JP4288435B2 - Method for producing polyphenylene ether resin - Google Patents

Method for producing polyphenylene ether resin Download PDF

Info

Publication number
JP4288435B2
JP4288435B2 JP08899399A JP8899399A JP4288435B2 JP 4288435 B2 JP4288435 B2 JP 4288435B2 JP 08899399 A JP08899399 A JP 08899399A JP 8899399 A JP8899399 A JP 8899399A JP 4288435 B2 JP4288435 B2 JP 4288435B2
Authority
JP
Japan
Prior art keywords
polyphenylene ether
solvent
aqueous dispersion
water
wet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08899399A
Other languages
Japanese (ja)
Other versions
JP2000281798A (en
Inventor
千春 西沢
明夫 長谷部
健二 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP08899399A priority Critical patent/JP4288435B2/en
Publication of JP2000281798A publication Critical patent/JP2000281798A/en
Application granted granted Critical
Publication of JP4288435B2 publication Critical patent/JP4288435B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Polyethers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ポリフェニレンエーテルまたは変性ポリフェニレンエーテルの微細な粒子を平均粒径が0.2〜2mm内に整粒された微紛の少ないポリフェニレンエーテルを製造に関する。
【0002】
【従来の技術】
ポリフェニレンエーテルは、一般に、銅、マンガン、またはコバルトを含有する錯体触媒の存在下、芳香族炭化水素溶媒または芳香族炭化水素とアルコールの混合溶媒を用いて、1種あるいは2種以上のフェノール化合物を酸化重合して得られる。その後、ポリフェニレンエーテルの特性を阻害する不純物である触媒、および副生成物を除去するために重合停止剤、または重合停止剤と還元剤とを接触させ、多量のアルコールで洗浄するといった方法がとられている。
【0003】
しかし、従来の方法は多量のアルコールを使用するため、アルコールの回収コストの増大につながり、更に、この様にして得られるポリフェニレンエーテル粒子は著しく微細であるか微粒子を多く含有するため、乾燥工程で粒子の飛散等の問題が生じ、また成形時のホッパーからの供給不良あるいは押し出し機の食い込み不良といった問題が発生していた。
【0004】
これらの問題点を解決するため、種々の検討が行われている。ポリフェニレンエーテルの粒子形状を改良する方法としては、重合体液にアルコール等の非溶媒を加える際に、水を共存させて微粒子の生成を抑制する方法がある(特開昭54−146896)。しかし、この方法で形成される粒子においても微粒子が完全になくなるわけではなく、また、この方法で形成される粒子は比較的脆くスラリーポンプによる輸送工程、遠心分離機等による固液分離工程において細粒化される傾向がある等の不都合があった。
【0005】
また、非溶媒を用いずにポリフェニレンエーテル溶液を水中に分散させ造粒する方法(USP−4263426)がおこなわれているが、造粒時に粒子が会合して著しく大きな塊となってしまい後工程の取り扱いが非常に難しくなってしまう。
【0006】
更に、造粒時の粒径の増大化検討は、造粒方法(特公昭45−587、特公昭60−23696)、微小粒子の粒径増加方法(特公昭55−17775、特開昭63−243129)、粒径増大補助剤の検討(特開昭62−172022)などが挙げられる。しかしながら、上記に提案された方法は、ポリフェニレンエーテル樹脂の非溶媒の添加を可及的速やかに行わなければならず、操作が困難、かつ煩雑であり、先に挙げた問題点を全て解決するには不十分であった。
【0007】
【発明が解決しようとする課題】
本発明は、従来のような欠点を克服して、ポリフェニレンエーテル溶液から効率よく、しかも微粒子の少ないポリフェニレンエーテル樹脂の製造方法を提供することである。
【0008】
【課題を解決するための手段】
本発明は、ポリフェニレンエーテルの重合反応液を、必要に応じてポリフェニレンエーテルに対して非溶媒、またはその水溶液を加えて沈殿体を形成させた後、固液分離し、分離された湿潤固体に水を加えて水分散液を形成し、加温することにより脱溶媒して造粒するに際し、水分散液の少なくとも一部を湿式粉砕機に循環し、必要以上に大きくなった粗大粒子を粉砕するポリフェニレンエーテル樹脂の製造方法である。
【0009】
【発明の実施の形態】
本発明におけるポリフェニレンエーテルは、一般式(1)で表される化合物から酸化重合によって誘導されるものである。
【化1】

Figure 0004288435
(式中、R1 、R2 、R3 及びR4 は、各々独立に水素、アルキル基、置換アルキル基、ハロゲン基、アリール基、置換アリール基、フェニル基又は置換フェニル基である。)
【0010】
代表的なポリフェニレンエーテルは、ポリ(2,6−ジメチル−1,4−フェニレン)エーテル、ポリ(2−メチル−6−エチル−1,4−フェニレン)エーテル、ポリ(2,6−ジエチル−1,4−フェニレン)エーテル、ポリ(2−エチル−6−n−プロピル−1,4−フェニレン)エーテル、ポリ(2,6−ジ−n−プロピル−1,4−フェニレン)エーテル、ポリ(2−メチル−6−n−ブチル−1,4−フェニレン)エーテル、ポリ(2−エチル−6−イソプロピル−1,4−フェニレン)エーテル、ポリ(2−メチル−6−クロロエチル−1,4−フェニレン)エーテル、ポリ(2−メチル−6−ヒドロキシエチル−1,4−フェニレン)エーテル等のホモポリマー、また2,6−ジメチルフェノールに共重合体成分として2,3,6−トリメチルフェノールおよびo−クレゾールの1種あるいは両方を組み合わせたポリフェニレンエーテル共重合体等が挙げられる。
【0011】
また、本発明のポリフェニレンエーテルには、本発明の主旨に反さない限り、従来ポリフェニレンエーテルに存在させてもよいことが提案されている他の種々のフェニレンエーテルユニットを部分構造として含んでいてもよい。例えば、特開平1−297428号公報及び特開昭63−301222号公報に記載の2−(ジアルキルアミノメチル)−6−メチルフェニレンエーテルユニットや、2−(N−アルキル−N−フェニルアミノメチル)−6−メチルフェニレンエーテルユニット等や、ポリフェニレンエーテル樹脂の主鎖中にジフェノキノン等が少量結合したものが挙げられる。さらに、炭素−炭素二重構造を持つ化合物により変性されたポリフェニレンエーテル(例えば特開平2−276823号公報、特開昭63−108059号公報、特開昭59−59724号公報)も含むことができる。
【0012】
本発明に用いるポリフェニレンエーテル樹脂の分子量は30℃クロロホルム中の固有粘度が0.1〜0.7であるのが好ましく、0.2〜0.6の範囲にあるポリフェニレンエーテルが本発明の効果が顕著であり、特に好ましい。
【0013】
本発明のポリフェニレンエーテルは、例えば、特公昭42−3195号公報、特公昭45−23555号公報、特開昭64−33131号公報等に例示されるように、フェノール化合物を金属の塩と各種アミンとの組み合わせからなる触媒を用いて酸化重合される。重合溶媒は、例えばポリフェニレンエーテルの良溶媒であるベンゼン、トルエン、キシレン等の芳香族炭化水素、ジクロロメタン、クロロホルム、ジクロルベンゼン等のハロゲン化炭化水素、ニトロベンゼン等のニトロ化合物等が挙げられる。また、前記の良溶媒にポリフェニレンエーテルの非溶媒であるメタノール、エタノール等のアルコール類、ヘキサン、ヘプタン等の脂肪族炭化水素類、アセトン、メチルエチルケトン等のケトン類、酢酸エチル等のエステル類、ジメチルホルムアミド等のアミド類等を任意の割合および組成で混合し重合溶媒として用いることができる。重合溶媒中の非溶媒の割合が多くなると重合中にポリフェニレンエーテルが析出してくる沈澱重合となるが、本発明では重合後にポリフェニレンエーテルが析出しない溶液重合が溶液の移送や反応停止工程あるいは触媒分離工程等におけるハンドリングの点で好ましい。
【0014】
本発明におけるポリフェニレンエーテル重合反応液中のポリフェニレンエーテルの濃度は、通常5〜70重量%、好ましくは10〜50重量%の範囲である。また、溶液中にはポリフェニレンエーテルのほかに重合触媒や、触媒除去のための薬品、副生成物除去のための薬品等が含まれていてもかまわない。
【0015】
このポリフェニレンエーテル重合反応液からポリフェニレンエーテルを析出させる方法としては、溶液にメタノール等のポリフェニレンエーテルに対する非溶媒を添加してポリフェニレンエーテルの粒子を析出させる方法が知られている。また、非溶媒として水とアルコール類の混合物を使用する方法(特公昭60−23696)等がある。本発明におけるポリフェニレンエーテル重合反応液からの、ポリフェニレンエーテルの析出・沈殿化は、ポリフェニレンエーテルに対して非溶媒であるアルコール類等にポリフェニレンエーテル反応液を連続的に添加し析出させる方法、または非溶媒と水との混合物中にポリフェニレンエーテル反応液を添加する方法のどちらでもかまわない。またその際、非溶媒重量/良溶媒重量比が0.5〜2.0とすることが好ましい。また,重合反応液を供給する際には往復動式攪拌機を備えた攪拌槽1段もしくは2段以上の槽中に、連続的にポリフェニレンエーテルを析出させるのが好ましい。
【0016】
本発明において析出・沈殿化されたポリフェニレンエーテル粒子を固液分離する際,通常の遠心力を利用した方法、減圧による真空濾過法、またこれに限らずいずれの方法においてもかまわない。好ましくは分離した際のポリフェニレン湿潤固体の硬い塊のできにくい真空ろ過法が好ましい。
【0017】
本発明において、ポリフェニレンエーテル湿潤固体は、1段もしくは2段以上の攪拌槽に連続または、バッチ式で供給され、水と混合され水分散液とされる。この際の攪拌機は、同方向あるいは往復回転いずれでもかまわない。この水分散液は攪拌機付き、かつ湿式粉砕機を通る循環経路付きの加温槽1段もしくは2段以上の槽中において、水と連続的にあるはバッチで混合される。
【0018】
また、水とポリフェニレンエーテル水分散液の一部は湿式粉砕機を経由して槽内を循環する。湿式粉砕機は溶液内の固形成分を粉砕できる構造のものが良く、例えば、相川鉄工(株)製のゴラトール(商品名)や小松ゼノア(株)製のディスインテグレーター(商品名)等の構造を持つものが好ましい。
【0019】
水/ポリフェニレンエーテル湿潤固体比は1〜100の範囲でおこなわれるが、好ましくは2〜10の範囲でおこなわれる。温度は40〜100℃でおこなわれ、加熱処理により系外に運ばれる水および有機溶媒は凝集操作によりそれぞれ系内循環および系外回収される。また系内は不活性ガス雰囲気で行うのが好ましいが、酸素存在下で処理することも可能である。不活性ガスは一般に、窒素、アルゴン、ヘリウム等が使用される。槽内の滞留時間は1〜120分必要で、造粒されたポリフェニレンエーテルは連続あるいはバッチで固液分離される。
【0020】
本発明方法によれば、乾燥後の固形化ポリフェニレンエーテル樹脂の平均粒径が0.2〜2mm、嵩比重が0.3〜0.6g/ccのものが得られるため、押出機によって溶融混練してペレット化する際に、食い込み不良とか未溶融部分が残るなどのトラブルなく、成形材料として好適に使用することが可能である。
【0021】
【実施例】
以下に、具体例により本発明を説明するがこれに限定される物ではなく、これらは本発明の範囲内で適当に改変することができる。
【0022】
以下の操作にて得られたポリフェニレンエーテル粒子は窒素を5Nm3 /hで流しながら135〜140℃で6時間以上乾燥して、ポリフェニレンエーテルの乾粉を得、乾粉粒子の粒度分布、平均粒径及び100μm以下の粒子の割合を測定した。粒度分布及び140メッシュパスの106μm以下粒子の割合は、JIS規格(JIS Z8801)に準じて行った。10、18.5、60、120、140、280メッシュの篩を用い、TNK篩振動機(タナカ化学機器社製)を用いて10分間振動し篩をかけることで測定した。また、平均粒径は、50%重量平均径により求めた。
【0023】
押出機による押出試験は、池貝鉄工(株)製2軸押出機(PCM−30)を用い、乾燥後のポリフェニレンエーテル粉体40重量部とスチレン系樹脂(電気化学工業(株)製、商品名HI-UM-301 )60重量部をミキサーでよく混合した後、溶融混練しストランドを切断してペレット状の樹脂組成物のペレットを得た。押出機のストランド中に発生するの不完全溶融のポリフェニレンエーテル樹脂を目視で観察し混練不良を判定した。
【0024】
参考例1
臭化第二銅2kgをジブチルアミン35kg及びトルエン800kgに溶解させた。この触媒溶液に、2,6−ジメチルフェノール200kgをトルエン500kgに溶かした溶液を加えた。これらの混合液を反応機内にて、酸素を供給しながら40℃で重合を3時間行った。反応停止後、水と接触させて反応液から触媒を除去し、ポリフェニレンエーテル重合反応液を得た。このポリフェニレンエーテル反応液をメタノールに添加し攪拌しながら析出・沈殿化させた。その後、固液分離機にて液を分離し、湿潤個体を得た。この湿潤固体中の含液率は60wt%であった。またこの湿潤固体中には106μ以下の粒子が77wt%含まれていた。
【0025】
実施例1
参考例1記載の方法にて得られる湿潤固体100kgに水を添加して水分散液を得た。この水分散液を攪拌しながら80℃の温水中に添加した。この時ポリフェニレンエーテル湿潤固体/水の重量比は0.01であった。この水分散液を加温しつつ溶媒であるトルエン、メタノールを留去しながら、この液を湿式粉砕機(商品名:ゴラトール)に全水分散液の20倍/時間の量で循環して湿式粉砕し、この溶媒の留去を1時間行った後、水分散液を抜き出した。この液を固液分離しポリフェニレンエーテル湿潤固体を得た。この湿潤固体を140℃,窒素気流下にて6時間乾燥した。こうして得られた粉体の粒度を振動篩を用いて測定した。平均粒径は0.21mm、嵩比重は0.34g/ccであった。押し出し機試験をおこなったところ混練不良は認められなかった。
【0026】
実施例2
ポリフェニレンエーテル湿潤固体/水の重量比を0.5にし、湿式粉砕機に全水分散液の0.1倍/時間の量で循環すること以外は実施例1と同様にし、ポリフェニレンエーテル粉体を得た。得られた粉体の粒度を測定したところ、平均粒径は0.41mm、嵩比重は0.33g/ccであった。押し出し機試験をおこなったところ混練不良は認められなかった。
【0027】
実施例3
ポリフェニレンエーテル湿潤固体/水の重量比を0.5にし、湿式粉砕機に全水分散液の40倍/時間の量で循環すること以外は実施例1と同様にし、ポリフェニレンエーテル粉体を得た。得られた粉体の粒度を測定したところ、平均粒径は0.24mm、嵩比重は0.37g/ccであった。押し出し機試験をおこなったところ混練不良は認められなかった。
【0028】
実施例4
ポリフェニレンエーテル湿潤固体/水の重量比を0.5にし、湿式粉砕機に全水分散液の20倍/時間の量で循環すること以外は実施例1と同様にし、ポリフェニレンエーテル粉体を得た。得られた粉体の粒度を測定したところ、平均粒径は0.66mm、嵩比重は0.39g/ccであった。押し出し機試験をおこなったところ押し出し異常は認められなかった。
【0029】
比較例1
ポリフェニレンエーテル湿潤固体/水の重量比を0.5にし、水分散液を湿式粉砕機に循環しない以外は実施例1と同様にし、ポリフェニレンエーテル粉体を得た。得られた粉体の粒度を測定したところ、ポリフェニレンエーテル粉体の粒径は90重量%以上が10メッシュ以上であり、嵩比重は0.28g/ccであった。押し出し機試験をおこなったところ混練不良が認められた。
【0030】
比較例2
ポリフェニレンエーテル湿潤固体/水の重量比を7.0にし、湿式粉砕機に全水分散液の0.1倍/時間の量で循環すること以外は実施例1と同様にした。この場合、循環することが可能な水分散液を得ることはできず、ポリフェニレンエーテル粉体は得られなかった。
【0031】
比較例3
ポリフェニレンエーテル湿潤固体/水の重量比を0.01にし、湿式粉砕機に全水分散液の0.1倍/時間の量で循環すること以外は実施例1と同様にした。得られた粉体の粒度を測定したところ、ポリフェニレンエーテル粉体の粒径は90重量%以上が10メッシュ以上であり、嵩比重は0.29g/ccであった。押し出し機試験をおこなったところ混練不良が認められた。
【0032】
【発明の効果】
本発明によれば、ポリフェニレンエーテルの重合反応液を、必要に応じてポリフェニレンエーテルに対して非溶媒、またはその水溶液を加えて沈殿体を形成させた後、固液分離し、分離された湿潤固体に水を加えて水分散液を形成し、加温することにより脱溶媒して造粒する工程において、水分散液の少なくとも一部を湿式粉砕機に循環し、必要以上に大きくなった粗大粒子を、粉砕することにより、平均粒径のそろったポリフェニレンエーテル粒子を造粒できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the production of polyphenylene ether having a small amount of fine particles in which fine particles of polyphenylene ether or modified polyphenylene ether are sized within an average particle size of 0.2 to 2 mm.
[0002]
[Prior art]
In general, polyphenylene ether is obtained by using one or two or more phenol compounds in the presence of a complex catalyst containing copper, manganese, or cobalt using an aromatic hydrocarbon solvent or a mixed solvent of an aromatic hydrocarbon and an alcohol. Obtained by oxidative polymerization. Thereafter, a catalyst that is an impurity that impairs the characteristics of polyphenylene ether, and a method in which a polymerization terminator or a polymerization terminator and a reducing agent are brought into contact with each other and washed with a large amount of alcohol to remove byproducts. ing.
[0003]
However, since the conventional method uses a large amount of alcohol, it leads to an increase in the alcohol recovery cost. Further, the polyphenylene ether particles obtained in this way are remarkably fine or contain a large amount of fine particles. Problems such as particle scattering occurred, and problems such as poor supply from the hopper during molding or poor biting of the extruder occurred.
[0004]
Various studies have been conducted to solve these problems. As a method for improving the particle shape of polyphenylene ether, there is a method in which when a non-solvent such as alcohol is added to a polymer solution, water is allowed to coexist to suppress the formation of fine particles (Japanese Patent Laid-Open No. 54-146896). However, the particles formed by this method are not completely free of particles, and the particles formed by this method are relatively brittle and are fine in the transport process using a slurry pump and the solid-liquid separation process using a centrifuge. There were inconveniences such as a tendency to granulate.
[0005]
In addition, a method (USP-4263426) in which a polyphenylene ether solution is dispersed in water and granulated without using a non-solvent (USP-4263426) has been performed. It becomes very difficult to handle.
[0006]
Further, the examination of increasing the particle size at the time of granulation includes granulation method (Japanese Examined Patent Publication No. 45-587, Japanese Examined Patent Publication No. 60-23696), fine particle size increasing method (Japanese Examined Patent Publication No. Sho 55-17775, Japanese Patent Publication No. Sho 63-63). 243129), examination of particle size increasing aids (JP-A-62-172022) and the like. However, the method proposed above requires addition of the non-solvent of the polyphenylene ether resin as quickly as possible, is difficult and cumbersome to operate, and solves all the problems mentioned above. Was insufficient.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing a polyphenylene ether resin efficiently from a polyphenylene ether solution and having few fine particles by overcoming the drawbacks of the prior art.
[0008]
[Means for Solving the Problems]
In the present invention, a polyphenylene ether polymerization reaction liquid is added with a non-solvent or an aqueous solution thereof to polyphenylene ether as necessary to form a precipitate, followed by solid-liquid separation, and water is added to the separated wet solid. Is added to form a water dispersion, and when the solvent is removed by granulation by heating, at least a part of the water dispersion is circulated to a wet pulverizer to pulverize coarse particles that are larger than necessary. This is a method for producing a polyphenylene ether resin.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The polyphenylene ether in the present invention is derived from the compound represented by the general formula (1) by oxidative polymerization.
[Chemical 1]
Figure 0004288435
(Wherein R 1 , R 2 , R 3 and R 4 are each independently hydrogen, an alkyl group, a substituted alkyl group, a halogen group, an aryl group, a substituted aryl group, a phenyl group or a substituted phenyl group.)
[0010]
Representative polyphenylene ethers include poly (2,6-dimethyl-1,4-phenylene) ether, poly (2-methyl-6-ethyl-1,4-phenylene) ether, poly (2,6-diethyl-1). , 4-phenylene) ether, poly (2-ethyl-6-n-propyl-1,4-phenylene) ether, poly (2,6-di-n-propyl-1,4-phenylene) ether, poly (2 -Methyl-6-n-butyl-1,4-phenylene) ether, poly (2-ethyl-6-isopropyl-1,4-phenylene) ether, poly (2-methyl-6-chloroethyl-1,4-phenylene) ) Ether, poly (2-methyl-6-hydroxyethyl-1,4-phenylene) ether and other homopolymers, and 2,6-dimethylphenol as a copolymer component , 6-trimethylphenol and o- polyphenylene ether copolymers such as a combination of one or both of cresol.
[0011]
In addition, the polyphenylene ether of the present invention may include other various phenylene ether units that have been proposed to be present in the polyphenylene ether as a partial structure, unless they are contrary to the gist of the present invention. Good. For example, 2- (dialkylaminomethyl) -6-methylphenylene ether unit described in JP-A-1-297428 and JP-A-63-301222, and 2- (N-alkyl-N-phenylaminomethyl) Examples include -6-methyl phenylene ether unit or the like, or a small amount of diphenoquinone or the like bonded to the main chain of polyphenylene ether resin. Further, polyphenylene ethers modified with a compound having a carbon-carbon double structure (for example, JP-A-2-276823, JP-A-63-108059, JP-A-59-59724) can also be included. .
[0012]
The molecular weight of the polyphenylene ether resin used in the present invention is preferably such that the intrinsic viscosity in chloroform at 30 ° C. is 0.1 to 0.7, and polyphenylene ether in the range of 0.2 to 0.6 is effective for the present invention. It is remarkable and particularly preferred.
[0013]
The polyphenylene ether of the present invention includes phenol compounds such as metal salts and various amines as exemplified in JP-B-42-3195, JP-B-45-23555, and JP-A-64-33131. Oxidative polymerization is carried out using a catalyst comprising a combination of Examples of the polymerization solvent include aromatic hydrocarbons such as benzene, toluene and xylene, which are good solvents for polyphenylene ether, halogenated hydrocarbons such as dichloromethane, chloroform and dichlorobenzene, and nitro compounds such as nitrobenzene. In addition, the good solvent includes alcohols such as methanol and ethanol which are non-solvents of polyphenylene ether, aliphatic hydrocarbons such as hexane and heptane, ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate, dimethylformamide Etc. can be mixed in an arbitrary ratio and composition and used as a polymerization solvent. When the proportion of the non-solvent in the polymerization solvent increases, precipitation polymerization in which polyphenylene ether precipitates during the polymerization occurs. In the present invention, however, solution polymerization in which polyphenylene ether does not precipitate after polymerization is a solution transfer, reaction stop process or catalyst separation. It is preferable in terms of handling in the process.
[0014]
The concentration of polyphenylene ether in the polyphenylene ether polymerization reaction solution in the present invention is usually in the range of 5 to 70% by weight, preferably 10 to 50% by weight. In addition to polyphenylene ether, the solution may contain a polymerization catalyst, a chemical for removing the catalyst, a chemical for removing the by-product, and the like.
[0015]
As a method of precipitating polyphenylene ether from this polyphenylene ether polymerization reaction solution, a method of precipitating polyphenylene ether particles by adding a non-solvent for polyphenylene ether such as methanol to the solution is known. Further, there is a method of using a mixture of water and alcohols as a non-solvent (Japanese Patent Publication No. 60-23696). Precipitation / precipitation of polyphenylene ether from the polyphenylene ether polymerization reaction liquid in the present invention is a method in which polyphenylene ether reaction liquid is continuously added to alcohols that are non-solvents for polyphenylene ether, or non-solvent. Either a method of adding a polyphenylene ether reaction solution to a mixture of water and water may be used. At that time, the non-solvent weight / good solvent weight ratio is preferably 0.5 to 2.0. Further, when supplying the polymerization reaction liquid, it is preferable that polyphenylene ether is continuously deposited in one or two or more stirred tanks equipped with a reciprocating stirrer.
[0016]
In the present invention, when the precipitated and precipitated polyphenylene ether particles are subjected to solid-liquid separation, any method may be used which is not limited to a method using a normal centrifugal force, a vacuum filtration method using reduced pressure, and the like. Preferably, a vacuum filtration method in which a hard lump of polyphenylene wet solid is difficult to form when separated is preferable.
[0017]
In the present invention, the polyphenylene ether wet solid is supplied continuously or batchwise to one or more stirring tanks and mixed with water to form an aqueous dispersion. The stirrer at this time may be in the same direction or reciprocating. This aqueous dispersion is mixed with water continuously or in batches in one or two or more heating tanks equipped with a stirrer and a circulation path passing through a wet pulverizer.
[0018]
Moreover, a part of water and the polyphenylene ether aqueous dispersion circulate in the tank via a wet pulverizer. The wet crusher should have a structure that can crush solid components in the solution. For example, Gorator (trade name) manufactured by Aikawa Tekko Co., Ltd. and Disintegrator (trade name) manufactured by Komatsu Zenoa Co., Ltd. What it has is preferable.
[0019]
The water / polyphenylene ether wet solids ratio is in the range of 1-100, but is preferably in the range of 2-10. The temperature is 40 to 100 ° C., and the water and the organic solvent carried out of the system by the heat treatment are circulated in the system and recovered outside the system by the coagulation operation. The inside of the system is preferably carried out in an inert gas atmosphere, but the treatment can also be performed in the presence of oxygen. In general, nitrogen, argon, helium or the like is used as the inert gas. The residence time in the tank is 1 to 120 minutes, and the granulated polyphenylene ether is solid-liquid separated continuously or batchwise.
[0020]
According to the method of the present invention, the solidified polyphenylene ether resin after drying has an average particle diameter of 0.2 to 2 mm and a bulk specific gravity of 0.3 to 0.6 g / cc. Thus, when pelletized, it can be suitably used as a molding material without trouble such as poor biting or unmelted portions remaining.
[0021]
【Example】
Hereinafter, the present invention will be described by way of specific examples, but the present invention is not limited thereto, and these can be appropriately modified within the scope of the present invention.
[0022]
The polyphenylene ether particles obtained by the following operation were dried at 135 to 140 ° C. for 6 hours or more while flowing nitrogen at 5 Nm 3 / h to obtain dry powder of polyphenylene ether, and the particle size distribution of the dry powder particles, the average particle size and The proportion of particles of 100 μm or less was measured. The particle size distribution and the ratio of particles of 106 μm or less in the 140 mesh pass were performed according to JIS standard (JIS Z8801). The measurement was carried out using a sieve of 10, 18.5, 60, 120, 140, 280 mesh and vibrating for 10 minutes using a TNK sieve vibrator (manufactured by Tanaka Chemical Equipment Co., Ltd.). Moreover, the average particle diameter was calculated | required by 50% weight average diameter.
[0023]
The extrusion test using an extruder was performed by using a twin screw extruder (PCM-30) manufactured by Ikekai Tekko Co., Ltd., 40 parts by weight of polyphenylene ether powder after drying and a styrene resin (manufactured by Electrochemical Industry Co., Ltd., trade name) HI-UM-301) 60 parts by weight were thoroughly mixed with a mixer, and then melt-kneaded and the strand was cut to obtain pellets of a resin composition in the form of pellets. The incompletely melted polyphenylene ether resin generated in the strand of the extruder was visually observed to determine kneading failure.
[0024]
Reference example 1
2 kg of cupric bromide was dissolved in 35 kg of dibutylamine and 800 kg of toluene. A solution prepared by dissolving 200 kg of 2,6-dimethylphenol in 500 kg of toluene was added to the catalyst solution. These mixed liquids were polymerized in a reactor at 40 ° C. for 3 hours while supplying oxygen. After stopping the reaction, the catalyst was removed from the reaction solution by contacting with water to obtain a polyphenylene ether polymerization reaction solution. The polyphenylene ether reaction solution was added to methanol and precipitated and precipitated while stirring. Thereafter, the liquid was separated with a solid-liquid separator to obtain a wet solid. The liquid content in the wet solid was 60 wt%. The wet solid contained 77 wt% of particles of 106 μm or less.
[0025]
Example 1
Water was added to 100 kg of wet solid obtained by the method described in Reference Example 1 to obtain an aqueous dispersion. The aqueous dispersion was added to warm water at 80 ° C. with stirring. At this time, the weight ratio of polyphenylene ether wet solid / water was 0.01. While this aqueous dispersion is heated, toluene and methanol as solvents are distilled off, and this liquid is circulated through a wet pulverizer (trade name: Golator) at a rate 20 times the total aqueous dispersion and wet. After pulverizing and distilling off the solvent for 1 hour, the aqueous dispersion was extracted. This liquid was subjected to solid-liquid separation to obtain a polyphenylene ether wet solid. The wet solid was dried at 140 ° C. under a nitrogen stream for 6 hours. The particle size of the powder thus obtained was measured using a vibrating sieve. The average particle size was 0.21 mm, and the bulk specific gravity was 0.34 g / cc. When an extruder test was conducted, no kneading failure was observed.
[0026]
Example 2
The polyphenylene ether powder was prepared in the same manner as in Example 1 except that the weight ratio of the polyphenylene ether wet solid / water was 0.5 and the wet pulverizer was circulated at a rate of 0.1 times / hour of the total water dispersion. Obtained. When the particle size of the obtained powder was measured, the average particle size was 0.41 mm, and the bulk specific gravity was 0.33 g / cc. When an extruder test was conducted, no kneading failure was observed.
[0027]
Example 3
A polyphenylene ether powder was obtained in the same manner as in Example 1, except that the weight ratio of polyphenylene ether wet solid / water was 0.5 and the mixture was circulated in a wet pulverizer at a rate 40 times the total water dispersion. . When the particle size of the obtained powder was measured, the average particle size was 0.24 mm, and the bulk specific gravity was 0.37 g / cc. When an extruder test was conducted, no kneading failure was observed.
[0028]
Example 4
A polyphenylene ether powder was obtained in the same manner as in Example 1 except that the polyphenylene ether wet solid / water weight ratio was 0.5, and the mixture was circulated in a wet pulverizer at a rate 20 times the total water dispersion. . When the particle size of the obtained powder was measured, the average particle size was 0.66 mm, and the bulk specific gravity was 0.39 g / cc. When an extruder test was conducted, no abnormality in extrusion was observed.
[0029]
Comparative Example 1
A polyphenylene ether powder was obtained in the same manner as in Example 1 except that the polyphenylene ether wet solid / water weight ratio was 0.5 and the aqueous dispersion was not circulated to the wet pulverizer. When the particle size of the obtained powder was measured, 90% by weight or more of the particle size of the polyphenylene ether powder was 10 mesh or more, and the bulk specific gravity was 0.28 g / cc. When an extruder test was conducted, kneading defects were found.
[0030]
Comparative Example 2
The same procedure as in Example 1 was conducted except that the weight ratio of polyphenylene ether wet solid / water was 7.0 and the wet pulverizer was circulated in the wet pulverizer at a rate of 0.1 times the total water dispersion. In this case, an aqueous dispersion capable of being circulated could not be obtained, and no polyphenylene ether powder was obtained.
[0031]
Comparative Example 3
The same procedure as in Example 1 was performed except that the weight ratio of polyphenylene ether wet solid / water was 0.01 and the mixture was circulated in a wet pulverizer at a rate of 0.1 times the total water dispersion / hour. When the particle size of the obtained powder was measured, 90% by weight or more of the particle size of the polyphenylene ether powder was 10 mesh or more, and the bulk specific gravity was 0.29 g / cc. When an extruder test was conducted, kneading defects were found.
[0032]
【The invention's effect】
According to the present invention, a polyphenylene ether polymerization reaction solution is added with a non-solvent or an aqueous solution thereof to polyphenylene ether as necessary to form a precipitate, followed by solid-liquid separation and separated wet solids. In the process of adding water to water to form an aqueous dispersion and heating to remove the solvent and granulate, at least a part of the aqueous dispersion is circulated to the wet pulverizer, resulting in coarse particles that are larger than necessary. Can be granulated to obtain polyphenylene ether particles having a uniform average particle diameter.

