JPH0472049B2 - - Google Patents

Info

Publication number
JPH0472049B2
JPH0472049B2 JP62051128A JP5112887A JPH0472049B2 JP H0472049 B2 JPH0472049 B2 JP H0472049B2 JP 62051128 A JP62051128 A JP 62051128A JP 5112887 A JP5112887 A JP 5112887A JP H0472049 B2 JPH0472049 B2 JP H0472049B2
Authority
JP
Japan
Prior art keywords
gas turbine
power generation
turbine power
cooler
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62051128A
Other languages
Japanese (ja)
Other versions
JPS63215842A (en
Inventor
Nobutaka Tsuchimoto
Shigehiro Shibakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP5112887A priority Critical patent/JPS63215842A/en
Publication of JPS63215842A publication Critical patent/JPS63215842A/en
Publication of JPH0472049B2 publication Critical patent/JPH0472049B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、ガスタービン発電装置と排熱回収ボ
イラとを組合せてなるガスタービン発電システム
に関するものである。 (従来の技術) 従来からも、この種システムとして、第2図に
示す如く、ガスタービン発電装置101と排熱回
収ボイラ102とを組合せて、電気エネルギと蒸
気エネルギとを取り出すように工夫された単純開
放型ガスタービン発電システムがよく知られてお
り、一般産業用に広く用いられている。 すなわち、かかるシステムでは、ガスタービン
発電装置100が、吸気した大気たる空気を空気
圧縮機106で圧縮し、その高圧空気を燃焼用空
気として燃焼器107に導き、その燃焼用空気中
に燃料を噴射して高圧・高温の燃焼ガスを発生さ
せ、これをガスタービン108により膨張させて
回転軸動力を発生させ、その動力で発電機110
を駆動させることによつて電気エネルギを取り出
すように構成されており、更にガスタービン10
8から導いた排ガス排出管路112に介装した排
熱回収ボイラ102でもつて、排ガス(一般に
500℃程度)から熱回収して蒸気を発生させ、そ
の蒸気エネルギを蒸気供給管路113から適宜の
負荷システムに供給させるように構成されてい
る。 (発明が解決しようとする問題点) しかし、かかるシステムにあつては、空気圧縮
機106の流体力学的特性から吸気温度したがつ
て外気温度の高低により発電機110の連続最大
出力つまり定格出力が大きく影響されることにな
る。 例えば、3MWクラスのガスタービン発電装置
を定格出力点で使用した場合、第3図に実線で示
す如く、その発電機端出力は外気温度が上昇する
に従つて急激に低下することになり、夏期におい
ては冬期における8割程度の出力しか得られな
い。したがつて、3MW出力の設備投資をしても、
年間を通じて平均2.7MW程度の電力しか得られ
ないことになり、甚だ不経済である。 本発明は、このような点に鑑みてなされたもの
で、夏期における如く外気温度が高い場合にも発
電量を低下させることなく、常に良好な発電能力
を発揮させうるガスタービン発電システムを提供
することを目的とするものである。 (問題点を解決するための手段) 本発明は、ガンタービン発電装置と排熱回収ボ
イラとを組合せたガスタービン発電システムに於
いて、ガスタービン発電装置の吸気管路に空気冷
却器を介設すると共に、ガスタービンのガスター
ビン軸に減速歯車機構を介して圧縮式冷水機を連
結し、当該圧縮式冷水機から前記空気冷却器へ冷
水を循環させ、タービン発電装置へ供給する空気
を冷却することを発明の基本構成とするものであ
る。 (作用) ガスタービン発電装置に吸気される空気は、空
気冷却器により、これと圧縮式冷水機との間で循
環する冷水と熱交換されて冷却されることにな
る。したがつて、外気温度が高い場合にも吸気温
度が低くなり、外気温度の上昇に伴う発電出力低
下はこれが確実に回避されることになる。その結
果、年間を通じての平均電力量が増大せしめられ
るのである。 (実施例) 以下、本発明の構成を第1図に示す実施例に基
づいて具体的に説明する。 第1図に示すガスタービン発電システムにおい
て、1はガスタービン発電装置、2は排熱回収ボ
イラ、3は圧縮式冷水機、4は空気冷却器であ
る。 ガスタービン発電装置1は、吸気管路5から吸
気した大気たる空気を空気圧縮機6で圧縮し、そ
の高圧空気を燃焼用空気として燃焼器7に導き、
その燃焼用空気中に燃料を噴射して高圧・高温の
燃焼ガスを発生させ、これをガスタービン8によ
り膨張させて回転軸動力を発生させ、そのガスタ
ービン軸8aにより減速歯車機構9を介して発電
機10を駆動させることによつて、電気エネルギ
を取り出すように構成されている。また、ガスタ
ービン8から煙突11に排ガス排出管路12を導
いてある。 排熱回収ボイラ2は排ガス排出管路12に介装
されており、ガスタービン8から排出される排ガ
スの熱を回収して蒸気を発生させるように構成さ
れている。ボイラ2で発生した蒸気は蒸気供給管
路13から適宜の負荷システムに供給され、該負
荷システムの熱源として利用されるようになつて
いる。 圧縮式冷水機3は圧縮機と冷媒とを用いた公知
のものであり、クーリングタワー14を冷却水の
循環管路15を介して連結してある。なお、この
循環管路15には冷却水の循環ポンプ15aが介
装されている。そして、この実施例では、冷水機
3の入力軸3aを前記減速歯車機構9の適宜の伝
達軸9aにクラツチ16を介して連結してあつ
て、冷水機3がガスタービン発電装置1における
ガスタービン駆動力によつて駆動されるように工
夫してある。 空気冷却器4は前記吸気管路5介装されると共
に、前記冷水機3に冷水循環管路18を介して接
続されていて、吸気管路5内の空気を冷水機3か
ら導かれた冷水と熱交換して冷却するように構成
されている。なお、冷水は循環ポンプ18aによ
り冷水機3と冷却器4との間で循環される。 ところで、上記実施例の本発明システムと冒頭
の従来システムとを外気温度が30℃である場合に
おいて第1表に示す条件下で運転させて(3MW
クラスの発電装置を使用)、その性能を比較実験
したところ第2表に示す如き結果が得られた。な
お、本発明システムについては吸気温度を5℃に
冷却した場合と12℃に冷却した場合とを各別に実
験した。 この実験結果から、吸気温度を冷却させた本発
明システムは、吸気温度を冷却低温化させること
により、従来システムに比して発電量(約20〜26
%増加)、発電効率(約2%上昇)、排熱回収によ
る蒸気発生量(約2〜3%増加)の何れにおいて
も優れた性能を発揮すべく改良されたものである
ことが確認された。一方、吸気温度の冷却低温化
には僅かなエネルギ(5℃に冷却した場合におい
ては、冷水機駆動動力が約110kw、冷却水流量が
約71000Kg/h、ポンプ駆動電力が約3.2kwであ
り、12℃に冷却した場合においては、冷水機駆動
動力が約75kw、冷却水流量が約49000Kg/h、ポ
ンプ駆動電力が約2.2KWhである)を要するにす
ぎない。
