JPH0471407B2 - - Google Patents

Info

Publication number
JPH0471407B2
JPH0471407B2 JP61308028A JP30802886A JPH0471407B2 JP H0471407 B2 JPH0471407 B2 JP H0471407B2 JP 61308028 A JP61308028 A JP 61308028A JP 30802886 A JP30802886 A JP 30802886A JP H0471407 B2 JPH0471407 B2 JP H0471407B2
Authority
JP
Japan
Prior art keywords
paper
urea
polymer particles
formaldehyde
opacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61308028A
Other languages
Japanese (ja)
Other versions
JPS63161009A (en
Inventor
Yoshinori Nakajima
Tsugio Matsubara
Shigeji Minoda
Masao Okamura
Yoshinaga Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP30802886A priority Critical patent/JPS63161009A/en
Publication of JPS63161009A publication Critical patent/JPS63161009A/en
Publication of JPH0471407B2 publication Critical patent/JPH0471407B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Phenolic Resins Or Amino Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は紙の填料として有用な架橋尿素ホルム
アルデヒドポリマー粒子の製造法に関する。 (従来の技術) 従来、架橋し尿素ホルムアルデヒドの微細な粒
子が紙の填料として用いられることは公知であ
る。例えば、特公昭51−23601には微細な尿素ホ
ルムアルデヒドポリマーを乾燥パルプに対して
0.5〜80重量%充填した紙製品が開示されている。
この紙製品は光学的性能や印刷適性が優れてい
る。又このような架橋尿素ホルムアルデヒドポリ
マー粒子を製造する方法も公知である。例えば、
特公昭49−2350にはアミノ樹脂前縮合体の溶液と
縮合媒体を管内混合機中で混合し、押出し機また
は混合スクリユー中でゲル化を行い、ついで少な
くとも30分間硬化させて比表面積の大きい架橋ア
ミノ樹脂重合体の粒子を得る方法が開示されてい
る。また特公昭57−26686には特定の尿素ホルム
アルデヒド初期縮合物と酸性水溶液を特定の条件
で混合し、その混合液を回転する無端ベルト上に
連続供給し、ベルト上で反応固化を行い、次いで
生成したポリマーを取り出すことを特徴とする架
橋尿素ホルムアルデヒドポリマー粒子の製造法が
述べられている。 このようにして製造された架橋尿素ホルムアル
デヒドポリマー粒子は紙の填料として使用され
る。 ところで紙の重要な性質の一つとして光学的性
能が挙げられる。紙の光学的性能には白色度、白
紙不透明度および印刷後不透明度がある。白紙不
透明度とは、次の紙の印刷等が透けて見える現象
を抑制する度合である。印刷後不透明度とは、印
刷したインクが紙に浸透して反対面から見えるよ
うになるいわゆる染み通しを抑制する度合であ
り、これには使用する填料の吸油度が大きく関与
している。次の紙の印刷等が透けて見える現象お
よび印刷したインクが紙に浸透して反対面から見
えるようになる現象どちらも、裏の印刷が表から
見えて読みずらくなる状態であり、印刷される紙
の最も重要なポイントである。 架橋尿素ホルムアルデヒドポリマー粒子填料は
上記白色度、白紙不透明度、印刷後不透明度の改
良に効果があることが知られている。 (発明が解決しようとする問題点) 近年、紙の軽量化が進み、特に新聞用紙におい
ては坪量が従来の52g/m2から49g/m2さらには
46g/m2のものが主流を占めるようになり、最近
では43g/m2の超軽量紙の使用も検討されてい
る。かかる超軽量紙においては前述の光学的特
性、中でも白紙不透明度、印刷後不透明度の向上
に対する要求は極めて厳しいものとなる。従来の
架橋尿素ホルムアルデヒドポリマー粒子填料は坪
量が46g/m2の紙に対しては光学的性能の向上に
効果があるが43g/m2となると最早従来の技術で
は対処できなくなることが本発明者の研究によつ
て明らかとなつた。 本発明はかかる従来技術の問題点に鑑み、43
g/m2のような超軽量紙においても紙の光学的性
能(白色度、白紙不透明度、印刷後不透明度)を
向上させることができるような架橋尿素ホルムア
ルデヒドポリマー粒子の製造方法の提供を目的と
するものである。 (問題を解決するための手段) 本発明者等は、これらの問題を解決するために
生成ポリマーをスラリー化状態で保持するという
事実が有効であることを見出し、本発明を完成し
た。 すなわち本発明は、尿素ホルムアルデヒド初期
縮合物と酸性水溶液を混合、反応固化させた後、
生成したポリマーをスラリー化状態で1時間以上
保持した後、中和することを特徴とする架橋尿素
ホルムアルデヒドポリマー粒子の製造方法を提供
するものである。 尿素ホルムアルデヒド初期縮合物は、尿素1モ
ルに対しホルムアルデヒド1〜2.5モルの割合で
反応させたものである。反応条件は通常PH4〜
9、温度40〜100℃である。反応時間はホルムア
ルデヒドと尿素の割合や温度により異なり、ホル
ムアルデヒドが尿素と反応するのに必要な時間で
なければならないが、尿素ホルムアルデヒド初期
縮合物と水との相溶性が低くなり、酸水溶液と速
やかに均一に混合しなくなるほど長くしてはいけ
ない。通常は30分〜5時間である。 酸性水溶液としては硫酸、燐酸、塩酸、硝酸の
ような鉱酸、蟻酸、シユウ酸、マレイン酸、コハ
ク酸およびクロル酢酸の如き有機酸、スルフアミ
ン酸、硫酸水素アンモニウム、硫酸水素メチルア
ンモニウム、硫酸水素ヒドロキシエチルアンモニ
ウム等の水溶液をあげることができる。 酸性水溶液は通常1〜10%の濃度範囲で用いら
れる。尿素ホルムアルデヒド初期縮合物と酸性水
溶液の割合は、尿素ホルムアルデヒド初期縮合物
の不揮発分重量に対して酸の純分の割合が1〜30
%である。 尿素ホルムアルデヒド初期縮合物と酸性水溶液
を反応させるには、両者を混合機等の手段で混合
すればよい。この際好ましい粒径のポリマー粒子
を形成せしめる目的で保護コロイド機能を有する
水溶性高分子物質を添加するのが好ましく、この
水溶性高分子物質は予め尿素ホルムアルデヒド初
期縮合物に含有させておくか、または尿素ホルム
アルデヒド初期縮合物と酸性水溶性を混合させる
際添加・混合してもよいかかる水溶性高分子とし
ては、例えば、澱粉、ゼラチン、にかわ、トラガ
カントゴム、かんてんおよびアラビアゴムのよう
な天然物質、カルボキシメチルセルロース、カル
ボキシメチルセルロースのアルカリ金属塩、とく
にそのナトリウム塩、メチルセルロース、エチル
セルロース、ベータヒドロキシエチルセルロー
ス、アルカリ金属アルギン酸塩等のような変性し
た天然物質、ポリビニルアルコール、ポリビニル
ピロリドン、ポリアクリル酸、ポリメタクリル酸
のような水溶性ポリマーおよびポリアクリル酸も
しくはポリメタクリル酸のカルカリ金属塩、マレ
イン酸含有共重合体の塩、スチレン/無水マレイ
ン酸共重合体、ビニルピリジンのホモ重合体およ
び共重合体のポリヒドロクロリド等である。 かくして得られた固化物は必要に応じて粗粉砕
した後水を加え、好ましくは40〜60℃に保ち、1
時間以上、好ましくは攪拌下で2〜7時間、更に
好ましくは3〜5時間スラリー化状態で保持す
る。保持時間が1時間未満では紙の光学的性能の
向上は小さいという不都合があり、7時間を越え
ると紙の光学的性能は変化せず、ほぼ平衡状態に
ありこれ以上保持しても無意味である。スラリー
状態で保持した後、公知の方法より尿素、アンモ
ニアまたはアンモニウム塩、亜硫酸または亜硫酸
塩を加えて未反応の残存ホルムアルデヒドと反応
させてこれを除去し、必要あれば水洗し、粉砕機
にて粉砕し、架橋尿素ホルムアルデヒドポリマー
粒子を得ることができる。 (作用) 本発明の架橋尿素ホルムアルデヒドポリマー粒
子の製造方法は、尿素ホルムアルデヒド初期縮合
物を酸性水溶液で固化して得られたポリマーを、
スラリー状態で1時間以上保持するという極めて
簡単な操作の付加であり、かくして得られた該ポ
リマー粒子を紙の填料として使用した場合、従来
の技術で得られたポリマー粒子では不可能であつ
た軽量化紙等の光学的性能(白色度、白紙不透明
度、印刷後不透明度)の向上が達成でき、紙の超
軽量化が達成できる。スラリー化状態で保持した
架橋尿素ホルムアルデヒドポリマー粒子を含有す
る紙の光学的性能が向上する機構は明らかでない
が、スラリー化状態で保持することにより何らか
理由で架橋尿素ホルムアルデヒドポリマー粒子の
吸油度が向上するとともに、パルプへの歩留の向
上が図られるためではないかと推測される。 (実施例) 以下、実施例および比較例により本発明を具体
的に説明するが、本発明は以下の実施例に限定さ
れるものではない。尚、以下において部および%
は特記しない限り重量基準による。 実施例 1 フラスコ中に水20.00部を加え、保護コロイド
剤としてカルボキシメチルセルロース0.33部を添
加して溶解した後、37%ホルムアルデヒド水溶液
18.24部を加え撹拌下で70℃に加熱し、同時に苛
性ソーダ水溶液にてPHを7.5に調整する。次いで
尿素9部を加え、2.0時間の縮合反応を行い、尿
素ホルムアルデヒド初期縮合物を得た。この尿素
ホルムアルデヒド初期縮合反応生成物を約45℃に
冷却し、95%硫酸0.46部を水15.75部で希釈した
溶液と速やかに均一に混合する。約10秒後に固化
し、この時反応混合物の温度は60℃付近まで上昇
する。その後、8.4部の水を加えてスラリー状と
し約60℃で4時間保持する。次に25%アンモニア
水溶液を加え、未反応の残存ホルムアルデヒドの
除去およびPH7.5に中和する。中和後、スラリー
を脱水し、含水量約20%のケーキ状にし再度38部
の水を加えてスラリー状とし、コロイドミルにて
微粉砕し粉砕後、100メツシユのスクリーンにて
濾過し、架橋尿素ホルムアルデヒドポリマー粒子
のスラリーが得られた。 このようして得られた架橋尿素ホルムアルデヒ
ドポリマー粒子のスラリーの一部を水可溶性成分
が除去されるよう十分に濾過し、濾過後105℃の
熱風で5時間乾燥し、架橋尿素ホルムアルデヒド
ポリマー粒子を得た。このポリマー粒子の吸油量
の測定をJIS−K5101に準じて行つた。この結果
を表−2に記載した。 実施例2〜3、比較例1 実施例1においてスラリー化状態で保持する時
間を表−1に記載した如く変更した以外は、全く
同一条件及び操作にてそれぞれの架橋尿素ホルム
アルデヒドポリマー粒子のスラリーを得た。 実施例1と同様にして吸油量を測定し、結果を
表−2に示した。
FIELD OF INDUSTRIAL APPLICATION This invention relates to a method for producing crosslinked urea formaldehyde polymer particles useful as paper fillers. (Prior Art) It is known that fine particles of crosslinked urea formaldehyde can be used as paper fillers. For example, in Japanese Patent Publication No. 51-23601, fine urea-formaldehyde polymer was applied to dry pulp.
Paper products with a fill of 0.5 to 80% by weight are disclosed.
This paper product has excellent optical performance and printability. Methods of making such crosslinked urea formaldehyde polymer particles are also known. for example,
In Japanese Patent Publication No. 49-2350, a solution of an amino resin precondensate and a condensation medium are mixed in an in-tube mixer, gelled in an extruder or mixing screw, and then cured for at least 30 minutes to form crosslinkers with a large specific surface area. A method for obtaining particles of amino resin polymer is disclosed. In addition, in Japanese Patent Publication No. 57-26686, a specific urea formaldehyde initial condensate and an acidic aqueous solution are mixed under specific conditions, the mixed solution is continuously fed onto a rotating endless belt, reaction solidification is carried out on the belt, and then the product is formed. A method for producing crosslinked urea-formaldehyde polymer particles is described, which is characterized in that the polymer particles are removed. The crosslinked urea formaldehyde polymer particles thus produced are used as paper filler. By the way, one of the important properties of paper is optical performance. The optical properties of paper include whiteness, blank opacity, and post-print opacity. The blank paper opacity is the degree to which the phenomenon of the next paper's printing etc. being seen through is suppressed. Post-print opacity is the degree to which printed ink permeates the paper and suppresses so-called see-through, which becomes visible from the opposite side, and this is largely influenced by the oil absorption of the filler used. Both the phenomenon where the printing on the next paper is visible and the phenomenon where printed ink permeates the paper and becomes visible from the other side are conditions in which the printing on the back side becomes visible from the front side and becomes difficult to read. This is the most important point of paper. It is known that crosslinked urea formaldehyde polymer particle fillers are effective in improving the above-mentioned whiteness, white paper opacity, and post-printing opacity. (Problem to be solved by the invention) In recent years, the weight of paper has progressed, and the basis weight of newsprint in particular has increased from the conventional 52 g/m 2 to 49 g/m 2 .
46g/m 2 paper has become the mainstream, and recently the use of 43g/m 2 ultra-lightweight paper is also being considered. For such ultra-lightweight paper, there are extremely strict requirements for improving the optical properties mentioned above, especially white paper opacity and post-printing opacity. Conventional cross-linked urea-formaldehyde polymer particle fillers are effective in improving optical performance for paper with a basis weight of 46 g/m 2 , but the present invention reveals that when the basis weight reaches 43 g/m 2 , conventional techniques can no longer cope with the problem. This was clarified through research conducted by researchers. In view of the problems of the prior art, the present invention has been developed in accordance with 43
The purpose of the present invention is to provide a method for producing crosslinked urea-formaldehyde polymer particles that can improve the optical performance (whiteness, white paper opacity, and post-printing opacity) of paper even in ultra-lightweight papers such as g/m2. That is. (Means for Solving the Problems) The present inventors have found that it is effective to maintain the produced polymer in a slurry state in order to solve these problems, and have completed the present invention. That is, in the present invention, after mixing the urea formaldehyde initial condensate and an acidic aqueous solution and solidifying through the reaction,
The present invention provides a method for producing crosslinked urea formaldehyde polymer particles, which comprises maintaining the produced polymer in a slurry state for one hour or more and then neutralizing it. The urea-formaldehyde initial condensate is obtained by reacting formaldehyde in a ratio of 1 to 2.5 moles to 1 mole of urea. Reaction conditions are usually PH4~
9. The temperature is 40-100°C. The reaction time varies depending on the ratio of formaldehyde and urea and the temperature, and it must be the time necessary for formaldehyde to react with urea. Don't let it get so long that it won't mix evenly. Usually it takes 30 minutes to 5 hours. Examples of acidic aqueous solutions include mineral acids such as sulfuric acid, phosphoric acid, hydrochloric acid, and nitric acid, organic acids such as formic acid, oxalic acid, maleic acid, succinic acid, and chloroacetic acid, sulfamic acid, ammonium hydrogen sulfate, methylammonium hydrogen sulfate, and hydroxyl hydrogen sulfate. Examples include aqueous solutions of ethyl ammonium and the like. Acidic aqueous solutions are usually used in a concentration range of 1 to 10%. The ratio of the urea formaldehyde initial condensate to the acidic aqueous solution is such that the ratio of the pure acid to the nonvolatile weight of the urea formaldehyde initial condensate is 1 to 30.
%. In order to react the urea formaldehyde initial condensate and the acidic aqueous solution, both may be mixed using a mixer or the like. At this time, it is preferable to add a water-soluble polymeric substance having a protective colloid function in order to form polymer particles with a preferred particle size, and this water-soluble polymeric substance may be included in the urea-formaldehyde initial condensate in advance, or Examples of such water-soluble polymers that may be added or mixed when mixing the urea-formaldehyde initial condensate and the acidic water-soluble polymer include starch, gelatin, glue, natural substances such as gum tragacanth, agar, and gum arabic; Modified natural substances such as methylcellulose, alkali metal salts of carboxymethylcellulose, especially its sodium salt, methylcellulose, ethylcellulose, beta-hydroxyethylcellulose, alkali metal alginates, etc., polyvinyl alcohol, polyvinylpyrrolidone, polyacrylic acid, polymethacrylic acid water-soluble polymers and alkali metal salts of polyacrylic acid or polymethacrylic acid, salts of maleic acid-containing copolymers, styrene/maleic anhydride copolymers, polyhydrochloride of vinylpyridine homopolymers and copolymers, etc. It is. The solidified product thus obtained is coarsely pulverized if necessary, then water is added, preferably maintained at 40 to 60°C, and heated for 1
The slurry is maintained for at least 2 hours, preferably 2 to 7 hours, more preferably 3 to 5 hours under stirring. If the holding time is less than 1 hour, there is a disadvantage that the optical performance of the paper will not improve much, but if it exceeds 7 hours, the optical performance of the paper will not change and will be in an almost equilibrium state, so there is no point in holding it any longer. be. After holding in a slurry state, urea, ammonia or ammonium salt, sulfite or sulfite is added using a known method to react with residual unreacted formaldehyde to remove it, and if necessary, it is washed with water and pulverized using a pulverizer. Then, crosslinked urea formaldehyde polymer particles can be obtained. (Function) The method for producing cross-linked urea-formaldehyde polymer particles of the present invention involves using a polymer obtained by solidifying a urea-formaldehyde initial condensate with an acidic aqueous solution.
The addition of an extremely simple operation of holding the polymer particles in a slurry state for over 1 hour allows the polymer particles obtained in this way to be used as a paper filler to achieve a light weight that was not possible with polymer particles obtained using conventional techniques. It is possible to improve the optical performance (whiteness, white paper opacity, and post-printing opacity) of synthetic paper, etc., and to make the paper extremely lightweight. Although the mechanism by which the optical performance of paper containing cross-linked urea formaldehyde polymer particles maintained in a slurry state is improved is not clear, the oil absorption of cross-linked urea formaldehyde polymer particles is improved for some reason by being maintained in a slurry state. At the same time, it is speculated that this is because the yield of pulp is improved. (Examples) Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples. In addition, in the following, parts and %
Based on weight unless otherwise specified. Example 1 Add 20.00 parts of water into a flask, add and dissolve 0.33 parts of carboxymethyl cellulose as a protective colloid, and then add 37% formaldehyde aqueous solution.
Add 18.24 parts and heat to 70°C with stirring, and at the same time adjust the pH to 7.5 with aqueous caustic soda solution. Next, 9 parts of urea was added and a condensation reaction was carried out for 2.0 hours to obtain a urea formaldehyde initial condensate. The urea-formaldehyde initial condensation reaction product is cooled to about 45° C. and immediately mixed uniformly with a solution of 0.46 parts of 95% sulfuric acid diluted with 15.75 parts of water. It solidifies after about 10 seconds, and at this time the temperature of the reaction mixture rises to around 60°C. Thereafter, 8.4 parts of water was added to form a slurry and kept at about 60°C for 4 hours. Next, 25% ammonia aqueous solution is added to remove unreacted residual formaldehyde and neutralize to pH 7.5. After neutralization, the slurry is dehydrated and made into a cake with a water content of approximately 20%. 38 parts of water is added again to form a slurry, which is finely pulverized in a colloid mill. After pulverization, it is filtered through a 100 mesh screen and cross-linked. A slurry of urea formaldehyde polymer particles was obtained. A portion of the thus obtained slurry of crosslinked urea formaldehyde polymer particles was thoroughly filtered to remove water-soluble components, and after filtration, it was dried with hot air at 105°C for 5 hours to obtain crosslinked urea formaldehyde polymer particles. Ta. The oil absorption amount of the polymer particles was measured according to JIS-K5101. The results are listed in Table-2. Examples 2 to 3, Comparative Example 1 Slurries of crosslinked urea formaldehyde polymer particles were prepared under exactly the same conditions and operations as in Example 1, except that the time for holding the slurry state was changed as shown in Table 1. Obtained. The oil absorption was measured in the same manner as in Example 1, and the results are shown in Table 2.

【表】【table】

【表】 応用例 実施例1〜3及び比較例1で得られた架橋尿素
ホルムアルデヒドポリマー粒子のスラリーを、紙
の填料として用いた場合を次に示す。 サーモメカニカルパルプ(TMP)25部、グラ
ンドパルプ(GP)25部、漂白クラフトパルプ
(BKP)10部、脱墨故紙(DIP)40部が配合され
た叩解度(CSF)280mlの1%パルプスラリー
2000部にAl2(SO43・18H2O換算で20.0%の硫酸
アルミニウム水溶液2部を添加し2分間の攪拌を
行う。引き続いて、予め5.0%の濃度に調整して
おいた実施例1で得られた架橋尿素ホルムアルデ
ヒドポリマー粒子のスラリーを20部(乾燥パルプ
に対して5%のポリマー粒子量)を加えて5分間
攪拌して調整スラリーを得る。次いでTAPPI角
型シートマシンにて抄紙し、プレス脱水を行つて
得た湿紙を表面温度110℃のドラムドライヤーで
乾燥を行つた後、湿度65%、温度20℃の恒温恒湿
室にて24時間のシーズニングを行つて、実施例1
の架橋尿素ホルムアルデヒドポリマー粒子のスラ
リーを含有する加工紙(以下、実施例1加工紙と
記載する)を得た。 この実施例1加工紙について、白色度、白紙不
透明度、印刷後不透明度の測定及び算出を行つ
た。その結果を表−3に記載した。 この実施例1加工紙の製造において、実施例1
の架橋尿素ホルムアルデヒドポリマー粒子のスラ
リーを変える以外は、全く同一条件および操作に
て実施例2〜3加工紙および比較例1加工紙を得
た。 又、実施例1加工紙を得る方法において、架橋
尿素ホルムアルデヒドポリマー粒子のスラリーを
添加しない以外は、全く同一条件及び操作にて比
較例2加工紙を得た。これら実施例2〜3加工
紙、比較例1〜2加工紙についても実施例1加工
紙と同一方法で白色度等の測定及び算出を行い、
これらの結果を表−3に記載した。なお各加工紙
の坪量は43±0.2g/m2の範囲であつた。 尚、白色度、白紙不透明度、印刷後不透明度の
測定及び算出は次の通りである。 白色度はブルーフイルターを用い、ハンター白
色度計にて測定した。白紙不透明度はJIS−
P8138に準じて行つた。印刷後不透明度はJ.
TAPPI紙パルプ試験方法No.45−84に従つて行つ
た。
[Table] Application Example The following is a case in which the slurry of crosslinked urea formaldehyde polymer particles obtained in Examples 1 to 3 and Comparative Example 1 was used as a paper filler. 280 ml of 1% pulp slurry containing 25 parts of thermomechanical pulp (TMP), 25 parts of ground pulp (GP), 10 parts of bleached kraft pulp (BKP), and 40 parts of deinked waste paper (DIP).
2 parts of a 20.0% aluminum sulfate aqueous solution in terms of Al 2 (SO 4 ) 3 .18H 2 O was added to 2000 parts and stirred for 2 minutes. Subsequently, 20 parts of the slurry of crosslinked urea formaldehyde polymer particles obtained in Example 1, which had been adjusted to a concentration of 5.0% in advance (amount of polymer particles of 5% based on the dry pulp), was added and stirred for 5 minutes. to obtain the adjusted slurry. Next, paper was made using a TAPPI square sheet machine, and the wet paper obtained by press dehydration was dried using a drum dryer with a surface temperature of 110℃, and then dried in a constant temperature and humidity room at a humidity of 65% and a temperature of 20℃ for 24 hours. Example 1 with time seasoning
Processed paper containing a slurry of crosslinked urea formaldehyde polymer particles (hereinafter referred to as Example 1 processed paper) was obtained. Regarding the processed paper of Example 1, the whiteness, white paper opacity, and post-print opacity were measured and calculated. The results are listed in Table-3. In the production of this Example 1 processed paper, Example 1
Processed papers of Examples 2 to 3 and Comparative Example 1 were obtained under exactly the same conditions and operations except that the slurry of crosslinked urea-formaldehyde polymer particles was changed. Comparative Example 2 processed paper was obtained under exactly the same conditions and operations as in the method for obtaining Example 1 processed paper, except that the slurry of crosslinked urea formaldehyde polymer particles was not added. For these processed papers of Examples 2 to 3 and Comparative Examples 1 to 2, the whiteness etc. were measured and calculated in the same manner as for the processed paper of Example 1.
These results are listed in Table-3. The basis weight of each processed paper was in the range of 43±0.2 g/m 2 . The measurement and calculation of whiteness, white paper opacity, and post-print opacity are as follows. The whiteness was measured using a Hunter whiteness meter using a blue filter. Blank paper opacity is JIS-
I followed P8138. The opacity after printing is J.
It was conducted according to TAPPI Paper Pulp Test Method No. 45-84.

【表】 (発明の効果) 本発明によれば、従来技術では達成されなかつ
た吸油度の向上及び超軽量紙等の光学的性能(白
色度、白紙不透明度、印刷後不透明度)が達成さ
れる。 即ち、尿素ホルムアルデヒド初期縮合物と酸性
水溶液を混合、反応固化させた後、生成したポリ
マーをスラリー化状態で保持する時間が本発明の
範囲外である比較例1の架橋尿素ホルムアルデヒ
ドポリマー粒子は吸油量が劣つており、かつこれ
を添加した比較例1加工紙は光学的性能(白色
度、白紙不透明度、印刷後不透明度)及びが劣つ
ている。これに対し尿素ホルムアルデヒド初期縮
合物と酸性水溶液を混合、反応固化させた後、生
成したポリマーをスラリー状状態で保持する時間
が本発明の範囲内である実施例1〜3はこれらの
性能が全て優れているのが明らかであり、本発明
の意義は大きい。
[Table] (Effects of the invention) According to the present invention, improved oil absorption and optical performance (whiteness, white paper opacity, post-printing opacity) of ultra-light paper, etc., which could not be achieved with conventional techniques, have been achieved. Ru. That is, the cross-linked urea formaldehyde polymer particles of Comparative Example 1, in which the urea formaldehyde initial condensate and the acidic aqueous solution are mixed, reacted and solidified, and the resulting polymer is maintained in a slurry state for a period outside the scope of the present invention, have a low oil absorption. The treated paper of Comparative Example 1 to which this was added was inferior in optical performance (whiteness, white paper opacity, opacity after printing). On the other hand, Examples 1 to 3, in which the time for holding the produced polymer in a slurry state after mixing the urea-formaldehyde initial condensate and the acidic aqueous solution and solidifying them through reaction, were within the scope of the present invention, all of these performances were achieved. It is clear that the present invention is superior, and the present invention has great significance.

Claims (1)

【特許請求の範囲】[Claims] 1 尿素ホルムアルデヒド初期縮合物と酸性水溶
液を混合、反応固化させた後、生成したポリマー
をスラリー化状態で1時間以上保持した後、中和
することを特徴とする架橋尿素ホルムアルデヒド
ポリマー粒子の製造方法。
1. A method for producing crosslinked urea-formaldehyde polymer particles, which comprises mixing a urea-formaldehyde initial condensate and an acidic aqueous solution, reacting and solidifying the resulting polymer, holding the resulting polymer in a slurry state for 1 hour or more, and then neutralizing it.
JP30802886A 1986-12-25 1986-12-25 Production of crosslinked urea-formaldehyde polymer granules Granted JPS63161009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30802886A JPS63161009A (en) 1986-12-25 1986-12-25 Production of crosslinked urea-formaldehyde polymer granules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30802886A JPS63161009A (en) 1986-12-25 1986-12-25 Production of crosslinked urea-formaldehyde polymer granules

Publications (2)

Publication Number Publication Date
JPS63161009A JPS63161009A (en) 1988-07-04
JPH0471407B2 true JPH0471407B2 (en) 1992-11-13

Family

ID=17976018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30802886A Granted JPS63161009A (en) 1986-12-25 1986-12-25 Production of crosslinked urea-formaldehyde polymer granules

Country Status (1)

Country Link
JP (1) JPS63161009A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8826471D0 (en) * 1988-11-11 1988-12-14 Shaw Chemical Systems Ltd Flame retardant composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61115921A (en) * 1984-11-13 1986-06-03 Mitsui Toatsu Chem Inc Production of urea resin filler

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61115921A (en) * 1984-11-13 1986-06-03 Mitsui Toatsu Chem Inc Production of urea resin filler

Also Published As

Publication number Publication date
JPS63161009A (en) 1988-07-04

Similar Documents

Publication Publication Date Title
JPH0611957B2 (en) Paper manufacturing method
CA2158701C (en) Process for preparing silicic acid hydrate
JP3982027B2 (en) Method for producing composite particles
JP2004501272A (en) Fluorescent brightener pigment composition
JPH0471407B2 (en)
JP2607161B2 (en) Paper manufacturing method
US3909348A (en) Urea-formaldehyde pigmentary fillers used in paper
JPS60209098A (en) Light weight paper and its production
JPS61119800A (en) Paper improved in whiteness and opacity and its production
JPS6215397A (en) Papermaking size composition
JPH0334764B2 (en)
JPS61119799A (en) Paper improved in whiteness and opacity and its production
JPS61166816A (en) Production of agglomerate of urea-formaldehyde polymer particles
JPH0365804B2 (en)
JPH0466248B2 (en)
CA1279159C (en) Lightweight paper and process for producing same
JPS61106616A (en) Production of crosslinked urea/formaldehyde polymer particle
JP2563909B2 (en) Pulp and pulp manufacturing method
JPH04370297A (en) Cationic composite particle for paper, its production and use therof
JPH05301707A (en) Water-containing silicic acid and its production
SU833500A1 (en) Method of producing filler
JPH0331839B2 (en)
JPS5952889B2 (en) Method for producing crosslinked urea formaldehyde polymer particles
JP2516775B2 (en) Improved pulp and its production method
JPS63159596A (en) Printing paper and its production