Claims (3)

(A)金属塩とアミンからなる錯体触媒の存在下、ポリフェニレンエーテルの良溶媒、または良溶媒と非溶媒との混合溶媒を用いて、1種あるいは2種以上のフェノール化合物を酸化重合させ重合反応液を製造し、(B)得られた重合反応液に、重合停止剤、または重合停止剤と還元剤とを接触させ触媒を除去した重合反応液に、(C)必要に応じて非溶媒、またはその水溶液を加えて沈殿体を形成させ、スラリー溶液を製造し、(D)前記沈殿体を含むスラリー溶液を固液分離し、分離された湿潤固体に水を加え、水分散液とし、(E)前記の水分散液を攪拌、もしくは水分散液を循環しながら加温することにより脱溶媒して造粒するに際して、(F)水分散液の少なくとも一部を湿式粉砕機に循環し粉砕し、水分散液の湿式粉砕機への循環量が全水分散液の1〜30倍/時間であることを特徴とするポリフェニレンエーテル樹脂の製造方法。(A) In the presence of a complex catalyst comprising a metal salt and an amine, a polymerization reaction is carried out by oxidatively polymerizing one or more phenolic compounds using a good solvent of polyphenylene ether or a mixed solvent of a good solvent and a non-solvent. (B) a polymerization terminator or a polymerization terminator and a reducing agent in contact with the obtained polymerization reaction solution to remove the catalyst, and (C) a non-solvent, if necessary. Alternatively, an aqueous solution thereof is added to form a precipitate to produce a slurry solution. (D) The slurry solution containing the precipitate is subjected to solid-liquid separation, and water is added to the separated wet solid to obtain an aqueous dispersion. E) When granulating by removing the solvent by stirring or heating the aqueous dispersion while circulating the aqueous dispersion, (F) at least a part of the aqueous dispersion is circulated to a wet pulverizer and pulverized. and, 循of water dispersion of the wet grinding machine Method for producing a polyphenylene ether resin, wherein the amount is 1 to 30 times / hour of total aqueous dispersion. ポリフェニレンエーテルの湿潤固体/水の重量比が0.1〜1.0の範囲にある請求項1記載のポリフェニレンエーテル樹脂の製造方法。 The method for producing a polyphenylene ether resin according to claim 1, wherein the weight ratio of the wet solid / water of the polyphenylene ether is in the range of 0.1 to 1.0. 乾燥後の固形化ポリフェニレンエーテル樹脂の平均粒径が0.2〜2mm、嵩比重が0.3〜0.6g/ccである請求項1記載のポリフェニレンエーテル樹脂の製造方法。 2. The method for producing a polyphenylene ether resin according to claim 1, wherein the solidified polyphenylene ether resin after drying has an average particle diameter of 0.2 to 2 mm and a bulk specific gravity of 0.3 to 0.6 g / cc.
JP08899399A 1999-03-30 1999-03-30 Method for producing polyphenylene ether resin Expired - Fee Related JP4288435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08899399A JP4288435B2 (en) 1999-03-30 1999-03-30 Method for producing polyphenylene ether resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08899399A JP4288435B2 (en) 1999-03-30 1999-03-30 Method for producing polyphenylene ether resin

Publications (2)

Publication Number Publication Date
JP2000281798A JP2000281798A (en) 2000-10-10
JP4288435B2 true JP4288435B2 (en) 2009-07-01

Family

ID=13958347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08899399A Expired - Fee Related JP4288435B2 (en) 1999-03-30 1999-03-30 Method for producing polyphenylene ether resin

Country Status (1)

Country Link
JP (1) JP4288435B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6437084B1 (en) * 2001-11-12 2002-08-20 General Electric Company Method of preparing a poly (arylene ether) and a poly (arylene ether) prepared thereby
JP3810326B2 (en) * 2002-02-01 2006-08-16 旭化成ケミカルズ株式会社 Solvent recovery method in polyphenylene ether production
TW200619267A (en) 2004-09-13 2006-06-16 Univ Waseda The manufacting method for polyphenylene ether
EP2020425B1 (en) * 2006-05-25 2013-07-31 Mitsubishi Gas Chemical Company, Inc. Method for producing phenylene ether oligomer
US8901222B2 (en) 2010-10-13 2014-12-02 Asahi Kasei Chemicals Corporation Polyphenylene ether, resin composition, and molded body of resin composition
SG189382A1 (en) 2010-10-13 2013-05-31 Asahi Kasei Chemicals Corp Polyphenylene ether powder and polyphenylene ether resin composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3923738A (en) * 1974-07-23 1975-12-02 Gen Electric Process for the formation of polyphenylene ethers of controlled particle size
JPS54146896A (en) * 1978-05-10 1979-11-16 Mitsubishi Gas Chem Co Inc Recovery of polyphenylene oxide
JPS60116413A (en) * 1983-11-29 1985-06-22 Mitsubishi Chem Ind Ltd Manufacture of polycarbonate resin granular body
JPS61250026A (en) * 1985-04-27 1986-11-07 Mitsubishi Gas Chem Co Inc Production of water slurry of bead-like polycarbonate solid particles

Also Published As

Publication number Publication date
JP2000281798A (en) 2000-10-10

Similar Documents

Publication Publication Date Title
JP5730894B2 (en) Polyphenylene ether powder and polyphenylene ether resin composition
KR100728424B1 (en) Method of separating a polyarylene ether from a solvent
EP1713850B1 (en) Method of preparing a poly(arylene ether)
JP4059466B2 (en) Process for producing polyphenylene ether
TW200304456A (en) Low molecular weight polyphenylene ether
JPS6023696B2 (en) Method of forming polyphenylene ether
CA1149997A (en) Method for recovering polyphenylene oxides
JP3375962B2 (en) Self-lubricating polybenzimidazole-containing composition
JP4288435B2 (en) Method for producing polyphenylene ether resin
JP4214336B2 (en) Method for producing polyphenylene ether resin powder
JP2013256647A (en) Method for producing polyphenylene ether powder
JP6549507B2 (en) Polyphenylene ether powder having minute voids and manufacturing method
JPH0346488B2 (en)
JP2009516020A (en) Polymer blend and method for isolation thereof
JP2009007586A (en) Method for decolorizing polyphenylene ether resin and method for minimizing increase in molecular weight
JP6789009B2 (en) Method for producing polyphenylene ether powder
JP4314666B2 (en) Method for producing low viscosity polyphenylene ether
JP4557749B2 (en) Method for producing granular polyphenylene ether resin
JP2001040087A (en) Production of polyphenylene ether
JP3166355B2 (en) Method for producing polyphenylene ether resin powder having enlarged particle diameter
JP2001072763A (en) Production of polyphenylene ether
JP2001310946A (en) Method for production of polyphenylene ether resin
CZ223193A3 (en) Process for preparing polyphenylene esters with a low content of fine particles
JP3006116B2 (en) Method for producing polymer powder having enlarged particle diameter
JP4314668B2 (en) Process for producing polyphenylene ether excellent in melt fluidity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090304

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090317

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees