JPH0471412B2 - - Google Patents

Info

Publication number
JPH0471412B2
JPH0471412B2 JP60091850A JP9185085A JPH0471412B2 JP H0471412 B2 JPH0471412 B2 JP H0471412B2 JP 60091850 A JP60091850 A JP 60091850A JP 9185085 A JP9185085 A JP 9185085A JP H0471412 B2 JPH0471412 B2 JP H0471412B2
Authority
JP
Japan
Prior art keywords
polycarbonate resin
solvent
solution
solidification
solidifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60091850A
Other languages
Japanese (ja)
Other versions
JPS61250026A (en
Inventor
Rikuta Kishimoto
Yutaka Kojima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP9185085A priority Critical patent/JPS61250026A/en
Publication of JPS61250026A publication Critical patent/JPS61250026A/en
Publication of JPH0471412B2 publication Critical patent/JPH0471412B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/10Conditioning or physical treatment of the material to be shaped by grinding, e.g. by triturating; by sieving; by filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、ポリカーボネート樹脂の固形化方法
に関し、詳細には、湿式粉砕法を用いることによ
り、ポリカーボネート樹脂がビーズ状の固形化粒
子として分散した水スラリー液を製造する方法で
あり、該水スラリー液は、製造工程におけるスラ
リーの移送などによる微細な『ゴミ』の混入が少
なく、かつ濾過および乾燥も容易になされるもの
であり、特に光学用のポリカーボネート樹脂を製
造する方法として好適なものである。 〔従来の技術およびその問題点〕 従来、ポリカーボネート樹脂溶液からペレツト
の製造などに用いる乾燥した固形の粉体を取り出
す方法は、通常、固形化槽で固形化した半結晶性
もしくは不定形の固形化物を濾過分離し、粉砕
し、ついで乾燥する方法によつている。この方法
は、製造装置の大きさおよび処理効率の点から好
ましいものであるが、固形化物の水スラリー液の
移送工程〜固形化物の粉砕工程において、配管お
よび機器からの『ゴミ』の発生、混入という問題
点があり、より高品質−すなわち『ゴミ』の少な
いものの要求される用途−特に光学用途などのポ
リカーボネート樹脂を製造する方法としては不十
分な場合もあつた。 〔問題点を解決するための手段〕 本発明者らは、配管中の移送〜固形化物の粉砕
による『ゴミ』の発生の実質的にない方法につい
て鋭意検討した結果、固形化と同時に湿式粉砕す
る方法を見出し、本発明を完成させた。 すなわち、本発明は、精製されたポリカーボネ
ート樹脂溶液に、精製された固形化用溶媒を添加
混合し、加熱下の温水中に該混合溶液を添加しつ
つ溶媒及び固形化用溶媒を留去してポリカーボネ
ート樹脂固形化物の水スラリー液を製造する方法
において、固形化過程の液を湿式粉砕機に循環し
つつ固形化することを特徴とするビーズ状ポリカ
ーボネート固形粒子水スラリー液の製造法であ
り、好ましい実施態様に於いては、固形化用溶媒
を、ポリカーボネート樹脂溶液の0.1〜0.5容量倍
用いて、温度45℃〜100℃にて固形化すること、
固形化過程の液の湿式粉砕機への循環量が全固形
化液の1〜30倍/時間で行うことにより、乾燥後
の固形分の90重量%以上がビーズ状ポリカーボネ
ート固形粒子であり、かつ該ビーズの平均直径が
0.5〜2mm、嵩比重が0.3〜0.6g/c.c.であるものを
得るものであり、これに使用する精製されたポリ
カーボネート樹脂溶液のポリカーボネート樹脂の
粘度平均分子量が13000〜20000の範囲で、かつ濃
度が10重量%〜25重量%のものを使用するもので
ある。 以下、本発明の構成について説明する。 本発明のポリカーボネート樹脂溶液とは、従来
のポリカーボネート樹脂の製法と同様の製法、即
ち、界面重合法により、二価フエノール系化合物
(以下、BPと略記する)を主成分とし、小量の分
子量調節剤および所望により分岐化剤を用いてホ
スゲンと反応させることによつて作られる芳香族
ポリカーボネート樹脂のホモ−もしくはコ−ポリ
マーの溶液である。 本発明のBPとして好ましいものは、下記一般
式(1)で表される化合物であり、 一般式(1): (式中のRは、炭素数1〜15の二価の脂肪族、脂
環族、もしくはフエニル置換アルキル基、又は、
−O−、−S−、−SO−、−SO2−、−CO−であ
る。Xはアルキル基、アリール基、ハロゲン原子
であり、p,qは0〜2の整数である。) 具体的には、ビス(4−ヒドロキシフエニル)
メタン、ビス(4−ヒドロキシフエニル)エーテ
ル、ビス(4−ヒドロキシフエニル)スルホン、
ビス(4−ヒドロキシフエニル)スルホキシド、
ビス(4−ヒドロキシフエニル)スルフイド、ビ
ス(4−ヒドロキシフエニル)ケトン、1,1−
ビス(4−ヒドロキシフエニル)エタン、2,2
−ビス(4−ヒドロキシフエニル)プロパン(以
下、ビスフエノールAという)、2,2−ビス
(4−ヒドロキシフエニル)ブタン、1,1−ビ
ス(4−ヒドロキシフエニル)シクロヘキサン
(以下、ビスフエノールZという)、2,2−ビス
(4−ヒドロキシ−3,5−ジブロモフエニル)
プロパン、2,2−ビス(4−ヒドロキシ−3,
5−ジクロロフエニル)プロパン、2,2−ビス
(4−ヒドロキシ−3−ブロモフエニル)プロパ
ン、2,2−ビス(4−ヒドロキシ−3−クロロ
フエニル)プロパン、2,2−ビス(4−ヒドロ
キシ−3,5−ジメチルフエニル)プロパン、
2,2−ビス(4−ヒドロキシ−3−メチルフエ
ニル)プロパン、1,1−ビス(4−ヒドロキシ
フエニル)−1−フエニルエタン、ビス(4−ヒ
ドロキシフエニル)ジフエニルメタンが例示され
る。 分岐化剤としては、フロログリシン、2,6−
ジメチル−2,4,6−トリ(4−ヒドロキシフ
エニル)ヘプテン−3、4,6−ジメチル−2,
4,6−トリ(4−ヒドロキシフエニル)ヘプテ
ン−2、1,3,5−トリ(2−ヒドロキシフエ
ニル)ベンゾール、1,1,1−トリ(4−ヒド
ロキシフエニル)エタン、2,6−ビス(2−ヒ
ドロキシ−5−メチルベンジル)−4−メチルフ
エノール、α,α′,α″−トリ(4−ヒドロキシフ
エニル)−1,3,5−トリイソプロピルベンゼ
ンなどで例示されるポリヒドロキシ化合物、及び
3,3−ビス(4−ヒドロキシアリール)オキシ
インドール(=イサチンビスフエノール)、5−
クロルイサチンビスフエノール、5,7−ジクロ
ルイサチンビスフエノール、5−ブロムイサチン
ビスフエノールなどが例示される分岐化剤を上記
の一般式(1)の二価フエノール系化合物に対して、
通常0.02〜3モル%、好ましくは0.1〜1.0モル%
の範囲用いる。 また、分子量調節剤または末端停止剤としては
一価芳香族ヒドロキシ化合物が使用され、m−お
よびp−メチルフエノール、m−およびp−プロ
ピルフエノール、p−ブロモフエノール、p−
tert−ブチルフエノールおよびp−長鎖アルキル
置換フエノール、P−長鎖アルキルエーテル化フ
エノール、P−ヒドロキシアルキルベンゾエート
などが好ましい。 芳香族ポリカーボネート樹脂としては、特に、
ビスフエノールAを主原料とするポリカーボネー
トが挙げられ、これに例えばビスフエノールZな
どを併用して得られるポリカーボネート共重合
体、これらの分岐化物や末端長鎖アルキル変性し
たものが挙げられる。 反応に使用する溶媒としては、塩素化された脂
肪族または芳香族の炭化水素、例えばメチレンク
ロライド、1,1−ジクロロエタン、クロロベン
ゼン及びクロロトルエンが例示され、特にメチレ
ンクロライドが好ましい。 以上の方法で製造したポリカーボネート樹脂溶
液を通常の方法、触媒の除去、中和、水洗、濃縮
等を行い、更に精密濾過して本発明の精製された
ポリカーボネート樹脂溶液とする。 ここに、精製されたポリカーボネート樹脂溶液
中の微細な『ゴミ』の量としては、少ないもの程
好ましいものであるが、例えば、粒子直径が0.5μ
m以上の『ゴミ』が1c.c.中、1000個以下とするの
がよく、また、濃度は10〜25重量%の範囲、特に
10〜20重量%とするのが好ましい。 この精製されたポリカーボネート樹脂溶液に、
通常、室温下に固形化用溶媒を添加混合し、つい
で加熱下の温水中に該混合溶液を添加しつつ溶媒
及び固形化用溶媒を留去しつつ、湿式粉砕機に該
固形化液を循環し粉砕する。 固形化用溶媒としては、ポリカーボネート樹脂
溶液の0.1〜0.5容量倍、好ましくは0.2〜0.4容量
倍用いて、温度45℃〜100℃、好ましくは45℃〜
60℃にて固形化する。固形化溶媒の添加量と添加
温度とは、固形化溶媒添加後の溶液が、同温度下
に静置された場合にゲルとなるか又は温度を下げ
た場合に沈澱が生じる量とする。 本発明において固形化は、ポリカーボネート樹
脂の溶媒と固形化用溶媒との混合液から、この混
合溶媒を同時に留出することによつて行われる。 ポリカーボネート樹脂の溶媒のみの溶液の場
合、溶媒が留去されていつてもポリカーボネート
樹脂と溶媒とは完全相溶性であるために、単にポ
リカーボネート樹脂の濃度が上昇し、結果として
固形化されることになると考えられる。 ところが、本発明の混合溶媒の場合、ポリカー
ボネート樹脂と混合溶媒とは完全相溶性ではない
ので、ポリカーボネート樹脂に対して混合溶媒が
減少してくると通常考えられないような高濃度の
状態で沈澱の生成が起こることとなり、結果とし
て沈澱を生成しながら混合溶媒を留去することに
なると推定される。 本発明においては、固形化溶媒添加後の溶液
を、加熱下の温水中に添加しつつ、溶媒及び固形
化用溶媒を通常0.1〜1.0時間、好ましくは0.5〜
1.0時間で留去するように添加するとともに該固
形化過程の液を湿式粉砕機へ全固形化液の1〜30
倍/時間、好ましくは5〜20倍/時間の量で循環
し湿式粉砕を行う。 ここに、湿式粉砕機としては、市販のもので良
く、例えば、相川鉄工(株)製のゴラトール(商品
名)、小松ゼノア(株)製のデイスインテグレータ
(商品名)等が好ましい。 以上の方法により本発明のビーズ状ポリカーボ
ネート固形粒子水スラリー液が得られる。 この水スラリー液中のポリカーボネート固形粒
子は、乾燥後の固形分の90重量%以上がビーズ状
ポリカーボネート固形粒子であり、かつ該ビーズ
の平均直径が0.5〜2mm、嵩比重が0.3〜0.6g/c.c.
であるものとして得られ、このものは、水スラリ
ーの状態に於ける配管中の移送による抵抗が小さ
く、且つ、後処理工程における水分離および乾燥
も効率よく行え、かつ乾燥粉体としても形状がビ
ーズ状であることから、配管や機器壁との接触に
よる『ゴミ』の発生や混入も低減されるものであ
る。 〔実施例〕 以下、実施例等によつて具体的に説明する。 実施例 1 水酸化ナトリウム117Kgを水1320に溶解し、
20℃に保ちながら、2,2−ビス(4−ヒドロキ
シフエニル)プロパン(以下、BPAという)250
Kg、2,6−ジメチル−2,4,6−トリ(4−
ヒドロキシフエニル)ヘプテン−3 0.883Kg、
ハイドロサルフアイト 0.860Kgを溶解した。 これにメチレンクロライド960を加えて撹拌
しつつホスゲン128Kgを35分で吹き込んだ。 ホスゲン吹き込み終了後、p−tert−ブチルフ
エノール(以下、PTBPという)12.3Kgのメチレ
ンクロライド溶液を添加し激しく撹拌して反応液
を乳化させ、乳化後、0.2のトリエチルアミン
及びメチレンクロライド300を加え約1時間撹
拌を続け重合させた。 重合液を、水相と有機相に分離し、有機相をリ
ン酸で中和した後、洗液のPHが中性となるまで
水洗を繰り返し、精製されたポリカーボネート樹
脂溶液とした。 この精製溶液を濾過精度0.2μmのカートリツジ
フイルターで精密濾過した。 この濾過精製溶液に同じく濾過精度0.2μmのカ
ートリツジフイルターで精密濾過したn−ヘキサ
ンを室温で380撹拌下に加えて、ついでこの混
合溶液を、加熱撹拌下の温水中に添加しつつ、溶
媒のメチレンクロライドと固形化用溶媒のn−ヘ
キサンを留去しながらこの液を湿式粉砕機(ゴラ
トール:商品名)に40m3/時間の量で循環し湿式
粉砕し、ビーズ状ポリカーボネート樹脂固形物の
濃度10重量%の水スラリー液を得た。固形化時間
は約1時間であつた。 この水スラリー液よりクリーンルーム中で固形
分を分離し、クリーン空気を循環させた乾燥機で
乾燥した。 この固形化物の測定結果を第1表に示した。 実施例 2〜4 実施例−1において、PTBPに代えて、p−オ
キシ安息香酸ラウリル 22.4Kg、2,6−ジメチ
ル−2,4,6−トリ(4−ヒドロキシフエニ
ル)ヘプテン−3に代えてα,α′,α″−トリ(4
−ヒドロキシフエニル)−1,3,5−トリイソ
プロピルベンゼン 1.05Kgに変更したもの(実施
例2)、実施例1において、PTBPに代えて、p
−ドデシロキシフエノール 20.4Kgに変更したも
の(実施例3)及び実施例1において、PTBPに
代えて、p−ステアリルフエノール 24.3Kg、
2,6−ジメチル−2,4,6−トリ(4−ヒド
ロキシフエニル)ヘプテン−3に代えてα,α′,
α″−トリ(4−ヒドロキシフエニル)−1,3,
5−トリイソプロピルベンゼン 1.05Kgに変更し
たもの(実施例4)にそれぞれ変更する他は同様
とした。 測定結果を第1表に示した。 比較例 1 実施例1において、固形化過程の液を湿式粉砕
機に循環しつつ固形化する方法に代えて、固形化
過程では湿式粉砕機で循環粉砕しないで固形化
し、得られた平均直径約5mmの固形化物の水スラ
リー液を湿式粉砕機に循環し、粉砕する他は同様
とした。 結果を第1表に示した。 比較例 2 実施例1において、n−ヘキサンを用いない以
外は同様にした。 結果を第1表に示した。 実施例 5 実施例1において、n−ヘキサンの代わりにn
−ヘプタン400を用いた以外は同様にした。 結果を第1表に示した。 実施例 6 実施例1において、n−ヘキサンの代わりにシ
クロヘキサン500を用いた以外は同様にした。 結果を第1表に示した。
