Example 2 Using a shadow mask made of iron material with a plate thickness of 0.2+++m, the set temperature was changed to 600°C, and the dew point of the composite gas was set to 40°C.
The temperature was changed to ±30°C, and the heating time for (B1) and (B2) were made 0.75 times that of Example 1. Oxide film (ratio according to X-ray diffraction intensity: Fe50* / Fe
A shadow mask having an emissivity of 0.7 and having an emissivity of 20s/Fe-40/20/40) was manufactured.
実施例2の処理におけるシャドウマスクの実体温度傾向
は、第2図に示される実体温度カーブと同様であった(
ただし、図中、縦軸の目盛りの1は100℃、5は60
0℃を示す)。The actual temperature trend of the shadow mask in the process of Example 2 was similar to the actual temperature curve shown in FIG.
However, in the figure, 1 on the scale of the vertical axis is 100 degrees Celsius, and 5 is 60 degrees Celsius.
0°C).
実施例3〜7
シャドウマスクの材質、複合ガスの露点、(B1)およ
び(B2)の設定温度、(Bl)および(B2)におけ
る合計加熱時間を第2表に示すように変えたほかは、実
施例1と同様にして加熱酸化処理し、酸化膜を形成した
。えられたシャドウマスクの輻射率を第2表に示す。Examples 3 to 7 The material of the shadow mask, the dew point of the composite gas, the set temperature of (B1) and (B2), and the total heating time of (B1) and (B2) were changed as shown in Table 2. A heating oxidation treatment was performed in the same manner as in Example 1 to form an oxide film. Table 2 shows the emissivity of the obtained shadow mask.
以下金山
実施例8
(Bl)および(B2)の設定温度を変えたほかは、実
施例1と同様にして酸化膜を形成した。えられたシャド
ウマスクの輻射率を第8図に示す。Kanayama Example 8 An oxide film was formed in the same manner as in Example 1 except that the set temperatures of (Bl) and (B2) were changed. The emissivity of the obtained shadow mask is shown in FIG.
実施例9
複合ガスの露点を変えたほかは、実施例1と同様にして
酸化膜を形成した。えられたシャドウマスクの輻射率を
第9図に示す。Example 9 An oxide film was formed in the same manner as in Example 1 except that the dew point of the composite gas was changed. FIG. 9 shows the emissivity of the obtained shadow mask.
実施例10
(B1)および(B2)における合計加熱時間を変えた
ほかは、実施例1と同様にして酸化膜を形成した。Example 10 An oxide film was formed in the same manner as in Example 1 except that the total heating time in (B1) and (B2) was changed.
えられたシャドウマスクの輻射率を第1O図に示す。The emissivity of the obtained shadow mask is shown in FIG.
[発明の効果]
本発明の酸化膜形成法によれば、鉄材、インバ材、ステ
ンレス材などに輻射率が高く、空気中350〜450℃
で熱処理しても変質しない酸化膜(黒錆)を連続的に形
成することができる。また、本発明の酸化膜形成炉を用
いることにより、前記酸化膜形成法を容易に実施するこ
とができる。[Effects of the Invention] According to the oxide film forming method of the present invention, the emissivity of iron materials, Invar materials, stainless steel materials, etc. is high, and the emissivity is high at 350 to 450°C in air.
It is possible to continuously form an oxide film (black rust) that does not change in quality even after heat treatment. Furthermore, by using the oxide film forming furnace of the present invention, the oxide film forming method described above can be easily carried out.
第1図は本発明の酸化膜形成炉の説明図、第2図は本発
明の方法により処理された金属材料の実体温度傾向を示
すグラフ、第3図は本発明の酸化膜形成炉の説明図、第
4図は従来の酸化膜形成炉の説明図、第5図は従来法に
より処理される鉄材の実体温度傾向を示すグラフ、第6
図は露点と水蒸気量との関係を示すグラフ、第7図は輻
射率と局部ドーミング量率との関係を示すグラフ、第8
図〜第10図はそれぞれ本発明の実施例における設定温
度、複合ガス露点または加熱時間と輻射率との関係を示
すグラフである。
(図面の主要符号)
(1):酸素または酸素を含む気体を供給する位置
(2)、(3):複合ガスなどを供給する位置(4):
複合ガスなどで満たされている空間を0線′)する位置
2:複合ガスなとをfit4Fする位置4:複合ガスな
とて満ださilて
いる空間
オ
才2國
代 理 人 大 岩 増 雄1守
xt″ノJ′ノ
才4 回
才3図
才5 回
時
間(分)
水蒸気量(体積%)
オフ
図
オ
設定温度(0C)Fig. 1 is an explanatory diagram of the oxide film forming furnace of the present invention, Fig. 2 is a graph showing the actual temperature trend of metal materials treated by the method of the present invention, and Fig. 3 is an explanatory diagram of the oxide film forming furnace of the present invention. Figure 4 is an explanatory diagram of a conventional oxide film forming furnace, Figure 5 is a graph showing the actual temperature trend of iron materials processed by the conventional method, and Figure 6 is
Figure 7 is a graph showing the relationship between dew point and water vapor content, Figure 7 is a graph showing the relationship between emissivity and local doming rate, and Figure 8 is a graph showing the relationship between emissivity and local doming rate.
Figures 1 to 10 are graphs showing the relationship between emissivity and set temperature, composite gas dew point, or heating time in the examples of the present invention, respectively. (Main symbols in the drawing) (1): Positions for supplying oxygen or oxygen-containing gas (2), (3): Positions for supplying composite gas, etc. (4):
Position 2 where the space filled with compound gas etc. is placed on the 0 line'): Position 4 where compound gas is fitted4F: Space filled with compound gas etc. Male 1 protector
Claims (2)
により酸化膜を形成する方法であって、加熱酸化処理の
初期段階の雰囲気を、一酸化炭素および水素のうちの少
なくとも1種を含む状態の場に、酸素または酸素を含む
気体を導入した雰囲気にしたことを特徴とする金属の酸
化膜形成法。(1) A method of forming an oxide film on the surface of a metal material whose main component is iron by thermal oxidation treatment, in which the atmosphere at the initial stage of the thermal oxidation treatment is changed to at least one of carbon monoxide and hydrogen. A method for forming an oxide film on a metal, characterized by creating an atmosphere in which oxygen or a gas containing oxygen is introduced into a field containing oxygen.
であって、加熱酸化処理の雰囲気を該処理の前段と後段
とで異なるようにする手段を設けたことを特徴とする金
属の酸化膜形成炉。(2) A furnace for heating and oxidizing metal materials containing iron as a main component, characterized in that the furnace is provided with means for making the atmosphere of the heating and oxidation treatment different between the front stage and the rear stage of the treatment. Oxide film forming furnace.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2183755A JP2599489B2 (en) | 1990-07-09 | 1990-07-09 | Metal oxide film forming method and metal oxide film forming furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2183755A JP2599489B2 (en) | 1990-07-09 | 1990-07-09 | Metal oxide film forming method and metal oxide film forming furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0472054A true JPH0472054A (en) | 1992-03-06 |
JP2599489B2 JP2599489B2 (en) | 1997-04-09 |
Family
ID=16141412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2183755A Expired - Fee Related JP2599489B2 (en) | 1990-07-09 | 1990-07-09 | Metal oxide film forming method and metal oxide film forming furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2599489B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6295103B1 (en) | 1997-08-29 | 2001-09-25 | Sharp Kabushiki Kaisha | Electronic part protecting structure having deformable pins |
JP2006274386A (en) * | 2005-03-30 | 2006-10-12 | Sumitomo Metal Ind Ltd | Production method of ni-based alloy |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5757448A (en) * | 1980-09-24 | 1982-04-06 | Toshiba Corp | Production of shadow mask |
JPS5818734A (en) * | 1981-07-27 | 1983-02-03 | Seiko Epson Corp | Key input detecting circuit system |
JPS60189142A (en) * | 1984-03-08 | 1985-09-26 | Mitsubishi Electric Corp | Blackening of steel plate parts for color cathode-ray tube |
JPS60194059A (en) * | 1984-03-15 | 1985-10-02 | Toshiba Corp | Production of shadow mask |