(Industrial Application Field) The present invention relates to a gas turbine power generation system that combines a gas turbine power generation device and an exhaust heat recovery boiler. (Prior Art) Conventionally, this type of system has been devised to extract electric energy and steam energy by combining a gas turbine power generator 101 and an exhaust heat recovery boiler 102, as shown in FIG. Simple open gas turbine power generation systems are well known and widely used in general industry. That is, in this system, the gas turbine power generation device 100 compresses the air that is taken in by the air compressor 106, guides the high-pressure air as combustion air to the combustor 107, and injects fuel into the combustion air. This generates high-pressure and high-temperature combustion gas, which is expanded by the gas turbine 108 to generate rotating shaft power, which is used to power the generator 110.
The gas turbine 10 is configured to extract electrical energy by driving the gas turbine 10.
Even in the exhaust heat recovery boiler 102 installed in the exhaust gas exhaust pipe 112 led from 8, the exhaust gas (generally
500° C.) to generate steam, and the steam energy is supplied to an appropriate load system from the steam supply pipe 113. (Problem to be Solved by the Invention) However, in such a system, due to the hydrodynamic characteristics of the air compressor 106, the continuous maximum output of the generator 110, that is, the rated output, depends on the intake air temperature and therefore the outside air temperature. It will be greatly affected. For example, when a 3 MW class gas turbine power generator is used at its rated output point, as shown by the solid line in Figure 3, the generator end output rapidly decreases as the outside temperature rises. In the winter, only about 80% of the output can be obtained. Therefore, even if you invest in equipment for 3MW output,
This means that only an average of 2.7MW of electricity can be obtained throughout the year, which is extremely uneconomical. The present invention has been made in view of these points, and provides a gas turbine power generation system that can always exhibit good power generation capacity without reducing the amount of power generation even when the outside air temperature is high as in summer. The purpose is to (Means for Solving the Problems) The present invention provides a gas turbine power generation system that combines a gun turbine power generation device and an exhaust heat recovery boiler, in which an air cooler is interposed in the intake pipe of the gas turbine power generation device. At the same time, a compression water cooler is connected to the gas turbine shaft of the gas turbine via a reduction gear mechanism, and cold water is circulated from the compression water cooler to the air cooler to cool the air supplied to the turbine generator. This is the basic structure of the invention. (Operation) The air taken into the gas turbine power generator is cooled by heat exchange with cold water circulating between the air cooler and the compression water cooler. Therefore, even when the outside air temperature is high, the intake air temperature becomes low, and a decrease in power generation output due to a rise in the outside air temperature is reliably avoided. As a result, the average amount of electricity consumed throughout the year increases. (Example) Hereinafter, the configuration of the present invention will be specifically explained based on the example shown in FIG. In the gas turbine power generation system shown in FIG. 1, 1 is a gas turbine power generation device, 2 is an exhaust heat recovery boiler, 3 is a compression type water cooler, and 4 is an air cooler. The gas turbine power generation device 1 compresses atmospheric air taken in through an intake pipe 5 with an air compressor 6, and guides the high-pressure air to a combustor 7 as combustion air.
Fuel is injected into the combustion air to generate high-pressure and high-temperature combustion gas, which is expanded by the gas turbine 8 to generate rotating shaft power, which is then transmitted via the reduction gear mechanism 9 by the gas turbine shaft 8a. It is configured to extract electrical energy by driving the generator 10. Further, an exhaust gas discharge pipe 12 is led from the gas turbine 8 to the chimney 11. The exhaust heat recovery boiler 2 is installed in the exhaust gas exhaust pipe 12 and is configured to recover heat from exhaust gas discharged from the gas turbine 8 to generate steam. The steam generated in the boiler 2 is supplied to an appropriate load system through a steam supply pipe 13, and is used as a heat source for the load system. The compression type water cooler 3 is a known type that uses a compressor and a refrigerant, and is connected to a cooling tower 14 via a cooling water circulation pipe 15. Note that this circulation pipe 15 is provided with a cooling water circulation pump 15a. In this embodiment, the input shaft 3a of the water cooler 3 is connected to a suitable transmission shaft 9a of the reduction gear mechanism 9 via a clutch 16, and the water cooler 3 is connected to a gas turbine in the gas turbine generator 1. It is devised so that it is driven by driving force. The air cooler 4 is provided with the intake pipe 5 and connected to the water cooler 3 via a cold water circulation pipe 18, and converts the air in the intake pipe 5 into cold water led from the water cooler 3. It is configured to cool by exchanging heat with. Note that the cold water is circulated between the water cooler 3 and the cooler 4 by the circulation pump 18a. By the way, the system of the present invention in the above embodiment and the conventional system mentioned at the beginning were operated under the conditions shown in Table 1 when the outside air temperature was 30°C (3 MW).
A comparative experiment was conducted to compare the performance of a power generation device of the same class (using a power generation device of the same class), and the results shown in Table 2 were obtained. Regarding the system of the present invention, experiments were conducted separately for cases in which the intake air temperature was cooled to 5°C and cases in which it was cooled to 12°C. From this experimental result, the system of the present invention, which cools the intake air temperature, generates more power than the conventional system (approximately 20 to 26
% increase), power generation efficiency (approximately 2% increase), and steam generation amount by waste heat recovery (approximately 2-3% increase). . On the other hand, cooling the intake air temperature requires a small amount of energy (in the case of cooling to 5 degrees Celsius, the water cooler driving power is approximately 110kw, the cooling water flow rate is approximately 71000kg/h, and the pump driving power is approximately 3.2kw. In the case of cooling to 12°C, the water cooler requires only about 75 kW of driving power, the cooling water flow rate of about 49,000 kg/h, and the pump driving power of about 2.2 KWh.

【表】【table】

【表】 また、上記した本発明システムにおいて発電機
端出力と外気温度と関係を求めると第3図に鎖線
(5℃に冷却しうるシステムについては一点鎖線
で、12℃に冷却しうるシステムについては二点鎖
線で示す)で示す如くなり、出力が外気温度によ
る影響を殆ど受けないことが理解される。 なお、前記実施例において、排熱回収ボイラ2
としては、過熱器や節炭器を備えたものを使用し
てもよいこと勿論であり、自然循環式若しくは強
制循環式の何れでもよい。 (発明の効果) 以上の説明から容易に理解されるように、本発
明のガスタービン発電システムは、夏期における
如く外気温度が高い場合にも発電量を低下させる
ことなく、外気温度の変化に拘らず常に最大限の
能力を発揮させうるものであり、従来システムに
比して電力発生量、発電効率、蒸気発生量の増加
ないし向上を有効に図りうるものである。したが
つて、本発明のガスタービン発電システムによれ
は、年間を通して工場内で使用する電力や蒸気を
十分に賄い得る。
[Table] In addition, when determining the relationship between the generator end output and the outside temperature in the above-mentioned system of the present invention, the dashed line in Figure 3 shows the system that can be cooled to 5°C (dotted and dashed line), and the system that can be cooled to 12°C as the dashed line. is shown by a two-dot chain line), and it is understood that the output is hardly affected by the outside temperature. In addition, in the above embodiment, the exhaust heat recovery boiler 2
It goes without saying that a system equipped with a superheater or an energy saver may be used, and either a natural circulation type or a forced circulation type may be used. (Effects of the Invention) As can be easily understood from the above explanation, the gas turbine power generation system of the present invention does not reduce the amount of power generated even when the outside temperature is high, such as in the summer, and can be used regardless of changes in the outside temperature. It is possible to always demonstrate the maximum capacity, and it is possible to effectively increase or improve the amount of electric power generation, power generation efficiency, and amount of steam generation compared to conventional systems. Therefore, the gas turbine power generation system of the present invention can sufficiently cover the electricity and steam used in the factory throughout the year.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るガスタービン発電システ
ムの一実施例を示す系統図、第2図は従来のガス
タービン発電システムを示す系統図であり、第3
図は3MWクラスのガスタービン発電装置を使用
した場合における発電機端出力と外気温度との関
係を示す特性曲線図である。 1……ガスタービン発電装置、2……排熱回収
ボイラ、3……圧縮式冷水機、4……空気冷却
器、5……吸気管路、6……空気圧縮機、7……
燃焼器、8……ガスタービン、8a……ガスター
ビン軸、9……減速歯車機構、9a……伝達軸、
10……発電機、12……排ガス排出管路、13
……蒸気供給管路、16……クラツチ、17……
原動機、18……冷水循環管路。
FIG. 1 is a system diagram showing an embodiment of the gas turbine power generation system according to the present invention, FIG. 2 is a system diagram showing a conventional gas turbine power generation system, and FIG.
The figure is a characteristic curve diagram showing the relationship between generator end output and outside air temperature when a 3 MW class gas turbine power generator is used. 1...Gas turbine power generation device, 2...Exhaust heat recovery boiler, 3...Compression water cooler, 4...Air cooler, 5...Intake pipe line, 6...Air compressor, 7...
Combustor, 8...Gas turbine, 8a...Gas turbine shaft, 9...Reduction gear mechanism, 9a...Transmission shaft,
10... Generator, 12... Exhaust gas discharge pipe, 13
...Steam supply pipe, 16...Clutch, 17...
Prime mover, 18...Cold water circulation pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 ガスタービン発電装置と排熱回収ボイラとを
組合せたガスタービン発電システムに於いて、ガ
スタービン発電装置の吸気管路に空気冷却器を介
設すると共に、ガスタービンのガスタービン軸に
減速歯車機構を介して圧縮式冷水機を連結し、当
該圧縮式冷水機から前記空気冷却器へ冷水を循環
させ、タービン発電装置へ供給する空気を冷却す
る構成としたことを特徴とするガスタービン発電
システム。
1. In a gas turbine power generation system that combines a gas turbine power generation device and an exhaust heat recovery boiler, an air cooler is interposed in the intake pipe of the gas turbine power generation device, and a reduction gear mechanism is installed on the gas turbine shaft of the gas turbine. A gas turbine power generation system characterized by having a configuration in which a compression type water cooler is connected to the air cooler via the compression type water cooler, and chilled water is circulated from the compression type water cooler to the air cooler to cool air supplied to the turbine power generator.
JP5112887A 1987-03-05 1987-03-05 Gas turbine generating system Granted JPS63215842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5112887A JPS63215842A (en) 1987-03-05 1987-03-05 Gas turbine generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5112887A JPS63215842A (en) 1987-03-05 1987-03-05 Gas turbine generating system

Publications (2)

Publication Number Publication Date
JPS63215842A JPS63215842A (en) 1988-09-08
JPH0472049B2 true JPH0472049B2 (en) 1992-11-17

Family

ID=12878169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5112887A Granted JPS63215842A (en) 1987-03-05 1987-03-05 Gas turbine generating system

Country Status (1)

Country Link
JP (1) JPS63215842A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8906523B2 (en) 2008-08-11 2014-12-09 Infinite Power Solutions, Inc. Energy device with integral collector surface for electromagnetic energy harvesting and method thereof
US9334557B2 (en) 2007-12-21 2016-05-10 Sapurast Research Llc Method for sputter targets for electrolyte films
US9532453B2 (en) 2009-09-01 2016-12-27 Sapurast Research Llc Printed circuit board with integrated thin film battery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5321944A (en) * 1992-01-08 1994-06-21 Ormat, Inc. Power augmentation of a gas turbine by inlet air chilling
US6422018B1 (en) * 2000-08-17 2002-07-23 Lloyd B. Tisdale Gas turbine engine modular cooling and heating apparatus
ITFI20120161A1 (en) * 2012-08-03 2014-02-04 Nuovo Pignone Srl "DUAL-END DRIVE GAS TURBINE"

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51162103U (en) * 1975-06-18 1976-12-23

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9334557B2 (en) 2007-12-21 2016-05-10 Sapurast Research Llc Method for sputter targets for electrolyte films
US8906523B2 (en) 2008-08-11 2014-12-09 Infinite Power Solutions, Inc. Energy device with integral collector surface for electromagnetic energy harvesting and method thereof
US9532453B2 (en) 2009-09-01 2016-12-27 Sapurast Research Llc Printed circuit board with integrated thin film battery

Also Published As

Publication number Publication date
JPS63215842A (en) 1988-09-08

Similar Documents

Publication Publication Date Title
US6484501B1 (en) Method of heat transformation for generating heating media with operationally necessary temperature from partly cold and partly hot heat loss of liquid-cooled internal combustion piston engines and device for executing the method
US6798079B2 (en) Turbine power generator including supplemental parallel cooling and related methods
US4920276A (en) Heat-and-electricity supply system
EP3746648B1 (en) Energy storage device and system
CN101592079A (en) Solar distributed closed gas turbine power generation system
US5391925A (en) Prime mover driven compressor/chiller with motor on common shaft for large cooling systems
KR102538228B1 (en) Energy saving system of encune by using waste heat and ocean construction comprising the same
US6178733B1 (en) External blower motor and starting motor for a combustion turbine system
JPH0472049B2 (en)
US9088188B2 (en) Waste-heat recovery system
JP2971378B2 (en) Hydrogen combustion gas turbine plant and operation method thereof
US5267288A (en) Power station installation
JPS63215841A (en) Gas turbine generating system
JPH07332109A (en) Compressed air storage type power generating plant
RU101104U1 (en) COMBINED ENERGY SYSTEM
JP7472035B2 (en) Cogeneration system for boilers
US20180328234A1 (en) Power cogeneration system
JPH08232681A (en) Cogeneration device
CN108643976A (en) A kind of Turbo-generator Set device improving thermoelectricity supply flexibility
JP3176755B2 (en) Gas turbine equipment
CN114812007B (en) Ultra-temperature heat pump energy storage system for coupling wind power generation
CN214403791U (en) Waste heat comprehensive utilization system of coal mine gas internal combustion generator
JPH0231764B2 (en)
US20240068398A1 (en) Hot exhaust gas energy recovery system
Maslennikov et al. A high-efficiency steam-gas plant for combined electrical power and heat production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees