JPH0471103B2 - - Google Patents

Info

Publication number
JPH0471103B2
JPH0471103B2 JP60021991A JP2199185A JPH0471103B2 JP H0471103 B2 JPH0471103 B2 JP H0471103B2 JP 60021991 A JP60021991 A JP 60021991A JP 2199185 A JP2199185 A JP 2199185A JP H0471103 B2 JPH0471103 B2 JP H0471103B2
Authority
JP
Japan
Prior art keywords
crystalline
reinforcing material
polycyanoaryl ether
resin composition
fibrous reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60021991A
Other languages
Japanese (ja)
Other versions
JPS61183354A (en
Inventor
Shigeru Matsuo
Tomoyoshi Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2199185A priority Critical patent/JPS61183354A/en
Priority to EP86101431A priority patent/EP0193003A1/en
Publication of JPS61183354A publication Critical patent/JPS61183354A/en
Publication of JPH0471103B2 publication Critical patent/JPH0471103B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の技術分野] 本発明は、耐熱性ならびに機械的強度に優れた
樹脂組成物に関する。 [発明の技術的背景とその問題点] ポリシアノアリールエーテルからなる樹脂とし
ては種々のものが知られており(特開昭47−
14270号および特開昭59−206433号)、優れた耐熱
性ならびに機械的強度を具備していることから広
汎な用途に使用されている。しかしながら、近
年、かかる樹脂の用途範囲が更に広がるにつれ
て、従来よりも一段と高い耐熱性および機械的強
度を要求される場合が少なくない。 そこで、更に優れた耐熱性ならびに機械的強度
を備えた樹脂材料の開発に対する要請が強い。 [発明の目的] 本発明は、従来のかかる要請に応え、ポリシア
ノアリールエーテルを樹脂骨格として含有し、優
れた耐熱性ならびに機械的強度を備えた樹脂組成
物の提供を目的とする。 [発明の概要] 本発明の樹脂組成物は、 次式: で示される繰り返し単位のみからなり、p−クロ
ロフエノールを溶媒とする濃度0.2g/dlの溶媒
の60℃における還元粘度[ηsp/C]が0.8dl/g
以上である結晶性ポリシアノアリールエーテル
と、該結晶性ポリシアノアリールエーテルに5〜
60重量%配合された繊維質強化材とから成ること
を特徴とする。 また、かかる結晶性ポリシアノアリールエーテ
ルは、例えばp−クロロフエノールを溶媒とする
0.2g/dl濃度の溶液の60℃における還元粘度
[ηsp/c]が0.8dl/g以上であるような重合度
を有することが、耐熱性を向上させるうえで好ま
しい。 この結晶性ポリシアノアリールエーテル樹脂に
配合する繊維質強化材としては、炭素繊維、ラス
繊維、アルミナ繊維、芳香族ポリアミド繊維など
があげられるが、とくに、炭素繊維、ラス繊維は
好ましいのである。また、炭素繊維としては、ア
クリロニトリル系、ピツチ系、セルロース系のい
ずれでもよい。更に、これらの繊維質強化材は、
連続繊維、非連続繊維のいずれでもよく、例え
ば、ロービング、チヨツプド繊維、あるいは、ミ
ルド繊維などを使用することが好ましい。 本発明の樹脂組成物は上記結晶性ポリシアノア
リールエーテルに上記の繊維質強化材を配合する
ことによつて得られる。繊維質強化材の配合量は
樹脂組成物全体の5〜60重量%である。繊維質強
化材の配合量が5重量%未満の場合は充分な耐熱
性ならびに機械的強度の向上効果が得られず、一
方60重量%を超えると結晶性ポリシアノアリール
エーテルが繊維質強化材の間隙に適切に分散しな
いという不都合がある。好ましくは10〜40重量%
である。 この樹脂組成物を製造するにあたつては、結晶
性ポリシアノアリールエーテルに繊維質強化材を
上記の配合量で配合し、これらを溶融混練すれば
よい。このときの温度は350〜410℃、好ましくは
370〜400℃であり、混練時間は1〜10分間、好ま
しくは2〜5分間である。 [発明の実施例] 実施例 1 (1) 結晶性ポリシアノアリールエーテルの製造 撹拌装置、精留装置およびアルゴンガス吹込管
を備えた内容積5のセパラブルフラスコに2,
6−ジクロロベンゾニトリル344.02g(2.0モル)
と、2,7−ジヒドロキシナフタレン317.2g
(1.98モル)および炭酸カリウム330g(2.4モ
ル)、さらに、溶媒としてスルホラン、2.5とト
ルエン1を仕込み、アルゴンガスを吹込みなが
ら160℃において2時間、200℃において2時間撹
拌しながら反応をおこなつた。反応期間中に生成
した水は、絶えずトルエンとともに留去した。反
応終了後、生成物を室温まで冷却してメタノール
中に投入し、析出した重合体を回収してワーニン
グ社製ブレンダーで粉砕し、ついで熱水2、水
2でそれぞれ洗浄することにより、下記の式
()で示される結晶性ポリシアノアリールエー
テル515g(収率100%)を得た。 この重合体をp−クロロフエノールに溶解させ
て、その濃度を0.g/dlとしたときの還元粘度
[ηsp/c]は60℃において、0.95dl/gであつ
た。また、この重合体の熱的性質を調べたとこ
ろ、ガラス転移温度が214℃、熱分解開始温度が
499℃であつた。さらに、この重合体は通常の溶
剤に対して不溶性を示し、かつ難燃性に優れても
のであつた。 (2) 樹脂組成物の製造 上記(1)により得られた結晶性ポリシアノアリー
ルエーテルの粉末に対し、繊維質強化材として糸
径9μm、平均繊維長3mm、アスペクト比250の炭
素繊維(東レ(株)製:トレカ )を、その含有量が
10重量%となるように配合してヘンシエルミキサ
ーにて混合し、しかるのち、この混合物を直径30
mmの押出機を用いてシリンダ温度370〜400℃にお
いて混練押出しを行ないペレツト化した。つい
で、射出成形機を使用し、シリンダ温度370〜400
℃、金型温度140℃においてこのペレツトから試
験片を成形した。得られた試験片を200℃におい
て2時間アニーリングした後、引張試験および熱
変形温度の測定を行なつた。尚、熱変形温度は、
東洋精機製の熱ひずみ測定器で行ない、一方、引
張試験には、島津製作所製のオートグラフIS−
5000を用い、引張速度を1mm/minとして、破断
強度、破断伸びおよび弾性率をそれぞれ測定し
た。以上の測定結果を表に示した。 実施例 2〜3 繊維質強化材の配合量を、それぞれ20重量%お
よび30重量%としたほかは実施例1と同様にして
試験片を作製して、試験を行なつた。結果を表に
示した。 実施例 4〜6 繊維質強化材として炭素繊維に代えて、平均長
3mmのガラス繊維(旭フアイバーグラス(株)製)を
用いたほかは、実施例1と同様にして試験片を作
製して各試験を行なつた。尚、ガラス繊維の配合
量はそれぞれ10、20および30重量%とした。得ら
れた結果を表に示した。 参照例 繊維質強化材を全く配合しないことを除いては
実施例1と同様にして試験片を作製して各試験を
行なつた。得られた結果を表に示した。
[Technical Field of the Invention] The present invention relates to a resin composition having excellent heat resistance and mechanical strength. [Technical background of the invention and its problems] Various resins made of polycyanoaryl ether are known (Japanese Unexamined Patent Application Publication No. 1983-1999).
14270 and JP-A-59-206433), it is used in a wide range of applications because it has excellent heat resistance and mechanical strength. However, in recent years, as the scope of use of such resins has further expanded, it is often the case that even higher heat resistance and mechanical strength are required than in the past. Therefore, there is a strong demand for the development of resin materials with even better heat resistance and mechanical strength. [Object of the Invention] In response to such conventional demands, the present invention aims to provide a resin composition containing polycyanoaryl ether as a resin skeleton and having excellent heat resistance and mechanical strength. [Summary of the invention] The resin composition of the present invention has the following formula: The reduced viscosity [ηsp/C] at 60°C of a solvent with a concentration of 0.2 g/dl using p-chlorophenol as a solvent is 0.8 dl/g.
The above crystalline polycyanoaryl ether and the crystalline polycyanoaryl ether have 5 to 5 to
It is characterized by consisting of 60% by weight of fibrous reinforcing material. Further, such crystalline polycyanoaryl ether can be prepared using, for example, p-chlorophenol as a solvent.
In order to improve heat resistance, it is preferable to have a degree of polymerization such that the reduced viscosity [ηsp/c] at 60° C. of a solution with a concentration of 0.2 g/dl is 0.8 dl/g or more. Examples of the fibrous reinforcing material to be added to the crystalline polycyanoaryl ether resin include carbon fibers, lath fibers, alumina fibers, and aromatic polyamide fibers, with carbon fibers and lath fibers being particularly preferred. Further, the carbon fiber may be any of acrylonitrile type, pitch type, and cellulose type. Furthermore, these fibrous reinforcements
Either continuous fibers or discontinuous fibers may be used. For example, it is preferable to use roving, chopped fibers, or milled fibers. The resin composition of the present invention can be obtained by blending the above-mentioned fibrous reinforcing material with the above-mentioned crystalline polycyanoaryl ether. The blending amount of the fibrous reinforcing material is 5 to 60% by weight of the entire resin composition. If the amount of fibrous reinforcing material is less than 5% by weight, sufficient heat resistance and mechanical strength improvement effects cannot be obtained, while if it exceeds 60% by weight, the crystalline polycyanoaryl ether will It has the disadvantage of not being properly distributed in the interstices. Preferably 10-40% by weight
It is. In producing this resin composition, the fibrous reinforcing material may be blended with the crystalline polycyanoaryl ether in the above-mentioned amount and then melt-kneaded. The temperature at this time is 350-410℃, preferably
The temperature is 370 to 400°C, and the kneading time is 1 to 10 minutes, preferably 2 to 5 minutes. [Embodiments of the Invention] Example 1 (1) Production of crystalline polycyanoaryl ether In a separable flask with an internal volume of 5 equipped with a stirring device, a rectification device, and an argon gas blowing tube, 2.
6-dichlorobenzonitrile 344.02g (2.0mol)
and 317.2g of 2,7-dihydroxynaphthalene
(1.98 mol) and 330 g (2.4 mol) of potassium carbonate, as well as sulfolane, 2.5 mol and 1 mol of toluene as solvents, and the reaction was carried out with stirring at 160°C for 2 hours while blowing argon gas and for 2 hours at 200°C. Ta. The water produced during the reaction was constantly distilled off along with the toluene. After the reaction was completed, the product was cooled to room temperature and poured into methanol, the precipitated polymer was collected and pulverized in a Warning blender, and then washed with hot water 2 and water 2, respectively, to produce the following. 515 g (yield: 100%) of crystalline polycyanoaryl ether represented by formula () was obtained. When this polymer was dissolved in p-chlorophenol to a concentration of 0.g/dl, the reduced viscosity [ηsp/c] at 60°C was 0.95 dl/g. In addition, when we investigated the thermal properties of this polymer, we found that the glass transition temperature was 214℃, and the thermal decomposition onset temperature was 214℃.
It was 499℃. Furthermore, this polymer was insoluble in common solvents and had excellent flame retardancy. (2) Production of resin composition To the crystalline polycyanoaryl ether powder obtained in (1) above, carbon fiber (Toray Co., Ltd.: Trading Card), its content is
The mixture was blended to 10% by weight using a Henschel mixer, and then this mixture was
The mixture was kneaded and extruded using a mm extruder at a cylinder temperature of 370 to 400°C to form pellets. Then, using an injection molding machine, the cylinder temperature is 370 to 400.
A test piece was molded from this pellet at a mold temperature of 140°C. After annealing the obtained test piece at 200°C for 2 hours, a tensile test and measurement of heat distortion temperature were performed. In addition, the heat distortion temperature is
The tensile test was carried out using a thermal strain measuring instrument manufactured by Toyo Seiki, while an Autograph IS- manufactured by Shimadzu Corporation was used for the tensile test.
5000 and a tensile speed of 1 mm/min, the breaking strength, breaking elongation, and elastic modulus were measured. The above measurement results are shown in the table. Examples 2 to 3 Test pieces were prepared and tested in the same manner as in Example 1, except that the amounts of the fibrous reinforcing material were 20% by weight and 30% by weight, respectively. The results are shown in the table. Examples 4 to 6 Test pieces were prepared in the same manner as in Example 1, except that glass fibers with an average length of 3 mm (manufactured by Asahi Fiberglass Co., Ltd.) were used instead of carbon fibers as the fibrous reinforcement material. Each test was conducted. Incidentally, the amount of glass fiber blended was 10, 20 and 30% by weight, respectively. The results obtained are shown in the table. Reference Example Test pieces were prepared in the same manner as in Example 1, except that no fibrous reinforcing material was added, and various tests were conducted. The results obtained are shown in the table.

【表】 [発明の効果] 以上の説明から明らかなように、本発明の樹脂
組成物は特定の構造を有する結晶性ポリシアノア
リールエーテル樹脂に、繊維質強化材を適正量配
合したので、従来のものに比べて耐熱性ならびに
機械的強度が一段と高くなり、電子・電気機器、
各種機械の素材など、優れた耐熱性ならびに機械
的強度の要求される分野において極めて有用であ
る。
[Table] [Effects of the Invention] As is clear from the above description, the resin composition of the present invention contains a crystalline polycyanoaryl ether resin having a specific structure and an appropriate amount of fibrous reinforcing material. It has much higher heat resistance and mechanical strength than other products, making it suitable for electronic and electrical equipment,
It is extremely useful in fields that require excellent heat resistance and mechanical strength, such as materials for various machines.

Claims (1)

【特許請求の範囲】 1 次式: で示される繰り返し単位のみからなり、p−クロ
ロフエノールを溶媒とする濃度0.2g/dlの溶媒
の60℃における還元粘度[ηsp/C]が0.8dl/g
以上である結晶性ポリシアノアリールエーテルと
該結晶性ポリシアノアリールエーテルに5〜60重
量%配合された繊維質強化材とから成ることを特
徴とする樹脂組成物。 2 該繊維質強化材が、炭素繊維またはガラス繊
維である特許請求の範囲第1項記載の樹脂組成
物。
[Claims] Primary formula: The reduced viscosity [ηsp/C] at 60°C of a solvent with a concentration of 0.2 g/dl using p-chlorophenol as a solvent is 0.8 dl/g.
A resin composition comprising the above crystalline polycyanoaryl ether and a fibrous reinforcing material blended with the crystalline polycyanoaryl ether in an amount of 5 to 60% by weight. 2. The resin composition according to claim 1, wherein the fibrous reinforcing material is carbon fiber or glass fiber.
JP2199185A 1985-02-08 1985-02-08 Resin composition Granted JPS61183354A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2199185A JPS61183354A (en) 1985-02-08 1985-02-08 Resin composition
EP86101431A EP0193003A1 (en) 1985-02-08 1986-02-04 Resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2199185A JPS61183354A (en) 1985-02-08 1985-02-08 Resin composition

Publications (2)

Publication Number Publication Date
JPS61183354A JPS61183354A (en) 1986-08-16
JPH0471103B2 true JPH0471103B2 (en) 1992-11-12

Family

ID=12070488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2199185A Granted JPS61183354A (en) 1985-02-08 1985-02-08 Resin composition

Country Status (1)

Country Link
JP (1) JPS61183354A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2546809B2 (en) * 1990-06-25 1996-10-23 出光興産株式会社 Carbon fiber composite material
JP2546810B2 (en) * 1990-06-25 1996-10-23 出光興産株式会社 Carbon fiber coated with polycyanoaryl ether and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59206433A (en) * 1983-03-31 1984-11-22 アモコ、コ−ポレ−ション Polyarylnitrile polymer and manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59206433A (en) * 1983-03-31 1984-11-22 アモコ、コ−ポレ−ション Polyarylnitrile polymer and manufacture

Also Published As

Publication number Publication date
JPS61183354A (en) 1986-08-16

Similar Documents

Publication Publication Date Title
JPH0557305B2 (en)
EP1436344A1 (en) Thermoplastic moulding materials, based on polyarylene-ethersulphones, having enhanced melting stability
JPH0853621A (en) Polyphenylene sulfide resin and molded product thereof
EP0217960B1 (en) Polyamide composition
EP0193003A1 (en) Resin composition
JPH0471103B2 (en)
US4853443A (en) Polycyanoaryl ether with thermoplastic resin
EP0247512A2 (en) Thermoplastic resin composition improved in solvent resistance
US5089340A (en) Polycanoaryl ether laminate
JPH0442422B2 (en)
JPH0420026B2 (en)
KR101817359B1 (en) Wholly aromatic liquid crystalline polymer resin compound with enhanced strength and electronic compartments made from the same
JPH0587541B2 (en)
US4977234A (en) Polycyanoaryl ether composition method for preparing the same and uses thereof
CA1121081A (en) Reinforced polyarylene esters
EP0243000A1 (en) Polycyanoaryl ether, method for preparing the same and uses thereof
JPS63189457A (en) Polyphenylene sulfide resin composition
JPH0212501B2 (en)
JPH0149386B2 (en)
JPH01188555A (en) Resin composition
JPH02255833A (en) Polyether copolymer, its production, production of powder of same, and polyether copolymer composition
JPH0619010B2 (en) Polycyanoaryl ether resin composition
JPH0441557A (en) Polyether copolymer composition having good flowability
JPH0370773A (en) Polyarylene sulfide resin composition having improved crystallinity
JPH0420562A (en) Resin composition