JPS61116734A (en) * | 1984-11-12 | 1986-06-04 | Mitsubishi Electric Corp | Forming of blackened film of steel plate parts for color cathode-ray tube |
JPS63162851A (en) * | 1986-12-25 | 1988-07-06 | Daido Steel Co Ltd | Blackening furnace |
JPH01259154A (en) * | 1988-04-06 | 1989-10-16 | Daido Plant Kogyo Kk | Blackening method and blackening furnace |
-
1990
- 1990-07-09 JP JP2183755A patent/JP2599489B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5757448A (en) * | 1980-09-24 | 1982-04-06 | Toshiba Corp | Production of shadow mask |
JPS5818734A (en) * | 1981-07-27 | 1983-02-03 | Seiko Epson Corp | Key input detecting circuit system |
JPS60189142A (en) * | 1984-03-08 | 1985-09-26 | Mitsubishi Electric Corp | Blackening of steel plate parts for color cathode-ray tube |
JPS60194059A (en) * | 1984-03-15 | 1985-10-02 | Toshiba Corp | Production of shadow mask |
JPS61116734A (en) * | 1984-11-12 | 1986-06-04 | Mitsubishi Electric Corp | Forming of blackened film of steel plate parts for color cathode-ray tube |
JPS63162851A (en) * | 1986-12-25 | 1988-07-06 | Daido Steel Co Ltd | Blackening furnace |
JPH01259154A (en) * | 1988-04-06 | 1989-10-16 | Daido Plant Kogyo Kk | Blackening method and blackening furnace |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6295103B1 (en) | 1997-08-29 | 2001-09-25 | Sharp Kabushiki Kaisha | Electronic part protecting structure having deformable pins |
JP2006274386A (en) * | 2005-03-30 | 2006-10-12 | Sumitomo Metal Ind Ltd | Production method of ni-based alloy |
JP4556740B2 (en) * | 2005-03-30 | 2010-10-06 | 住友金属工業株式会社 | Method for producing Ni-based alloy |
Also Published As
Publication number | Publication date |
---|---|
JP2599489B2 (en) | 1997-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102834531B (en) | Method for producing cold rolled steel sheet having high silicon content excellent in chemical conversion treatment | |
US20240102124A1 (en) | Method and furnace for thermally treating a high-resistance steel strip comprising a temperature homogenisation chamber | |
JPS643492A (en) | Blackening furnace and manufacture of shadow mask using said blackening furnace | |
CA1114656A (en) | Process for sintering powder metal parts | |
JPS60174867A (en) | Manufacture of iron parts for color television image receiving tube and furnace therefor | |
US3526550A (en) | Surface preparation of iron-chromium alloy parts for metal-to- glass seals | |
JPH0472054A (en) | Method and furnace for forming oxide film on metal | |
CN107245564B (en) | A kind of control method of non-orientation silicon steel internal oxidation layer | |
US2269943A (en) | Method for manufacturing blackened steel electrodes | |
CN109097536A (en) | A kind of heat-tinting annealing furnace of stainless steel work-piece | |
US3383250A (en) | Method for producing one side metallic coated strip | |
JP6587886B2 (en) | Manufacturing method of nitrided steel member | |
JP2768389B2 (en) | Method for blackening Ni-Fe based shadow mask | |
CN109055675A (en) | A kind of heat-tinting of stainless steel work-piece and annealing process | |
US1932032A (en) | Continuous carburizing process | |
JPS58123821A (en) | Heat treatment | |
EP0804622B1 (en) | Method for heat treatment of stainless steel | |
JPS6360269A (en) | Heat-treatment of metallic titanium | |
US2307522A (en) | Bright-finish metal-treating furnace | |
US20100032061A1 (en) | METHOD FOR MANUFACTURING A Ni-BASED ALLOY ARTICLE AND PRODUCT THEREFROM | |
JPH04255631A (en) | Blackening method for electronic part of color cathode-ray tube | |
US20060177679A1 (en) | Method for manufacturing a Ni-based alloy article and product therefrom | |
CN113073177B (en) | Control method for improving components of oxidation layer of oriented steel | |
JPS6237364A (en) | Method and apparatus for alloyed galvanized steel sheet | |
JPH1129824A (en) | Manufacture of grain oriented silicon steel sheet with excellent glass film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080109 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090109 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100109 Year of fee payment: 13 |
|
LAPS | Cancellation because of no payment of annual fees |