[Industrial Application Field] The present invention relates to a method for solidifying polycarbonate resin, and specifically, a method for producing an aqueous slurry in which polycarbonate resin is dispersed as bead-shaped solidified particles by using a wet pulverization method. The aqueous slurry liquid has little contamination of fine "dust" due to slurry transfer during the manufacturing process, and can be easily filtered and dried, and is particularly suitable for manufacturing optical polycarbonate resins. It is suitable as [Prior art and its problems] Conventionally, the method of extracting dry solid powder used for manufacturing pellets from a polycarbonate resin solution usually involves producing a semi-crystalline or amorphous solidified material solidified in a solidification tank. It depends on the method of separating by filtration, crushing, and then drying. This method is preferable from the viewpoint of the size of the manufacturing equipment and processing efficiency, but during the process of transferring the water slurry liquid of the solidified product to the process of pulverizing the solidified product, "garbage" is generated and mixed in from piping and equipment. Due to these problems, it has sometimes been insufficient as a method for producing polycarbonate resins for applications that require higher quality, that is, less "dust", particularly for optical applications. [Means for Solving the Problems] As a result of intensive study by the present inventors on a method that substantially eliminates the generation of "garbage" due to transportation in piping and pulverization of solidified materials, the present inventors found that wet pulverization is performed at the same time as solidification. They discovered a method and completed the present invention. That is, the present invention involves adding and mixing a purified solidifying solvent to a purified polycarbonate resin solution, and distilling off the solvent and solidifying solvent while adding the mixed solution to hot water under heating. A method for producing a water slurry of solidified polycarbonate resin, which is characterized in that the liquid in the solidification process is solidified while being circulated to a wet grinder, and is preferred. In an embodiment, solidifying at a temperature of 45° C. to 100° C. using a solidifying solvent 0.1 to 0.5 times the volume of the polycarbonate resin solution;
By circulating the liquid during the solidification process to the wet grinder at a rate of 1 to 30 times the total solidification liquid per hour, 90% by weight or more of the solid content after drying is bead-shaped polycarbonate solid particles, and The average diameter of the beads is
0.5 to 2 mm and bulk specific gravity of 0.3 to 0.6 g/cc, and the viscosity average molecular weight of the polycarbonate resin of the purified polycarbonate resin solution used for this is in the range of 13,000 to 20,000, and the concentration is 10% to 25% by weight is used. The configuration of the present invention will be explained below. The polycarbonate resin solution of the present invention is produced by a method similar to that of conventional polycarbonate resins, that is, by an interfacial polymerization method, and contains a dihydric phenol compound (hereinafter abbreviated as BP) as the main component, with a small amount of molecular weight control. A solution of a homo- or copolymer of an aromatic polycarbonate resin made by reacting with phosgene using an agent and optionally a branching agent. Preferred as the BP of the present invention are compounds represented by the following general formula (1), General formula (1): (R in the formula is a divalent aliphatic, alicyclic, or phenyl-substituted alkyl group having 1 to 15 carbon atoms, or
-O-, -S-, -SO-, -SO2- , -CO-. X is an alkyl group, an aryl group, or a halogen atom, and p and q are integers of 0 to 2. ) Specifically, bis(4-hydroxyphenyl)
Methane, bis(4-hydroxyphenyl) ether, bis(4-hydroxyphenyl) sulfone,
bis(4-hydroxyphenyl) sulfoxide,
Bis(4-hydroxyphenyl) sulfide, bis(4-hydroxyphenyl)ketone, 1,1-
Bis(4-hydroxyphenyl)ethane, 2,2
-Bis(4-hydroxyphenyl)propane (hereinafter referred to as bisphenol A), 2,2-bis(4-hydroxyphenyl)butane, 1,1-bis(4-hydroxyphenyl)cyclohexane (hereinafter referred to as bisphenol A), phenol Z), 2,2-bis(4-hydroxy-3,5-dibromophenyl)
Propane, 2,2-bis(4-hydroxy-3,
5-dichlorophenyl)propane, 2,2-bis(4-hydroxy-3-bromophenyl)propane, 2,2-bis(4-hydroxy-3-chlorophenyl)propane, 2,2-bis(4-hydroxy- 3,5-dimethylphenyl)propane,
Examples include 2,2-bis(4-hydroxy-3-methylphenyl)propane, 1,1-bis(4-hydroxyphenyl)-1-phenylethane, and bis(4-hydroxyphenyl)diphenylmethane. Branching agents include phloroglycin, 2,6-
Dimethyl-2,4,6-tri(4-hydroxyphenyl)heptene-3, 4,6-dimethyl-2,
4,6-tri(4-hydroxyphenyl)heptene-2, 1,3,5-tri(2-hydroxyphenyl)benzole, 1,1,1-tri(4-hydroxyphenyl)ethane, 2, Examples include 6-bis(2-hydroxy-5-methylbenzyl)-4-methylphenol, α,α′,α″-tri(4-hydroxyphenyl)-1,3,5-triisopropylbenzene, etc. Polyhydroxy compound, and 3,3-bis(4-hydroxyaryl)oxindole (=isatin bisphenol), 5-
A branching agent, exemplified by chloroisatin bisphenol, 5,7-dichloroisatin bisphenol, 5-bromyisatin bisphenol, etc., is added to the divalent phenolic compound of general formula (1) above,
Usually 0.02 to 3 mol%, preferably 0.1 to 1.0 mol%
Use the range of In addition, monovalent aromatic hydroxy compounds are used as molecular weight regulators or terminal stoppers, such as m- and p-methylphenol, m- and p-propylphenol, p-bromophenol, p-
Preferred are tert-butylphenol and p-long chain alkyl substituted phenols, P-long chain alkyl etherified phenols, P-hydroxyalkyl benzoates, and the like. In particular, aromatic polycarbonate resins include:
Examples include polycarbonates containing bisphenol A as a main raw material, polycarbonate copolymers obtained by combining bisphenol Z, etc., branched products thereof, and those modified with long-chain alkyl terminals. Examples of the solvent used in the reaction include chlorinated aliphatic or aromatic hydrocarbons such as methylene chloride, 1,1-dichloroethane, chlorobenzene and chlorotoluene, with methylene chloride being particularly preferred. The polycarbonate resin solution produced by the above method is subjected to conventional methods such as removal of the catalyst, neutralization, washing with water, concentration, etc., and further microfiltration to obtain the purified polycarbonate resin solution of the present invention. Here, the amount of fine "dust" in the purified polycarbonate resin solution is preferably as small as possible, but for example, if the particle diameter is 0.5μ
It is best to limit the number of "garbage" of 1 m or more to 1000 pieces or less in 1 c.c., and the concentration should be in the range of 10 to 25% by weight, especially
It is preferably 10 to 20% by weight. In this purified polycarbonate resin solution,
Usually, a solidifying solvent is added and mixed at room temperature, and then the mixed solution is added to hot water under heating while the solvent and solidifying solvent are distilled off, and the solidifying liquid is circulated to a wet grinder. and crush. As the solidifying solvent, use 0.1 to 0.5 times the volume of the polycarbonate resin solution, preferably 0.2 to 0.4 times the volume, at a temperature of 45°C to 100°C, preferably 45°C to
Solidify at 60℃. The amount of solidification solvent added and the addition temperature are such that the solution after addition of the solidification solvent becomes a gel when left standing at the same temperature or forms a precipitate when the temperature is lowered. In the present invention, solidification is performed by simultaneously distilling a mixed solvent of a polycarbonate resin solvent and a solidifying solvent from a mixed solution. In the case of a polycarbonate resin solution containing only a solvent, the polycarbonate resin and solvent are completely compatible even after the solvent is distilled off, so the concentration of the polycarbonate resin simply increases, resulting in solidification. Conceivable. However, in the case of the mixed solvent of the present invention, since the polycarbonate resin and the mixed solvent are not completely miscible, the precipitate cannot be formed at a high concentration that would not normally be thought of as the mixed solvent decreases with respect to the polycarbonate resin. It is presumed that the mixed solvent will be distilled off while forming a precipitate. In the present invention, while adding the solution after addition of the solidifying solvent into hot water under heating, the solvent and the solidifying solvent are added for usually 0.1 to 1.0 hours, preferably 0.5 to 1.0 hours.
1 to 30% of the total solidified liquid is added so as to be distilled off in 1.0 hour, and the liquid in the solidification process is sent to a wet grinder.
Wet grinding is carried out by circulating at a rate of 5 times/hour, preferably 5 to 20 times/hour. Here, the wet grinder may be a commercially available one, and preferred examples include Golatol (trade name) manufactured by Aikawa Tekko Co., Ltd. and Dice Integrator (trade name) manufactured by Komatsu Zenoah Co., Ltd. The bead-shaped polycarbonate solid particle aqueous slurry of the present invention can be obtained by the above method. The polycarbonate solid particles in this aqueous slurry have bead-shaped polycarbonate solid particles that account for 90% or more of the solid content after drying, and the beads have an average diameter of 0.5 to 2 mm and a bulk specific gravity of 0.3 to 0.6 g/cc.
This product has low resistance due to transfer through piping in the state of water slurry, can be efficiently separated and dried in the post-processing process, and has a good shape even as a dry powder. Since it is bead-shaped, the generation and contamination of "dust" due to contact with piping and equipment walls is also reduced. [Example] Hereinafter, the present invention will be specifically explained using examples. Example 1 Dissolve 117 kg of sodium hydroxide in 1320 kg of water,
2,2-bis(4-hydroxyphenyl)propane (hereinafter referred to as BPA) 250°C while keeping at 20℃
Kg, 2,6-dimethyl-2,4,6-tri(4-
Hydroxyphenyl)heptene-3 0.883Kg,
Hydrosulfite 0.860Kg was dissolved. To this was added 960 methylene chloride, and while stirring, 128 kg of phosgene was blown in over 35 minutes. After blowing phosgene, 12.3 kg of p-tert-butylphenol (hereinafter referred to as PTBP) methylene chloride solution was added and vigorously stirred to emulsify the reaction solution. After emulsification, 0.2 of triethylamine and 300 of methylene chloride were added to approx. Stirring was continued for hours to allow polymerization. The polymerization solution was separated into an aqueous phase and an organic phase, and the organic phase was neutralized with phosphoric acid, and then water washing was repeated until the pH of the washing solution became neutral to obtain a purified polycarbonate resin solution. This purified solution was microfiltered using a cartridge filter with a filtration accuracy of 0.2 μm. To this filtered and purified solution, n-hexane, which had been microfiltered using a cartridge filter with a filtration accuracy of 0.2 μm, was added at room temperature while stirring at 380 °C.Then, this mixed solution was added to warm water under heating and stirring while the solvent was removed. While methylene chloride and n-hexane, the solidification solvent, are distilled off, this liquid is circulated at a rate of 40 m 3 /hour to a wet grinder (Golatoll: trade name) for wet grinding, resulting in a concentration of bead-shaped polycarbonate resin solids. A 10% by weight water slurry was obtained. Solidification time was about 1 hour. The solid content was separated from this water slurry in a clean room and dried in a drier that circulated clean air. The measurement results of this solidified material are shown in Table 1. Examples 2 to 4 In Example-1, 22.4 kg of lauryl p-oxybenzoate and 2,6-dimethyl-2,4,6-tri(4-hydroxyphenyl)heptene-3 were used instead of PTBP. α, α′, α″−tri(4
-Hydroxyphenyl)-1,3,5-triisopropylbenzene 1.05Kg (Example 2), in Example 1, p
-dodecyloxyphenol 20.4Kg (Example 3) and Example 1, p-stearylphenol 24.3Kg instead of PTBP,
α, α′, in place of 2,6-dimethyl-2,4,6-tri(4-hydroxyphenyl)heptene-3
α″-tri(4-hydroxyphenyl)-1,3,
The procedure was the same except that 1.05 kg of 5-triisopropylbenzene was used (Example 4). The measurement results are shown in Table 1. Comparative Example 1 In Example 1, instead of solidifying the liquid during the solidification process while circulating it in a wet pulverizer, the liquid was solidified without circulating in the wet pulverizer during the solidification process, and the resulting average diameter was approximately The procedure was the same except that the water slurry of the 5 mm solidified material was circulated to a wet pulverizer and pulverized. The results are shown in Table 1. Comparative Example 2 The same procedure as in Example 1 was carried out except that n-hexane was not used. The results are shown in Table 1. Example 5 In Example 1, n-hexane was replaced with n
- Same procedure except that heptane 400 was used. The results are shown in Table 1. Example 6 The procedure of Example 1 was repeated except that cyclohexane 500 was used instead of n-hexane. The results are shown in Table 1.

【表】 したものである。
以上、詳細な説明および実施例から明らかな如
く、本発明の固形化方法によるポリカーボネート
樹脂は、配管、機器などからの『ゴミ』の混入が
極めて少なく、溶液におけると同様に極めて清浄
なものであることがわかる。
[Table]
As is clear from the above detailed description and examples, the polycarbonate resin obtained by the solidification method of the present invention has very little contamination of "dust" from piping, equipment, etc., and is extremely clean, just like in a solution. I understand that.

Claims (1)

【特許請求の範囲】 1 精製されたポリカーボネート樹脂溶液に、精
製された固形化用溶媒を添加混合し、加熱下の温
水中に該混合物溶液を添加しつつ溶媒及び固形化
用溶媒を留去してポリカーボネート樹脂固形化物
の水スラリー液を製造する方法において、固形化
過程の液を湿式粉砕機に循環しつつ固形化するこ
とを特徴とするビーズ状ポリカーボネート固形粒
子の水スラリー液の製造法。 2 固形化用溶媒を、ポリカーボネート樹脂溶液
の0.1〜0.5容量倍用い、温度45℃〜100℃にて
固形化する特許請求の範囲第1項記載の製造法。 3 固形化過程の液の湿式粉砕機への循環量が全
固形化液の1〜30倍/時間である特許請求の範囲
第1項記載の製造法。 4 乾燥後の固形化ポリカーボネート樹脂の90重
量%以上がビーズ状ポリカーボネート固形粒子で
あり、かつ該ビーズの平均直径が0.5〜2mm、嵩
比重が0.3〜0.6g/c.c.である特許請求の範囲第1
項記載の製造法。 5 精製されたポリカーボネート樹脂溶液のポリ
カーボネート樹脂の粘度平均分子量が13000〜
20000の範囲で、かつ濃度が10重量%〜25重量%
である特許請求の範囲第1項記載の製造法。
[Claims] 1. Adding and mixing a purified solidifying solvent to a purified polycarbonate resin solution, and distilling off the solvent and solidifying solvent while adding the mixture solution to hot water under heating. 1. A method for producing an aqueous slurry of bead-shaped polycarbonate solid particles, the method comprising: solidifying the solution while circulating it in a wet grinder during the solidification process. 2. The manufacturing method according to claim 1, wherein the solidification solvent is used in an amount of 0.1 to 0.5 times the volume of the polycarbonate resin solution and solidified at a temperature of 45°C to 100°C. 3. The manufacturing method according to claim 1, wherein the amount of the liquid during the solidification process that is circulated to the wet grinder is 1 to 30 times the total solidification liquid per hour. 4. Claim 1, wherein 90% by weight or more of the solidified polycarbonate resin after drying is bead-shaped polycarbonate solid particles, and the beads have an average diameter of 0.5 to 2 mm and a bulk specific gravity of 0.3 to 0.6 g/cc.
Manufacturing method described in section. 5 The viscosity average molecular weight of the polycarbonate resin in the purified polycarbonate resin solution is 13,000 ~
20000 and the concentration is 10% to 25% by weight
The manufacturing method according to claim 1.
JP9185085A 1985-04-27 1985-04-27 Production of water slurry of bead-like polycarbonate solid particles Granted JPS61250026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9185085A JPS61250026A (en) 1985-04-27 1985-04-27 Production of water slurry of bead-like polycarbonate solid particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9185085A JPS61250026A (en) 1985-04-27 1985-04-27 Production of water slurry of bead-like polycarbonate solid particles

Publications (2)

Publication Number Publication Date
JPS61250026A JPS61250026A (en) 1986-11-07
JPH0471412B2 true JPH0471412B2 (en) 1992-11-13

Family

ID=14038046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9185085A Granted JPS61250026A (en) 1985-04-27 1985-04-27 Production of water slurry of bead-like polycarbonate solid particles

Country Status (1)

Country Link
JP (1) JPS61250026A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653794B2 (en) * 1987-07-21 1994-07-20 東亞合成化学工業株式会社 Urethane-forming reactivity reduction treatment method of polycarbonate diol
JP3118833B2 (en) * 1990-11-30 2000-12-18 三菱瓦斯化学株式会社 Method for producing granular high molecular weight polycarbonate resin
US5187256A (en) * 1990-12-03 1993-02-16 The Dow Chemical Company Uniform distribution polycarbonate pellet
KR960000571B1 (en) * 1991-01-24 1996-01-09 미쓰이 도오아쓰 가가쿠 가부시키가이샤 Process for producing granules of polycarbonate and composition thereof
WO1999039888A1 (en) * 1998-02-09 1999-08-12 Bayer Aktiengesellschaft Polymer particles
JP4288435B2 (en) * 1999-03-30 2009-07-01 三菱瓦斯化学株式会社 Method for producing polyphenylene ether resin
GB201111928D0 (en) 2011-07-12 2011-08-24 Norner As Process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3267074A (en) * 1962-11-02 1966-08-16 Mobay Chemical Corp Process for producing polycarbonates
JPS4928642A (en) * 1972-07-14 1974-03-14
JPS54162753A (en) * 1978-06-15 1979-12-24 Mitsubishi Chem Ind Ltd Preparation of polycarbonate granule
JPS59133228A (en) * 1983-01-20 1984-07-31 Mitsubishi Chem Ind Ltd Production of polycarbonate resin particle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3267074A (en) * 1962-11-02 1966-08-16 Mobay Chemical Corp Process for producing polycarbonates
JPS4928642A (en) * 1972-07-14 1974-03-14
JPS54162753A (en) * 1978-06-15 1979-12-24 Mitsubishi Chem Ind Ltd Preparation of polycarbonate granule
JPS59133228A (en) * 1983-01-20 1984-07-31 Mitsubishi Chem Ind Ltd Production of polycarbonate resin particle

Also Published As

Publication number Publication date
JPS61250026A (en) 1986-11-07

Similar Documents

Publication Publication Date Title
JPH0471412B2 (en)
JPH0341493B2 (en)
JP3118833B2 (en) Method for producing granular high molecular weight polycarbonate resin
JP3463705B2 (en) Production method of colored polycarbonate resin molding material
JPS6354011B2 (en)
JP3357785B2 (en) Method for producing polycarbonate powder
JP3551211B2 (en) Method for producing polycarbonate resin granules
JP3235222B2 (en) Pigment masterbatch for thermoplastic resin
JP5544681B2 (en) Method for producing polycarbonate
JPH0839551A (en) Manufacture of polycarbonate resin molding material
JPH07268092A (en) Production of polycarbonate
JP2000281798A (en) Preparation of polyphenylene ether resin
JPH0839546A (en) Manufacture of dried polycarbonate oligomer solid particle
JP3475979B2 (en) Manufacturing method of polycarbonate resin for optical
JPS61250025A (en) Production of dried polycarbonate solid particles
JPH0257571B2 (en)
JP3164668B2 (en) Method for producing granular polycarbonate
JP2010106182A (en) Method for producing polycarbonate particles continuously
JP2938257B2 (en) Method for producing polycarbonate granules
JPH0839545A (en) Manufacture of dried polycarbonate solid particle
JP3498766B2 (en) Continuous production method of optical polycarbonate resin
JP3252862B2 (en) Masterbatch for thermoplastic resin
JP4575082B2 (en) Process for obtaining aromatic dihydroxy compounds from waste aromatic polycarbonates
JPH0892381A (en) Method for producing aromatic polycarbonate resin particle
JPS60115625A (en) Production of polycarbonate resin particle

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees