JPH0471130A - Three-phase vacuum circuit breaker - Google Patents

Three-phase vacuum circuit breaker

Info

Publication number
JPH0471130A
JPH0471130A JP18052090A JP18052090A JPH0471130A JP H0471130 A JPH0471130 A JP H0471130A JP 18052090 A JP18052090 A JP 18052090A JP 18052090 A JP18052090 A JP 18052090A JP H0471130 A JPH0471130 A JP H0471130A
Authority
JP
Japan
Prior art keywords
current
phase
circuit breaker
vacuum circuit
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18052090A
Other languages
Japanese (ja)
Inventor
Kiyobumi Otobe
乙部 清文
Kunio Yokokura
邦夫 横倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18052090A priority Critical patent/JPH0471130A/en
Publication of JPH0471130A publication Critical patent/JPH0471130A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To open a vacuum circuit breaker near the zero-current point twice in one cycle in either one phase, interrupt a large current, and suppress the occurrence of surges by opening the vacuum circuit breaker while individual phases are drifted by the preset phase angle when the vacuum circuit breaker is opened. CONSTITUTION:When a trip signal is inputted while a vacuum circuit breaker is closed, a motor is activated, and a cam 9 is rotated clockwise. A roller 10a is moved by the rotation of the cam 9 from the position hooked by a tip hook section 92 to the position hooked by a step section 91. The moving shaft 6 of a vacuum valve 4 is moved downward via a link 10, an action rod 11 and a wipe spring 12 to open contacts while the roller 10a is moved from the tip to the step section. Cams 9a, 9b, 9c of individual phases are displaced by the preset angle and fitted to a main shaft 8, and the vacuum valves of individual phases are displaced by the preset phase angle and opened when a vacuum circuit breaker is opened.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、1O−2Pa以下の真空容器内に封入され
た3個の接点でもって3相交流の各線路を開閉する3相
真空遮断器に関し、特に、開閉サージの抑制と耐電流特
性の向上に関する。
[Detailed description of the invention] [Object of the invention] (Industrial application field) This invention opens and closes each line of three-phase alternating current using three contacts sealed in a vacuum container of 1O-2Pa or less. The present invention relates to three-phase vacuum circuit breakers, and in particular to suppressing switching surges and improving withstand current characteristics.

(従来の技術) 真空遮断器は優れた消弧特性を有していることから、多
くの回路へ適用されている。しかし、消弧特性が優れて
いるが故に、小電流遮断時に特異な開閉サージを発生す
る欠点を有している。このため、開閉サージ発生が懸念
される回路へ真空遮断器を適用するときは、発生サージ
を抑えるサージ保護装置を設置することで実使用上、問
題なく使用してきた。
(Prior Art) Vacuum circuit breakers have excellent arc-extinguishing properties and are therefore applied to many circuits. However, although it has excellent arc-extinguishing characteristics, it has the drawback of generating a peculiar switching surge when a small current is interrupted. For this reason, when vacuum circuit breakers are applied to circuits where switching surges are a concern, they have been used without problems in actual use by installing a surge protection device that suppresses the generated surges.

一方、サージ保護装置無しで、種々の回路へ適用できる
真空遮断器として、「低サージ真空遮断器」が開発され
てきた。これは、真空遮断器の消弧特性を低下させ、サ
ージ発生の主たる要因である裁断電流値を小さくしたも
のである。
On the other hand, a "low surge vacuum circuit breaker" has been developed as a vacuum circuit breaker that can be applied to various circuits without a surge protection device. This reduces the arc-extinguishing characteristics of the vacuum circuit breaker and reduces the cutting current value, which is the main cause of surge generation.

ところが、この低サージ真空遮断器は、サージ発生抑制
のために消弧特性を低下させているため、短絡事故等で
流れる大電流の遮断に限界がある。
However, since this low-surge vacuum circuit breaker has reduced arc-extinguishing characteristics to suppress surge generation, there is a limit to its ability to interrupt large currents that flow in the event of a short circuit or the like.

現状開発されている低サージ真空遮断器は、20kA程
度が大電流遮断の限界である。このため、短絡電流が3
1゜5kA以上を必要とする真空遮断器では、サージ保
護装置を設置して、開閉サージ問題を解決してきた。
Currently developed low-surge vacuum circuit breakers have a large current interrupting limit of approximately 20 kA. Therefore, the short circuit current is 3
Vacuum circuit breakers that require 1.5 kA or more have been equipped with surge protection devices to solve the problem of opening/closing surges.

これは、「低サージ真空遮断器」が消弧特性を低下させ
てサージ発生を抑制しているため、大電流遮断時のアー
クにより接点が荒れ、アーク集中や電流消弧後の絶縁回
復の低下をまねき、電流消弧後の回復電圧に耐えられな
いため、大電流でかつ低サージ性を満足する真空遮断器
の実現が困難となる。
This is because the "low-surge vacuum circuit breaker" reduces the arc-extinguishing characteristics and suppresses the occurrence of surges, which causes the contacts to become rough due to arcing when interrupting large currents, leading to arc concentration and a reduction in insulation recovery after the current is extinguished. As a result, it is difficult to realize a vacuum circuit breaker that can handle a large current and satisfy low surge characteristics because it cannot withstand the recovery voltage after the current is extinguished.

また、真空遮断器では、電流裁断に起因した裁断サージ
が接点の微小ギャップで発生した場合、その裁断サージ
に接点のギャップ間耐圧が耐えられず再発弧を起こすこ
とがある。この再発弧が起因して、多重再発弧、3相同
時遮断と呼ばれる大きなサージが発生する。このため、
裁断電流値を低く抑えた低サージ真空遮断器では、裁断
サージよりも、多重再発弧、3相同時遮断によるサージ
が問題となってくる(電気学会論文集Vo1.93、 
No、8)。
In addition, in a vacuum circuit breaker, when a cutting surge caused by current cutting occurs in a small gap between contacts, the withstand voltage between the gaps of the contacts may not be able to withstand the cutting surge, resulting in re-ignition. This re-ignition causes a large surge called multiple re-ignition or three-phase simultaneous shutdown. For this reason,
In low-surge vacuum circuit breakers that keep the cutting current value low, the problem is not so much the cutting surge but the surge caused by multiple re-ignitions and three-phase simultaneous shutdown (Proceedings of the Institute of Electrical Engineers of Japan Vol. 1.93,
No. 8).

これらのサージが発生しないようにするためには、各相
の電流ゼロ点近傍を外して開極させれば良いが、3相真
空遮断器では普通、開極は各相ともほぼ同時(開極ズレ
時間が0〜3ms程度以下)であるので、1サイクル内
にいずれかの相が電流ゼロ点近傍で開極する機会は6回
あり、実際に開極可能な位相の範囲は極めて限られるた
め非常に高い精度の位相制御が必要となる。
In order to prevent these surges from occurring, it is best to remove the vicinity of the current zero point of each phase and open the contacts, but in a three-phase vacuum circuit breaker, the contacts are normally opened for each phase almost simultaneously (opening). Since the deviation time is approximately 0 to 3 ms or less), there are six opportunities for any phase to open near the current zero point within one cycle, and the range of phases that can actually be opened is extremely limited. Very high precision phase control is required.

(発明が解決しようとする課題) 以上のように、低サージ真空遮断器では、大電流遮断時
の接点の荒れとギャップ長が微小領域での多重再発弧、
3相同時遮断の抑制が必要であり、これらを位相制御を
行って開極位相を制御する場合、非常に高い精度の位相
制御が必要となる。
(Problems to be Solved by the Invention) As described above, in a low-surge vacuum circuit breaker, contact roughness and multiple re-ignitions in a small gap length region occur when interrupting a large current.
It is necessary to suppress simultaneous shutoff of three phases, and when controlling the opening phase by performing phase control on these, very highly accurate phase control is required.

本発明の目的は、上記課題に鑑み、精度の低い位相制御
方式で大電流遮断が可能でかつサージ発生を抑制した真
空遮断器を提供することにある。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a vacuum circuit breaker that is capable of interrupting large currents using a phase control method with low accuracy and suppressing surge generation.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 基本となる第1の発明では、3相交流の各線路を開閉す
る3相真空遮断器において、3個の各接点の開極タイミ
ングを前記各線の電流位相と同相で120°ずつずらす
か、あるいは電流位相と逆相で60°ずつずらす開極位
相差制御手段を設けた。
(Means for Solving the Problems) In the first basic invention, in a three-phase vacuum circuit breaker that opens and closes each three-phase AC line, the opening timing of each of the three contacts is adjusted to the current phase of each line. Opening phase difference control means is provided to shift the current phase by 120° or to shift the current phase by 60° in the opposite phase.

この構成に加えて第2の発明では、前記線路の電流を検
出し、その電流が比較的大きい場合にはその電流のゼロ
点付近の位相タイミングで前記接点を開極させ、前記電
流が比較的小さい場合にはその電流のゼロ点付近を外れ
た位相タイミングで前記接点を開極させる開極位相制御
手段を設けた。
In addition to this configuration, in the second invention, the current in the line is detected, and when the current is relatively large, the contact is opened at a phase timing near the zero point of the current, so that the current is relatively large. If the current is small, an opening phase control means is provided to open the contact at a phase timing that deviates from the vicinity of the zero point of the current.

(作用) 本発明によれば、真空遮断器を開極するとき各相は所定
の位相角だけずれて開極し、いずれかの相で電流0点近
傍で開極する機会は1サイクル以内に2回と各相がほぼ
同時に開極する場合の1/3の機会となり、電流0点近
傍を外して開極てきる位相の範囲は広くなる。また、主
回路に流れている電流が大電流か小電流かにより、電流
ゼロ点近傍(電流0点を中心として30°以内)または
電流0点近傍外(電流ゼロ点を中心として30°をこえ
る範囲)で真空遮断器が開極されることになる。従って
、大電流遮断が可能で、かつサージ発生を抑制できる。
(Function) According to the present invention, when opening a vacuum circuit breaker, each phase opens with a predetermined phase angle difference, and there is no chance of opening near the zero current point in any phase within one cycle. This is 1/3 chance of opening twice and each phase almost simultaneously, and the range of phases that open outside the vicinity of the current zero point becomes wider. Also, depending on whether the current flowing in the main circuit is a large current or a small current, it may be near the zero current point (within 30 degrees around the zero current point) or outside the zero current point (over 30 degrees around the zero current point). range), the vacuum circuit breaker will be opened. Therefore, it is possible to interrupt large currents and suppress the occurrence of surges.

(実施例) 以下、本発明の一実施例を図面を参照して説明する。第
1図は基本となる第1の発明の一実施例を示す側面断面
図である。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 is a side sectional view showing an embodiment of the first basic invention.

同図において、真空遮断器は、車輪1aを設けて移動自
在とした架台1と、この架台1に固定された絶縁支持枠
2と、この絶縁支持枠2の正面側に固定された操作機構
3と、絶縁支持枠2の背面側に固定された真空バルブ4
で構成され、この真空バルブ4は、図示しない固定接点
の固定軸を上部側口出端子5に接続し、図示しない可動
接点の可動軸6を可撓導体7aを介して下部側口出端子
7に接続している。
In the figure, the vacuum circuit breaker includes a frame 1 that is movable with wheels 1a, an insulating support frame 2 fixed to the frame 1, and an operating mechanism 3 fixed to the front side of the insulating support frame 2. and a vacuum valve 4 fixed to the back side of the insulating support frame 2.
In this vacuum valve 4, a fixed shaft of a fixed contact (not shown) is connected to an upper outlet terminal 5, and a movable shaft 6 of a movable contact (not shown) is connected to a lower outlet terminal 7 via a flexible conductor 7a. is connected to.

一方、操作機構3には、内部に取り付けたモータ(図示
しない)、と適宜のトルク伝達手段により連結された主
軸8が設けられ、この主軸8にカム9が一体に回転する
ように取り付けられており、このカム9は、ローラ10
aを介してリンク10と連結している。このリンク10
は、絶縁支持枠2に回動自在に支持され、−側(上側)
を操作ロッド11およびワイプばね12を介して真空バ
ルブ4の可動軸6に連結するとともに、他側(下側)を
張力の調整を可能とした開路ばね13に連結している。
On the other hand, the operating mechanism 3 is provided with a main shaft 8 connected to an internally mounted motor (not shown) by an appropriate torque transmission means, and a cam 9 is mounted on the main shaft 8 so as to rotate together with the main shaft 8. This cam 9 is connected to the roller 10.
It is connected to the link 10 via a. This link 10
is rotatably supported by the insulating support frame 2, with the − side (upper side)
is connected to the movable shaft 6 of the vacuum valve 4 via an operating rod 11 and a wipe spring 12, and the other side (lower side) is connected to an opening spring 13 whose tension can be adjusted.

カム9には、第2図に示すように段部91が設けられて
いる。ここで、カム9、ローラ10a、リンク10、操
作ロッド11およびワイプばね12は3相真空遮断器の
各相の真空バルブに対してそれぞれ独立して1組ずつ設
けられており、各相のカム9a、9b、9cはそれぞれ
主軸8を中心にして所定の角度でズレを設けて主軸8に
取り付けられている。このズレが前記開極位相差制御手
段の要部である。
The cam 9 is provided with a stepped portion 91 as shown in FIG. Here, the cam 9, the roller 10a, the link 10, the operating rod 11, and the wipe spring 12 are each independently provided as a set for each phase vacuum valve of the three-phase vacuum circuit breaker. 9a, 9b, and 9c are each attached to the main shaft 8 with a predetermined angle shift about the main shaft 8. This shift is the essential part of the opening phase difference control means.

第2図は本発明による真空遮断器の各相の真空バルブの
開極位相と各相の電流の関係を示す図であり、各相のカ
ム9a、9b、9c間に主軸8を回転中心として設けた
回転方向のズレにより各相の開極位相にズレが発生する
。このズレは最初に開極した相の位相が電流ゼロ点であ
れば他の2相も電流ゼロ点となる位相になるように設定
されている。即ち、第2図に示すように真空遮断器2の
各相の真空バルブの開極位相は電気角と同じように12
0’ずつずらしであるかあるいは電気角のズレとは逆順
に60°ずつずらしである。
FIG. 2 is a diagram showing the relationship between the opening phase of the vacuum valve of each phase and the current of each phase of the vacuum circuit breaker according to the present invention, and shows the relationship between the cams 9a, 9b, and 9c of each phase with the main shaft 8 as the rotation center. Due to the provided deviation in the rotational direction, a deviation occurs in the opening phase of each phase. This shift is set so that if the phase of the first opened phase is at the zero current point, the other two phases will also be at the zero current point. That is, as shown in FIG. 2, the opening phase of the vacuum valve of each phase of the vacuum circuit breaker 2 is 12 degrees, which is the same as the electrical angle.
It is shifted by 0' or by 60° in the opposite order to the electrical angle shift.

以上のように構成された実施例の作用を説明する。第1
図に示す真空遮断器の投入状態でトリップ信号が入力さ
れると、モータ(図示しない)が起動しカム9を同図で
時計方向に回転させる。このカム9の回転によりローラ
10aは、先端係止部92で係止されている位置から段
部91て係止される位置に移動する。ローラ10aが先
端から段部まで移動する間にリンク10、操作ロッド1
1、ワイプばね12を介して真空バルブ4の可動軸6が
下方向へ移動され接点が開極する。このとき、各相のカ
ム9a、9b、9cは所定の角度だけずらして主軸8に
取り付けであるので、真空遮断器を開極すると各相の真
空バルブは所定の位相角たけずれて開極する。このとき
各相の電流と開極点の関係は第2図に示すようになり、
いずれかの相の真空バルブが電流ゼロ点近傍で開極する
ときは他の2相の真空バルブも電流ゼロ点近傍で開極す
る。逆にいずれかの相の真空バルブが電流ゼロ点近傍を
外れて開極したときは他の2相の真空バルブも電流ゼロ
点近傍を外れて開極することになる。このためいずれか
の相が電流ゼロ点近傍で開極する機会は1サイクルに2
回となり、電流ゼロ点近傍で開極する位相の範囲は狭く
なる。一方、第3図に示すように、従来の3相真空遮断
器では開極は各相ともほぼ同時(開極ズレ時間が0〜3
ms程度以下)であるので、1サイクル内にいずれかの
相が電流ゼロ点近傍で開極する機会は6回あり、電流ゼ
ロ点近傍で開極する位相の範囲は非常に広くなる。
The operation of the embodiment configured as above will be explained. 1st
When a trip signal is input with the vacuum circuit breaker in the closed state shown in the figure, a motor (not shown) is started and rotates the cam 9 clockwise in the figure. This rotation of the cam 9 causes the roller 10a to move from the position where it is locked by the tip locking part 92 to the position where it is locked by the step part 91. While the roller 10a moves from the tip to the step, the link 10 and the operating rod 1
1. The movable shaft 6 of the vacuum valve 4 is moved downward via the wipe spring 12, and the contacts are opened. At this time, the cams 9a, 9b, and 9c of each phase are attached to the main shaft 8 with a predetermined angle shift, so when the vacuum circuit breaker is opened, the vacuum valve of each phase is opened with a predetermined phase angle shift. . At this time, the relationship between the current of each phase and the opening point is as shown in Figure 2,
When the vacuum valve of either phase opens near the zero current point, the vacuum valves of the other two phases also open near the zero current point. Conversely, when the vacuum valve of either phase deviates from the vicinity of the current zero point and opens, the other two phase vacuum valves also deviate from the vicinity of the current zero point and open. For this reason, there are two opportunities for one cycle to open near the current zero point.
times, and the range of phases that open near the current zero point becomes narrower. On the other hand, as shown in Figure 3, in a conventional three-phase vacuum circuit breaker, each phase opens almost simultaneously (opening deviation time is 0 to 3
ms or less), there are six opportunities for one of the phases to open near the zero current point within one cycle, and the range of phases that open near the zero current point becomes very wide.

消弧特性を低下させた低サージ真空遮断器で小電流を遮
断したとき裁断電流は完全にゼロとはならず、小さな裁
断電流となる。このため、この裁断電流以下の位相で真
空遮断器が開極すれば、開極と同時に電流裁断か発生し
、裁断サージが発生スル。このときの真空バルブのギャ
ップ長は微小であるからギャップ間で裁断サージによる
放電が発生し再発弧する。これが原因となり大きなサー
ジ発生へと進展していく。従って、真空遮断器2の開極
点が裁断電流値以上の位相であれば、真空遮断器2が開
極してすぐに電流裁断を起こすことはなくなり、また電
流裁断か発生したときには、真空遮断器のギャップ長は
発生する裁断サージに耐えられるたけ開いているから、
大きなサージ発生へ現象が進展することを防止できる。
When a small current is interrupted by a low-surge vacuum circuit breaker with reduced arc-extinguishing characteristics, the cutting current does not become completely zero, but becomes a small cutting current. Therefore, if the vacuum circuit breaker opens at a phase lower than this cutting current, current cutting will occur at the same time as the opening, causing a cutting surge. Since the gap length of the vacuum bulb at this time is minute, electric discharge occurs between the gaps due to cutting surges, causing re-ignition. This causes a large surge to occur. Therefore, if the opening point of the vacuum circuit breaker 2 is in phase equal to or higher than the cutting current value, current cutting will not occur immediately after the vacuum circuit breaker 2 opens, and when current cutting occurs, the vacuum circuit breaker 2 will Since the gap length is wide enough to withstand the cutting surge that occurs,
It is possible to prevent the phenomenon from developing into a large surge.

これを図示すると第4図となる。また真空遮断器の最大
裁断電流は真空遮断器の消弧特性で決まる。また回路電
流は負荷によって決まる。真空遮断器が最大裁断電流値
以下で開極する位相角は電流零点部2φ1の位相範囲で
ある。
This is illustrated in FIG. 4. Furthermore, the maximum cutting current of a vacuum circuit breaker is determined by the arc extinguishing characteristics of the vacuum circuit breaker. Also, the circuit current is determined by the load. The phase angle at which the vacuum circuit breaker opens below the maximum cutting current value is within the phase range of the current zero point portion 2φ1.

本実施例では、第2図に示すように開極位相を所定の角
度だけずらしであるので各相の電流の位相と開極位相の
関係は各相でまったく同じになり、最初に開極する相で
開極位相の条件が満足されれば良い。従って電流0点近
傍の2φ1領域で開極する機会は1サイクルで2回であ
り、電流0点近傍で開極する位相の範囲は2×2φ1と
なる。
In this embodiment, as shown in Fig. 2, the opening phase is shifted by a predetermined angle, so the relationship between the current phase of each phase and the opening phase is exactly the same for each phase, and the opening phase is first shifted. It is sufficient if the phase satisfies the open phase condition. Therefore, there are two opportunities for opening in the 2φ1 region near the zero current point in one cycle, and the range of phases in which the contact opens near the zero current point is 2×2φ1.

この範囲は第3図に示すように、普通の3相真空遮断器
では開極は各相ともほぼ同時(開極ズレ時間が0〜3m
s程度以下)であるので、1サイクル内にいずれかの相
が電流ゼロ点近傍で開極する機会は6回あり、電流ゼロ
点近傍で開極する位相の範囲は6×2φ1と非常に広く
なることに比べると非常に狭い範囲であることが判る。
This range is as shown in Figure 3, in a normal three-phase vacuum circuit breaker, each phase opens almost simultaneously (opening deviation time is 0 to 3 m).
s or less), there are six opportunities for any phase to open near the zero current point within one cycle, and the range of phases that open near the zero current point is extremely wide, 6×2φ1. It turns out that this is a very narrow range compared to what happens.

電流ゼロ点近傍で開極する位相の範囲は、たとえばφ1
−15’とすると、本実施例では60″となるのにたい
して、従来の3相真空遮断器では180″であり開極位
相を所定の角度だけずらした効果が大きいことが判る。
The range of the phase that opens near the current zero point is, for example, φ1
-15', it is 60'' in this embodiment, whereas it is 180'' in the conventional three-phase vacuum circuit breaker, which shows that the effect of shifting the opening phase by a predetermined angle is great.

以上の手段により、小電流遮断時にサージ発生の起こる
電流零点近傍の位相で開極する確率は従来の真空遮断器
の1/3になる。従って多重再発弧や3相同時遮断によ
るサージが発生する確率は従来の真空遮断器の173と
なり、開閉サージの発生が抑制される。
With the above means, the probability of opening at a phase near the current zero point where a surge occurs when interrupting a small current is reduced to 1/3 of that of a conventional vacuum circuit breaker. Therefore, the probability that a surge will occur due to multiple re-ignition or three-phase simultaneous shutdown is 173 times that of a conventional vacuum circuit breaker, and the occurrence of opening/closing surges is suppressed.

次に、前記の開極位相制御手段を付加した第2の発明に
ついて、第5図の実施例に従って説明する。
Next, a second invention in which the above-mentioned opening phase control means is added will be explained according to the embodiment shown in FIG.

第5図において、真空遮断器52が接続された主回路5
1に設置された変流器等の電流センサ53の検出出力が
、判別回路54および同期信号発生回路55へ入力され
るようになっている。判別回路54は電流センサ53の
検出出力を整流、平滑した後、短絡電流相当の大電流か
、数10A相当の小電流かが判別される。判別回路54
の出力は第1および第2の遅延時間設定回路56.57
へそれぞれ入力されるようになっている。判別回路54
の判別結果により、小電流のときは遅延時間設定回路5
7へ駆動信号が出力されるようになっている。そして、
遅延時間設定回路56.57の出力は引き外し回路58
へ人力されるようになっている。また、同期信号発生回
路55の出力は引き外し回路58へ入力され、この引き
外し回路58の出力は真空遮断器52へ入力されるよう
になっている。
In FIG. 5, a main circuit 5 to which a vacuum circuit breaker 52 is connected
The detection output of a current sensor 53 such as a current transformer installed at the terminal 1 is input to a discrimination circuit 54 and a synchronizing signal generation circuit 55. After rectifying and smoothing the detection output of the current sensor 53, the determination circuit 54 determines whether the current is a large current equivalent to a short circuit current or a small current equivalent to several tens of amperes. Discrimination circuit 54
The outputs of the first and second delay time setting circuits 56 and 57
The information is entered into the respective fields. Discrimination circuit 54
Based on the determination result, when the current is small, the delay time setting circuit 5
A drive signal is output to 7. and,
The output of the delay time setting circuits 56 and 57 is the tripping circuit 58.
It is becoming more and more human-powered. Further, the output of the synchronizing signal generation circuit 55 is input to a tripping circuit 58, and the output of this tripping circuit 58 is inputted to the vacuum circuit breaker 52.

ここで真空遮断器2の各相の真空バルブの開極位相は、
先に説明した第2図のように、3相交流の電気角と同じ
ように120°ずつずらしであるか、あるいは電気角の
ズレとは逆順に60°ずつずらしである。
Here, the opening phase of the vacuum valve of each phase of the vacuum circuit breaker 2 is:
As shown in FIG. 2 described above, the electric angles are shifted by 120 degrees, the same as the electrical angles of three-phase AC, or they are shifted by 60 degrees in the reverse order of the electric angle shifts.

また、主回路51を流れる電流は電流センサ53で検出
され、その検出出力は判別回路54および同時信号発生
回路55へ入力される。判別回路54では、短絡電流相
当の大電流か、数1OA相当の小電流かが判別され、こ
の判別結果により、大電流であれば遅延時間設定回路5
6へ駆動信号がaカされ、小電流であれば、遅延時間設
定回路57へ駆動信号を出力する。
Further, the current flowing through the main circuit 51 is detected by a current sensor 53, and its detection output is input to a discrimination circuit 54 and a simultaneous signal generation circuit 55. The determination circuit 54 determines whether the current is a large current equivalent to a short circuit current or a small current equivalent to several 1 OA. Based on this determination result, if the current is large, the delay time setting circuit 5
A drive signal is applied to the delay time setting circuit 57, and if the current is small, the drive signal is output to the delay time setting circuit 57.

一方、同期信号発生回路55では、電流センサ53より
の人力信号が交流波形であることから、その零点を検出
してパルス信号を発生し、ついてそのパルス信号を整流
し、結果として、人力信号1/2サイクルごとに同一パ
ルス信号を出力し、これ引き外し回路58へ人力する。
On the other hand, since the human power signal from the current sensor 53 is an AC waveform, the synchronization signal generating circuit 55 detects its zero point, generates a pulse signal, rectifies the pulse signal, and as a result, the human power signal 1 The same pulse signal is output every 2 cycles and is manually input to the tripping circuit 58.

ここで、第6図のように外部より引き外し回路58へ真
空遮断器52の引き外し信号が入力されると、その引き
外し信号入力後、最初の同期信号発生回路55よりの信
号が入力された時間1(、から、遅延時間設定回路56
または57で設定された遅延時間t8またはt7だけ遅
れて真空遮断器52の引き外し信号が遮断器へ出力され
る。この出力信号により真空遮断器52は真空遮断器5
2の動作時間t2後に開極する。
Here, when the tripping signal of the vacuum circuit breaker 52 is input from the outside to the tripping circuit 58 as shown in FIG. 6, the first signal from the synchronizing signal generation circuit 55 is inputted after the tripping signal is input. The delay time setting circuit 56
Alternatively, the tripping signal of the vacuum circuit breaker 52 is output to the circuit breaker with a delay of the delay time t8 or t7 set in step 57. This output signal causes the vacuum circuit breaker 52 to
The contact is opened after the second operation time t2.

以上のように第5図の実施例によれば、真空遮断器52
は主回路51に流れる電流値を大電流と小電流に区別し
である特定の位相で開極することが可能となる。
As described above, according to the embodiment shown in FIG.
It is possible to differentiate the current value flowing through the main circuit 51 into a large current and a small current, and open the polarity at a certain specific phase.

消弧特性を低下させた低サージ真空遮断器で小電流を遮
断したとき裁断電流は完全にゼロとはならず、小さな裁
断電流となる。このため、この裁断電流以下の位相で真
空遮断器が開極すれば、開極と同時に電流裁断が発生し
、裁断サージが発生する。このときの真空バルブのギャ
ップ長は微小であるからギャップ間で裁断サージによる
放電が発生し再発弧する。これが原因となり大きなサー
ジ発生へと進展していく。従って、真空遮断器2の開極
点を裁断電流値以上の位相に設定しておけば、真空遮断
器2が開極してすぐに電流裁断を起こすことはなくなり
、また電流裁断が発生したときには、真空遮断器のギャ
ップ長は発生する裁断サージに耐えられるだけ開いてい
るから、大きなサージ発生へ現象が進展することを防止
できる。
When a small current is interrupted by a low-surge vacuum circuit breaker with reduced arc-extinguishing characteristics, the cutting current does not become completely zero, but becomes a small cutting current. Therefore, if the vacuum circuit breaker opens at a phase lower than this cutting current, current cutting occurs simultaneously with the opening, and a cutting surge occurs. Since the gap length of the vacuum bulb at this time is minute, electric discharge occurs between the gaps due to cutting surges, causing re-ignition. This causes a large surge to occur. Therefore, if the opening point of the vacuum circuit breaker 2 is set to a phase higher than the cutting current value, current cutting will not occur immediately after the vacuum circuit breaker 2 opens, and when current cutting occurs, Since the gap length of the vacuum circuit breaker is wide enough to withstand the cutting surge that occurs, it is possible to prevent the phenomenon from progressing to a large surge.

これを図示すると第6図となる。真空遮断器の開極時間
t2は遮断器の機構で決定される。また真空遮断器の最
大裁断電流は真空遮断器の消弧特性で決まる。また回路
電流は負荷によって決まる。
This is illustrated in FIG. 6. The opening time t2 of the vacuum circuit breaker is determined by the mechanism of the circuit breaker. Furthermore, the maximum cutting current of a vacuum circuit breaker is determined by the arc extinguishing characteristics of the vacuum circuit breaker. Also, the circuit current is determined by the load.

真空遮断器が最大裁断電流値以下で開極する位相角は電
流零点部2φ1の位相範囲である。この領域を避けて、
真空遮断器が開極する為には、電流零点t□を基準とし
て、t7+t2が2φ1領域に入らないように設定すれ
ば良い。t2は遮断器で決まる値であるからt7を設定
することでこの条件が満足される。
The phase angle at which the vacuum circuit breaker opens below the maximum cutting current value is within the phase range of the current zero point portion 2φ1. Avoid this area
In order for the vacuum circuit breaker to open, it is only necessary to set the current zero point t□ so that t7+t2 does not fall within the 2φ1 region. Since t2 is a value determined by the circuit breaker, this condition is satisfied by setting t7.

一方、大電流遮断では、開極点で大きな電流が流れてい
ると、接点の損傷が大きい。従って、サージの抑制とは
逆に、電流零点近くて開極すれば、開極点での電流値は
小さいから接点の損傷は小さくなる。電流の各位相で開
極した時の真空遮断器の遮断可能な電流値の関係を求め
ると第6図となる。これより電流波高値で開極するより
も電流零点近傍(電流ゼロ点を中心として30″以内)
で開極した方が大きな電流まで遮断できることが判る。
On the other hand, when interrupting a large current, if a large current flows at the opening point, the contact will be seriously damaged. Therefore, contrary to surge suppression, if the contact is opened near the current zero point, the current value at the contact opening point is small, so damage to the contacts will be reduced. Figure 6 shows the relationship between the current values at which the vacuum circuit breaker can be disconnected when the current is opened in each phase. From this, rather than opening at the current peak value, it is closer to the current zero point (within 30'' around the current zero point)
It can be seen that it is possible to interrupt even a large current by opening the terminal at .

この場合、遅延時間設定回路56で決まるt6と真空遮
断器の開極時間t2の和が電流零点を中心として30″
以内に真空遮断器が開極てきる。
In this case, the sum of t6 determined by the delay time setting circuit 56 and the opening time t2 of the vacuum circuit breaker is 30'' around the current zero point.
The vacuum circuit breaker will open within this time.

以上の手段により、小電流遮断時はサージ発生の起こる
電流零点近傍の位相で開極することを避け、大電流遮断
時には接点損傷に小さい電流零点近傍で開極することで
大電流遮断可能な低サージ真空遮断器を提供できると同
時に各相の開極位相をそれぞれ所定の角度でずらすこと
により位相制御の精度を高くすることなく必要十分な位
相制御を行うことができる。
By using the above measures, when interrupting a small current, avoid opening at a phase near the current zero point where a surge occurs, and when interrupting a large current, open at a phase near the small current zero point to prevent damage to the contacts. A surge vacuum circuit breaker can be provided, and at the same time, necessary and sufficient phase control can be performed without increasing the accuracy of phase control by shifting the opening phase of each phase by a predetermined angle.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上のように構成されているから、精度の低
い安価な位相制御方式で大電流遮断が可能でかつ有害な
開閉サージ発生をなくした真空遮断器を提供することが
できる。
Since the present invention is configured as described above, it is possible to provide a vacuum circuit breaker that is capable of interrupting large currents using a low-accuracy, inexpensive phase control method and eliminates the generation of harmful switching surges.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は基本となる第1発明の実施例を示す側面断面図
、第2図は本発明による3相真空遮断器の各相の電流と
開極位相の関係を示す図、第3図は従来の3相真空遮断
器の各相の電流と開極位相の関係を示す図、第4図は小
電流遮断時の各部信号を示す図、第5図は第2の発明の
実施例を示すブロック図、第6図は第5図の構成におけ
る小電流遮断時の各部信号を示す図、第7図は開極位相
と遮断可能電流の関係を示す図である。 3・・・操作機構 4・・・真空バルブ 8・・・主軸 9・・・カム 10a・・・ローラ 10・・・リンク 51・・・主回路 52・・・真空遮断器 53・・・電流センサ 54・・・判別回路 55・・・同期信号発生回路 56.57・・・遅延時間設定回路 58・・・引き外し回路
FIG. 1 is a side sectional view showing an embodiment of the basic first invention, FIG. 2 is a diagram showing the relationship between the current of each phase and the opening phase of the three-phase vacuum circuit breaker according to the invention, and FIG. A diagram showing the relationship between the current of each phase and the opening phase of a conventional three-phase vacuum circuit breaker, FIG. 4 is a diagram showing various signals at the time of small current interruption, and FIG. 5 is a diagram showing an embodiment of the second invention. The block diagram, FIG. 6, is a diagram showing the signals of various parts when a small current is interrupted in the configuration of FIG. 5, and FIG. 7 is a diagram showing the relationship between the opening phase and the current that can be interrupted. 3... Operating mechanism 4... Vacuum valve 8... Main shaft 9... Cam 10a... Roller 10... Link 51... Main circuit 52... Vacuum circuit breaker 53... Current Sensor 54...Discrimination circuit 55...Synchronizing signal generation circuit 56.57...Delay time setting circuit 58...Tripping circuit

Claims (2)

【特許請求の範囲】[Claims] (1)真空容器内に封入された3個の接点でもって3相
交流の各線路を開閉するものにおいて、3個の前記接点
の開極タイミングを前記各線路の電流位相と同相で12
0゜ずつずらすか、あるいは電流位相と逆相で60゜ず
つずらす開極位相差制御手段を設けたことを特徴とする
3相真空遮断器。
(1) In a device that opens and closes each three-phase AC line using three contacts sealed in a vacuum container, the opening timing of the three contacts is set to 12 times in phase with the current phase of each line.
A three-phase vacuum circuit breaker, characterized in that it is provided with an opening phase difference control means that shifts the opening by 0° or by 60° in the opposite phase to the current phase.
(2)請求項1記載の3相真空遮断器において、前記線
路の電流を検出し、その電流が比較的大きい場合にはそ
の電流のゼロ点付近の位相タイミングで前記接点を開極
させ、前記電流が比較的小さい場合にはその電流のゼロ
点付近を外れた位相タイミングで前記接点を開極させる
開極位相制御手段を設けたことを特徴とする3相真空遮
断器。
(2) In the three-phase vacuum circuit breaker according to claim 1, the current in the line is detected, and if the current is relatively large, the contact is opened at a phase timing near the zero point of the current, and the contact is opened at a phase timing near the zero point of the current. A three-phase vacuum circuit breaker, characterized in that, when the current is relatively small, opening phase control means is provided for opening the contact at a phase timing that deviates from the vicinity of the zero point of the current.
JP18052090A 1990-07-10 1990-07-10 Three-phase vacuum circuit breaker Pending JPH0471130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18052090A JPH0471130A (en) 1990-07-10 1990-07-10 Three-phase vacuum circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18052090A JPH0471130A (en) 1990-07-10 1990-07-10 Three-phase vacuum circuit breaker

Publications (1)

Publication Number Publication Date
JPH0471130A true JPH0471130A (en) 1992-03-05

Family

ID=16084705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18052090A Pending JPH0471130A (en) 1990-07-10 1990-07-10 Three-phase vacuum circuit breaker

Country Status (1)

Country Link
JP (1) JPH0471130A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260476A (en) * 2001-03-01 2002-09-13 Mitsubishi Electric Corp Three phase switch
JP2009059662A (en) * 2007-09-03 2009-03-19 Mitsubishi Electric Corp Power switching apparatus and method for controlling it
WO2009107233A1 (en) * 2008-02-29 2009-09-03 三菱電機株式会社 Driving controller of ac motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260476A (en) * 2001-03-01 2002-09-13 Mitsubishi Electric Corp Three phase switch
JP2009059662A (en) * 2007-09-03 2009-03-19 Mitsubishi Electric Corp Power switching apparatus and method for controlling it
WO2009107233A1 (en) * 2008-02-29 2009-09-03 三菱電機株式会社 Driving controller of ac motor
US8598837B2 (en) 2008-02-29 2013-12-03 Mitsubishi Electric Corporation Driving controller for AC motor

Similar Documents

Publication Publication Date Title
US8094426B2 (en) Electrical switching apparatus providing coordinated opening with a circuit interrupter and method of operating the same
WO2016056098A1 (en) Direct current circuit breaker
JP3190563B2 (en) Switchgear
EP1433188B1 (en) Three phase system with controlled switching of a load network to a three phase power supply
JPH0471130A (en) Three-phase vacuum circuit breaker
WO2012014282A1 (en) Phase control switchgear
EP2110827A2 (en) Circuit breaker with improved close and latch performance
JP6694177B2 (en) DC breaker
KR880001244B1 (en) Arcless switch
JPH03196435A (en) Control circuit for vacuum circuit breaker
JPH03241625A (en) Vacuum circuit-breaker
JPH1031924A (en) Compound switching device
JPH0652759A (en) Non-effectively earthed system opening phase control device
JP2603140B2 (en) Selective shutoff method
US4614851A (en) Contact sequencing arrangement for rotary double break switch
JPH11265644A (en) Switching device
IE893020L (en) Circuit breaker with low voltage contact structure
JP3423539B2 (en) High speed reclosing device
JP3502236B2 (en) Circuit breaker
JP3777750B2 (en) Commutation type DC circuit breaker
JPH03241624A (en) Vacuum circuit-breaker
JP2597694B2 (en) Power switchgear
JPH05236646A (en) Current limiter
JP2602935B2 (en) Gas circuit breaker for reactor opening and closing
JP2760813B2 (en) DC circuit breaker