JPH0471845B2 - - Google Patents

Info

Publication number
JPH0471845B2
JPH0471845B2 JP58085129A JP8512983A JPH0471845B2 JP H0471845 B2 JPH0471845 B2 JP H0471845B2 JP 58085129 A JP58085129 A JP 58085129A JP 8512983 A JP8512983 A JP 8512983A JP H0471845 B2 JPH0471845 B2 JP H0471845B2
Authority
JP
Japan
Prior art keywords
borosilicate
catalyst
solution
hours
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58085129A
Other languages
Japanese (ja)
Other versions
JPS59213441A (en
Inventor
Haruhito Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP58085129A priority Critical patent/JPS59213441A/en
Publication of JPS59213441A publication Critical patent/JPS59213441A/en
Publication of JPH0471845B2 publication Critical patent/JPH0471845B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規な焼成結晶性硼珪酸の製造法に関
する。 結晶性硼珪酸は特有の結晶構造を有しており、
触媒あるいは吸着材としての用途が知られてい
る。結晶性硼珪酸の触媒としての利用の1つにト
ルエンとメタノールからp−キシレンを製造する
方法が知られている。しかし、この反応は選択性
が十分でないため、結晶性硼珪酸に燐化合物,周
期律表第族金属などで修飾することにより改良
することが提案されている。ところが、このよう
にして改良された触媒を用いても十分に満足しう
る結果が得られていない。 このような実情に鑑み、本発明者は転化反応に
よるエチレン,p−キシレンなどの有機化合物の
製造方法に有用な触媒を開発すべく検討を重ねた
結果、特定の結晶性硼珪酸をアルミナ水和ゲルま
たはその前駆体からなる結合剤と混合し、成形し
た後、700〜1000℃の温度で焼成したものが該触
媒として極めて有効であることを見出し、本発明
を完成するに至つた。 すなわち本発明は、一般式pR2/oO・xB2O3
SiO2(ただし、pは0<p≦0.08,Rは水素、ア
ンモニウムイオンまたは有機アンモニウムカチオ
ンであり、nはRの原子価を示し、xは0<x≦
0.08である。)で表わされる結晶性硼珪酸をアル
ミナ水和ゲルまたはその前駆体からなる結合材と
混合し、成形した後、700〜1000℃の温度で焼成
することを特徴とする焼成結晶性硼珪酸の製造法
を提供するものである。 本発明の方法により得られる焼成結晶性硼珪酸
は新規なものであり、有機化合物の転化反応、特
にエチレンとp−キシレンを同時に効率よく製造
する方法の触媒として極めて有用である。 本発明において原料として用いる結晶性硼珪酸
は一般式pR2/oO・xB2O3・SiO2(ただし、pは0
<p≦0.08,Rは水素、アンモニウムイオンまた
は有機アンモニウムカチオンであり、nはRの原
子価を示し、xは0<x≦0.08である。)で表わ
されるものであり、具体的には特開昭53−55500
号公報,同55−7598号公報,同56−84313号公報,
同57−123817号公報,同57−129820号公報などに
記載されている結晶性硼珪酸を挙げることができ
る。これらの硼珪酸は各種の方法で調製すること
が可能であるが、一般的には次のような方法によ
り調製される。まずはじめに、硼酸,濃硫酸およ
びテトラプロピルアンモニウムプロマイドを含む
水溶液(溶液A)、酸化珪素,酸化ナトリウムお
よび水からなる水溶液(溶液B)および塩化ナト
リウム水溶液(溶液C)をそれぞれ調製し、次い
で溶液Aと溶液Bを溶液Cに滴下し、必要に応じ
て混合液のPHを8〜11に調製したのち、オートク
レープ中で加熱する。その後、冷却,洗浄,乾燥
および必要に応じて焼成することにより結晶性硼
珪酸ナトリウムが得られる。この結晶性硼珪酸ナ
トリウムを硝酸アンモニウム水溶液と処理するこ
とによりアンモニウム型の硼珪酸が得られる。こ
のようにして得られる結晶性硼珪酸は粉末状であ
る。 本発明では上記結晶性硼珪酸を700〜1000℃の
温度で焼成することが必要である。その場合、焼
成前に該硼珪酸をアルミナ水和ゲルまたはその前
駆体からなる結合剤と混合し、成形する。焼成は
上記温度で10分〜1000時間、好ましくは2〜100
時間行なうが、不活性ガス,水蒸気,酸素含有ガ
ス等の存在下で行なうことが望ましい。なお、こ
の焼成については、後記実施例に示したように、
予め350〜550℃、好適には450〜550℃の温度で予
備的に焼成しておくことにより一層すぐれた焼成
結晶性硼珪酸を得ることができる。 このようにて得られた焼成結晶性硼珪酸は有機
化合物の転化反応を行なうときの触媒として極め
て有用であり、代表的な反応はメタノールおよ
び/またはジメチルエーテルとトルエンを反応さ
せてエチレンを主成分とするオレフイン混合物お
よびp−キシレンを主成分とする芳香族炭化水素
を製造する方法である。この反応は流通式、バツ
チ式のいずれの方式によつても行なうことがで
き、エチレンを高濃度に、かつp−キシレンを高
い選択率で製造することができる。上記焼成結晶
性硼珪酸の存在下、メタノールおよび/またはジ
メチルエーテルとトルエンを転化反応せしめると
きの条件については適宜定めればよいが、通常は
反応温度400〜700℃、好ましくは450〜650℃、圧
力常圧〜10気圧、好ましくは常圧〜5気圧にて重
量空間速度(WHSV)は0.5〜20hr-1、好ましく
は1〜10hr-1とする。また、メタノールおよび/
またはジメチルエーテルとトルエンの使用割合に
ついては前者/後者(モル比)=10/1〜1/10、好
ましくは2/1〜1/4が適当である。 上記の転化方法では、エチレンを主成分とする
オレフイン混合物がガス状物として得られ、p−
キシレンを主成分とする芳香族炭化水素は液状物
として得られる。なお、本発明の焼成結晶性硼珪
酸は、上記の如き触媒としての用途のほか各種触
媒の担体や吸着剤等としても有用である。 次に、本発明を実施例により詳しく説明する。 製造例(結晶性硼珪酸の製造) 硼酸1.34g,濃硫酸17.68gおよびテトラプロ
ピルアンモニウムプロマイド26.32gを水250mlに
加えた溶液Aと、水ガラス(組成酸化珪素28.95
重量%,酸化ナトリウム9.40重量%,水61.65重
量%)211.1gを水250mlに加えた溶液Bをそれぞ
れ調製した。次いで、溶液AおよびBを、塩化ナ
トリウム79.0gを水122mlに加えてなる溶液に室
温にて10分間にわたつて同時に滴下した。得られ
た混合液は硫酸を用いてPH9.5に調製した。さら
に、この溶液をオートクレープに入れて反応温度
170℃で20時間加熱処理した。冷却下、オートク
レープ内容物を濾過し、得られた固形物を洗浄し
た後、120℃で6時間乾燥した。さらに、550℃で
8時間焼成することにより結晶性硼珪酸ナトリウ
ム50gが得られた。 次に、この結晶性硼珪酸ナトリウム30gを5倍
重量の1規定硝酸アンモニウム水溶液に加え8時
間還流した。その後、冷却,静置して上澄み液を
デカンテーシヨンにより除いた。還流,デカンテ
ーシヨンの操作を3回繰り返した後、内容物を濾
過,洗浄し、120℃で10時間乾燥してアンモニウ
ム型硼珪酸29.5gを得た。 実施例1および比較例 製造例により得た結晶性硼珪酸にアルミナ含量
が20重量%(乾燥した成形品として)となるよう
にアルミナゾルを加え、成形したのち120℃で14
時間乾燥処理を行ない触媒成形物を得た。 この成形物を550℃で6時間空気焼成した(こ
の焼成物を触媒Eと称する。)。しかる後、焼成温
度をさらに上げ900℃,1000℃または1200℃で4
時間焼成して3種類の触媒A,BおよびCを得
た。 実施例 2 実施例1で得た触媒Eをさらに水蒸気気流中に
て900℃で4時間処理し、触媒Dを得た。 参考例 1 常圧固定床流通式反応管に触媒Aまたは触媒E
を2g充填し、反応温度600℃に保ち
WHSV9.2hr-1,トルエンとメタノールを2:1
(モル比)の割合で導入して転化反応を行なつた。
反応開始後3時間の結果を第1表に示す。
The present invention relates to a novel method for producing calcined crystalline borosilicate. Crystalline borosilicate has a unique crystal structure,
It is known to be used as a catalyst or adsorbent. One known method of using crystalline borosilicate as a catalyst is to produce p-xylene from toluene and methanol. However, since this reaction does not have sufficient selectivity, it has been proposed to improve the reaction by modifying crystalline borosilicate with a phosphorus compound, a group metal of the periodic table, etc. However, even with the use of catalysts improved in this way, fully satisfactory results have not been obtained. In view of these circumstances, the present inventor conducted repeated studies to develop a catalyst useful for the production method of organic compounds such as ethylene and p-xylene through a conversion reaction. The present inventors have discovered that a mixture of a gel or a binder made of a gel or its precursor, molded, and then calcined at a temperature of 700 to 1000°C is extremely effective as the catalyst, leading to the completion of the present invention. That is, the present invention provides the general formula pR 2/o O・xB 2 O 3
SiO 2 (where p is 0<p≦0.08, R is hydrogen, ammonium ion, or organic ammonium cation, n is the valence of R, and x is 0<x≦
It is 0.08. ) is mixed with a binder consisting of hydrated alumina gel or its precursor, molded, and then fired at a temperature of 700 to 1000°C. It provides law. The calcined crystalline borosilicate obtained by the method of the present invention is novel and extremely useful as a catalyst for conversion reactions of organic compounds, particularly for methods for efficiently producing ethylene and p-xylene simultaneously. The crystalline borosilicate used as a raw material in the present invention has the general formula pR 2/o O・xB 2 O 3・SiO 2 (where p is 0
<p≦0.08, R is hydrogen, ammonium ion or organic ammonium cation, n indicates the valence of R, and x satisfies 0<x≦0.08. ), specifically, JP-A-53-55500.
Publication No. 55-7598, Publication No. 56-84313,
Examples include crystalline borosilicate described in Publications No. 57-123817 and No. 57-129820. Although these borosilicate acids can be prepared by various methods, they are generally prepared by the following method. First, an aqueous solution containing boric acid, concentrated sulfuric acid, and tetrapropylammonium bromide (solution A), an aqueous solution containing silicon oxide, sodium oxide, and water (solution B), and an aqueous sodium chloride solution (solution C) were prepared, and then solution A and solution B are added dropwise to solution C, and the pH of the mixture is adjusted to 8 to 11 as required, and then heated in an autoclave. Thereafter, crystalline sodium borosilicate is obtained by cooling, washing, drying and, if necessary, baking. By treating this crystalline sodium borosilicate with an aqueous ammonium nitrate solution, ammonium-type borosilicate is obtained. The crystalline borosilicate thus obtained is in powder form. In the present invention, it is necessary to sinter the crystalline borosilicate at a temperature of 700 to 1000°C. In that case, before firing, the borosilicate is mixed with a binder consisting of alumina hydrate gel or its precursor and shaped. Firing is performed at the above temperature for 10 minutes to 1000 hours, preferably 2 to 100 hours.
It is preferably carried out in the presence of an inert gas, water vapor, oxygen-containing gas, etc. Regarding this firing, as shown in the examples below,
By preliminarily calcining at a temperature of 350 to 550°C, preferably 450 to 550°C, even better calcined crystalline borosilicate can be obtained. The calcined crystalline borosilicate obtained in this way is extremely useful as a catalyst for conversion reactions of organic compounds, and a typical reaction is to react methanol and/or dimethyl ether with toluene to produce ethylene as the main component. This is a method for producing an olefin mixture containing p-xylene and an aromatic hydrocarbon containing p-xylene as a main component. This reaction can be carried out either by a flow system or a batch system, and can produce ethylene at a high concentration and p-xylene at a high selectivity. The conditions for the conversion reaction of methanol and/or dimethyl ether with toluene in the presence of the calcined crystalline borosilicate may be determined as appropriate, but usually the reaction temperature is 400 to 700°C, preferably 450 to 650°C, and the pressure is The weight hourly space velocity (WHSV) is 0.5 to 20 hr -1 , preferably 1 to 10 hr -1 at normal pressure to 10 atm, preferably normal pressure to 5 atm. Also, methanol and/or
As for the ratio of dimethyl ether and toluene used, the former/latter (molar ratio) is suitably 10/1 to 1/10, preferably 2/1 to 1/4. In the above conversion process, an olefin mixture based on ethylene is obtained as a gaseous product, p-
Aromatic hydrocarbons containing xylene as a main component are obtained as a liquid. The calcined crystalline borosilicate of the present invention is useful not only as a catalyst as described above but also as a carrier for various catalysts, an adsorbent, and the like. Next, the present invention will be explained in detail with reference to examples. Production example (production of crystalline borosilicate) Solution A in which 1.34 g of boric acid, 17.68 g of concentrated sulfuric acid, and 26.32 g of tetrapropylammonium bromide were added to 250 ml of water, and water glass (composition: silicon oxide 28.95
Solution B was prepared by adding 211.1 g of sodium oxide (9.40 wt.%, water 61.65 wt.%) to 250 ml of water. Solutions A and B were then simultaneously added dropwise to a solution of 79.0 g of sodium chloride in 122 ml of water at room temperature over 10 minutes. The resulting mixed solution was adjusted to pH 9.5 using sulfuric acid. Furthermore, this solution was placed in an autoclave and the reaction temperature was
Heat treatment was performed at 170°C for 20 hours. While cooling, the contents of the autoclave were filtered, and the resulting solid was washed and dried at 120° C. for 6 hours. Further, 50 g of crystalline sodium borosilicate was obtained by firing at 550° C. for 8 hours. Next, 30 g of this crystalline sodium borosilicate was added to 5 times the weight of a 1N aqueous ammonium nitrate solution and refluxed for 8 hours. Thereafter, the mixture was cooled and allowed to stand, and the supernatant liquid was removed by decantation. After repeating the reflux and decantation operations three times, the contents were filtered, washed, and dried at 120° C. for 10 hours to obtain 29.5 g of ammonium-type borosilicate. Example 1 and Comparative Example Alumina sol was added to the crystalline borosilicate obtained in the production example so that the alumina content was 20% by weight (as a dry molded product), and after molding, it was heated at 120°C for 14 hours.
A catalyst molded article was obtained by performing a drying treatment for a period of time. This molded product was air fired at 550°C for 6 hours (this fired product is referred to as catalyst E). After that, the firing temperature was further increased to 900℃, 1000℃ or 1200℃ for 4 hours.
Three types of catalysts A, B and C were obtained by firing for a period of time. Example 2 Catalyst E obtained in Example 1 was further treated at 900° C. for 4 hours in a steam stream to obtain catalyst D. Reference example 1 Catalyst A or catalyst E in a normal pressure fixed bed flow reaction tube
Filled with 2g of and kept the reaction temperature at 600℃.
WHSV9.2hr -1 , toluene and methanol 2:1
(molar ratio) to carry out the conversion reaction.
Table 1 shows the results 3 hours after the start of the reaction.

【表】 * 比較例
参考例 2 常圧固定床流通式反応管に所定の触媒を2g充
填し、反応温度を600℃に保ちWHSV9.2hr-1,ト
ルエンとメタノールを4:1(モル比)の割合で
導入して転化反応を行なつた。反応開始後3時間
の結果を第2表に示す。
[Table] * Comparative Example Reference Example 2 A normal pressure fixed bed flow reaction tube was filled with 2g of the specified catalyst, the reaction temperature was maintained at 600℃, WHSV9.2hr -1 , and toluene and methanol were mixed at 4:1 (molar ratio). The conversion reaction was carried out by introducing at a ratio of . Table 2 shows the results 3 hours after the start of the reaction.

【表】 * 比較例
[Table] * Comparative example

Claims (1)

【特許請求の範囲】[Claims] 1 一般式pR2/oO・xB2O3・SiO2(ただし、pは
0<p≦0.08,Rは水素、アンモニウムイオンま
たは有機アンモニウムカチオンであり、nはRの
原子価を示し、xは0<x≦0.08である。)で表
わされる結晶性硼珪酸をアルミナ水和ゲルまたは
その前駆体からなる結合剤と混合し、成形した
後、700〜1000℃の温度で焼成することを特徴と
する焼成結晶性硼珪酸の製造法。
1 General formula pR 2/o O・xB 2 O 3・SiO 2 (where p is 0<p≦0.08, R is hydrogen, ammonium ion or organic ammonium cation, n indicates the valence of R, is 0 < A method for producing calcined crystalline borosilicate.
JP58085129A 1983-05-17 1983-05-17 Conversion catalyst for organic compound, its preparation and process for preparing organic compound using said catalyst Granted JPS59213441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58085129A JPS59213441A (en) 1983-05-17 1983-05-17 Conversion catalyst for organic compound, its preparation and process for preparing organic compound using said catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58085129A JPS59213441A (en) 1983-05-17 1983-05-17 Conversion catalyst for organic compound, its preparation and process for preparing organic compound using said catalyst

Publications (2)

Publication Number Publication Date
JPS59213441A JPS59213441A (en) 1984-12-03
JPH0471845B2 true JPH0471845B2 (en) 1992-11-16

Family

ID=13850037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58085129A Granted JPS59213441A (en) 1983-05-17 1983-05-17 Conversion catalyst for organic compound, its preparation and process for preparing organic compound using said catalyst

Country Status (1)

Country Link
JP (1) JPS59213441A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2746790A1 (en) * 1976-10-18 1978-04-20 Standard Oil Co CRYSTALLINE BORSILICATE (AMS-1B) AND THE METHOD OF USING THEREOF
JPS557598A (en) * 1978-06-22 1980-01-19 Snam Progetti Silicon based synthetic substance and method
JPS5576825A (en) * 1978-11-30 1980-06-10 Stamicarbon Conversion of dimethylether
US4292457A (en) * 1978-04-18 1981-09-29 Standard Oil Company (Indiana) Alkylation of aromatic hydrocarbons

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2746790A1 (en) * 1976-10-18 1978-04-20 Standard Oil Co CRYSTALLINE BORSILICATE (AMS-1B) AND THE METHOD OF USING THEREOF
US4292457A (en) * 1978-04-18 1981-09-29 Standard Oil Company (Indiana) Alkylation of aromatic hydrocarbons
JPS557598A (en) * 1978-06-22 1980-01-19 Snam Progetti Silicon based synthetic substance and method
JPS5576825A (en) * 1978-11-30 1980-06-10 Stamicarbon Conversion of dimethylether

Also Published As

Publication number Publication date
JPS59213441A (en) 1984-12-03

Similar Documents

Publication Publication Date Title
JPH029829A (en) Reductive alkylation method
SU1315014A1 (en) Crystalline aluminosilicate as a basis for catalyst component of conversion of methyl alcohol into hydrocarbons
JPS58201728A (en) Manufacture of aromatic compound
US4711869A (en) Silica-titania hydrocarbon conversion catalyst
JPH0645788B2 (en) Process for producing aromatic hydrocarbon mixture
EP0184461B1 (en) Post-treatment of ams-1b crystalline moleculaf sieve-based catalyst composition
SU1389668A3 (en) Catalytic agent for converting methyl alcohol and/or dimethyl ether into unsaturated hydrocarbons and method of its production
JPH0662455B2 (en) Process for producing aromatic hydrocarbon mixture
JPS646816B2 (en)
JPH0635397B2 (en) Process for producing aromatic hydrocarbon mixture
JPH0226607B2 (en)
JPH0471845B2 (en)
JPS6055081A (en) Manufacture of aromatic hydrocarbon mixture
JPH0257051B2 (en)
JPS60137435A (en) Novel zeolite catalyst and its using method
JPS59161323A (en) Preparation of lower hydrocarbon
JPH09194412A (en) Production of phenol
JPH01228923A (en) Method for isomerizing paraffin
JPH0610149B2 (en) Method for producing cyclohexanol by hydration of cyclohexene
JPH0610150B2 (en) Process for producing cyclohexanol
JPH05178822A (en) Production of delta-valerolactam
JPS58121224A (en) Isomerization of xylenes
JPS60248635A (en) Production of alcohol by catalytic hydration of olefin
JPH021812B2 (en)
JPH0480855B2 (en)