JPH0471003B2 - - Google Patents

Info

Publication number
JPH0471003B2
JPH0471003B2 JP29684786A JP29684786A JPH0471003B2 JP H0471003 B2 JPH0471003 B2 JP H0471003B2 JP 29684786 A JP29684786 A JP 29684786A JP 29684786 A JP29684786 A JP 29684786A JP H0471003 B2 JPH0471003 B2 JP H0471003B2
Authority
JP
Japan
Prior art keywords
molar ratio
powder diffraction
ray powder
following
diffraction pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP29684786A
Other languages
Japanese (ja)
Other versions
JPH01126211A (en
Inventor
Tomasu Uiruson Suteiibun
Kingu Riza
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Union Carbide Corp
Original Assignee
Union Carbide Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Carbide Corp filed Critical Union Carbide Corp
Priority to JP29684786A priority Critical patent/JPH01126211A/en
Publication of JPH01126211A publication Critical patent/JPH01126211A/en
Publication of JPH0471003B2 publication Critical patent/JPH0471003B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明の分野 本発明は概ね、結晶アルミノホスフエート組成
物に関し、更に特定すれば、モレキユラシーブタ
イプの新規な結晶アルミノホスフエートとその製
造方法に関する。 本発明の背景 AlO2およびPO2の四面体単位がコーナーの酸
素原子を共有することにより結合して成る開放骨
格構造をもち、しかも気孔の大きさが一様な寸法
を有することを特徴とする微孔質結晶アルミノホ
スフエートがこれまでにも多くの出版物特にS.T.
ウイルソン等の米国特許第4310440号明細書
(1980年7月7日付公示)に開示されている。ウ
イルソン等のアルミノホスフエートは、無水状態
ないし水和状態のいずれでも同じ基本骨格形態を
保留しつつ完全且つ可逆的な脱水を行なうことの
できる非ゼオライトモレキユラーシーブ物質の一
般的分類を構成している。用語「基本骨格形態」
又は「基本骨格構造」を上記米国特許および本明
細書中で用いるとき、それは主要なAl−O結合
およびP−O結合の空間配列を意味する。また、
部分脱水ないし完全脱水時可逆時に或るいは不可
逆的に構造の再配列を受ける他の微孔質アルミノ
ホスフエート例えば、鉱物バリシア石およびメタ
バリシア石並びに、F.デイボアール(D′yvoire)
〔Bull.Soc.Chim.France.1762(1961)〕により報告
された或る特定の合成準安定アルミノホスフエー
トが知られている。別種の合成結晶組成物にし
て、AlO2およびPO2の四面体に加えマンガン、
マグネシウム、コバルトおよび(又は)亜鉛の骨
格四面体金属酸化物を含む組成物が米国特許出願
514334(1983年7月15日付提出)に開示されてい
る。 本発明の概要 本発明は、新規な微孔質結晶アルミノホスフエ
ート(以下 AlPO4−39と呼称)とその製造方法
よりなる。AlPO4−39は、酸化物のモル比で表わ
される化学組成が Al2O3:1.0±0.2P2O5 である基本骨格構造を有し且つ、少くとも後記表
に記載のd−間隔を含むX線粉末回折図形を示
す。 AlPO3−39は、水に加えてアルミニウムおよび
りんの反応性給源と、好ましくはアルキルアミン
最も好ましくはジ−n−プロピルアミンである有
機テンプレート剤を含む反応混合物からの熱水晶
出によつて製造することができる。 本発明の詳細な説明 本発明の新規な微孔質アルミノホスフエート
は、りんおよびアルミニウムの反応性源と有機テ
ンプレート剤好ましくはジ−n−プロピルアミン
(Pr2NH)を含む反応混合物からの熱水晶出によ
り製造することができる。この製造プロセスは典
型的には、酸化物のモル比が Al2O3:1±0.5R2O5:7〜100H2O であり且つAl2O31モル当り少くとも約1.5モルの
ジ−n−プロピルアミンを含む反応混合物の形成
を包含する。この反応混合物を、該混合物に対し
不活性な反応容器に入れ、晶出時まで通常2時間
〜2週間少くとも約100℃好ましくは100〜300℃
の温度で加熱した。次いで、固体結晶反応生成物
を、過又は遠心処理の如き任意の簡便な方法に
より回収し、大気中周囲〜約110℃の温度で乾燥
する。好適な結晶化方法では、りん給源をりん酸
とし、アルミニウム給源を擬似ベーマイト水和ア
ルミニウム酸化物とし、温度を150〜200℃、結晶
化時間を3〜7日間、そして反応混合物中の無機
酸化物比を Al2O3:0.8〜1.2P2O5:25〜75H2O ルとする。好ましいテンプレート剤はジ−n−プ
ロピルアミンであり、反応混合物中アルナ1モル
当り約1.5〜2.0モル量で存在する。また、塩基性
アミンの比較的高い濃度のゆえに、酢酸若しくは
塩酸の如き有機酸又は鉱酸を約0.25〜1.5モル好
ましくは0.5〜1.0モル存在させる。一般的に云つ
て、酸が強いほど、その反応混合物中での好まし
い濃度は上記範囲内で低い。好適な結晶化手順に
おいて、酢酸はアルミナ1モル当り約1モル量で
存在し、ジ−n−プロピルアミンはアルミナ1モ
ル当り約2.0モル量で存在する。 注目すべきは、ジ−n−プロピルアミンが従
前、別の微孔質結晶アルミノホスフエートすなわ
ちAlPO4−31の熱水合成でテンプレート剤として
用いられてきたことである。AlPO4−31の合成は
米国特許第4385994号(1983年5月31日付公示)
に記されている。しかしながら、その合成では、
ジ−n−プロピルアミンが反応混合物中かなり低
濃度すなわちアルミナ1モル当り1モルで存在
し、而して該反応混合物に酸は何ら加えられなか
つた。入手しうるデータから晶出過程に影響を与
えるべくあらかじめ調製したAlPO4−39の種結晶
をも反応混合物に存在させる限りジ−n−プロピ
ルアミンテンプレート剤の使用量を少くし或るい
は皆無にしたとしても、AlPO4−39は適宜合成さ
れうるように思われる。 本発明の、合成したままのテンプレート含有
AlPO4−39は、酸化物のモル比で表わされる化学
組成が Al2O3:1.0±0.2P2O5 である基本骨格構造を有し、且つ少くとも下記表
に掲載のd−間隔を有する特徴的なX線粉末回
折図形を示す:
FIELD OF THE INVENTION This invention relates generally to crystalline aluminophosphate compositions, and more particularly to novel crystalline aluminophosphates of the molecular sieve type and methods of making the same. Background of the Invention It has an open skeletal structure in which tetrahedral units of AlO 2 and PO 2 are bonded by sharing corner oxygen atoms, and is characterized by having uniform pore sizes. Microporous crystalline aluminophosphates have been reported in many publications, especially in ST.
No. 4,310,440 to Wilson et al., published July 7, 1980. Wilson et al.'s aluminophosphates constitute a general class of non-zeolitic molecular sieve materials that are capable of complete and reversible dehydration in either anhydrous or hydrated states while retaining the same basic skeletal morphology. ing. Term "basic skeletal morphology"
Or as "basic framework" is used in the above US patents and herein, it means the spatial arrangement of the principal Al-O and P-O bonds. Also,
Other microporous aluminophosphates which undergo reversible or irreversible structural rearrangement upon partial or complete dehydration, such as the minerals varisiaite and metavarisiaite and F. D'yvoire.
Certain synthetic metastable aluminophosphates are known, reported by [Bull. Soc. Chim. France. 1762 (1961)]. A different type of synthetic crystal composition, in addition to AlO 2 and PO 2 tetrahedra, manganese,
Compositions containing skeletal tetrahedral metal oxides of magnesium, cobalt and/or zinc filed for U.S. patent
No. 514334 (filed on July 15, 1983). Summary of the Invention The present invention consists of a novel microporous crystalline aluminophosphate (hereinafter referred to as AlPO 4 -39) and a method for producing the same. AlPO 4 -39 has a basic skeletal structure whose chemical composition expressed by the molar ratio of oxides is Al 2 O 3 :1.0±0.2P 2 O 5 and has at least the d-spacing shown in the table below. An X-ray powder diffraction pattern including the following is shown. AlPO 3 -39 is produced by hydrothermal crystallization from a reaction mixture containing, in addition to water, a reactive source of aluminum and phosphorus and an organic templating agent, preferably an alkylamine, most preferably di-n-propylamine. can do. DETAILED DESCRIPTION OF THE INVENTION The novel microporous aluminophosphates of the present invention are capable of absorbing heat from a reaction mixture containing a reactive source of phosphorus and aluminum and an organic templating agent, preferably di-n-propylamine (Pr 2 NH). It can be produced by crystallization. This manufacturing process typically uses an oxide molar ratio of Al 2 O 3 :1±0.5 R 2 O 5 :7 to 100 H 2 O and at least about 1.5 moles of dihydroxide per mole of Al 2 O 3 . - forming a reaction mixture comprising n-propylamine. The reaction mixture is placed in a reaction vessel that is inert to the mixture and kept at a temperature of at least about 100°C, preferably from 100 to 300°C, for usually 2 hours to 2 weeks until crystallization.
heated at a temperature of The solid crystalline reaction product is then recovered by any convenient method such as filtration or centrifugation and dried in air at temperatures from ambient to about 110°C. A preferred crystallization method includes phosphoric acid as the phosphorus source, pseudo-boehmite hydrated aluminum oxide as the aluminum source, a temperature of 150-200°C, a crystallization time of 3-7 days, and an inorganic oxide in the reaction mixture. The ratio is Al2O3 : 0.8-1.2P2O5 : 25-75H2O . A preferred templating agent is di-n-propylamine, present in an amount of about 1.5 to 2.0 moles per mole of alumina in the reaction mixture. Also, because of the relatively high concentration of basic amines, about 0.25 to 1.5 mole, preferably 0.5 to 1.0 mole, of an organic or mineral acid, such as acetic acid or hydrochloric acid, is present. Generally speaking, the stronger the acid, the lower its preferred concentration within the above range in the reaction mixture. In a preferred crystallization procedure, acetic acid is present in an amount of about 1 mole per mole of alumina and di-n-propylamine is present in an amount of about 2.0 moles per mole of alumina. Of note, di-n-propylamine has previously been used as a templating agent in the hydrothermal synthesis of another microporous crystalline aluminophosphate, AlPO 4 -31. The synthesis of AlPO 4 -31 is disclosed in US Pat. No. 4,385,994 (published on May 31, 1983).
It is written in However, in the synthesis,
Di-n-propylamine was present in the reaction mixture at a fairly low concentration, ie, 1 mole per mole of alumina, and no acid was added to the reaction mixture. From the available data, the amount of di-n-propylamine templating agent used can be reduced or eliminated, as long as pre-prepared AlPO 4 -39 seed crystals are also present in the reaction mixture to influence the crystallization process. Even so, it appears that AlPO 4 -39 can be synthesized appropriately. Containing as-synthesized templates of the present invention
AlPO 4 -39 has a basic skeletal structure whose chemical composition expressed by the molar ratio of oxides is Al 2 O 3 :1.0±0.2P 2 O 5 and at least the d-spacing listed in the table below. Shows a characteristic X-ray powder diffraction pattern with:

【表】【table】

【表】 これまでにX線粉末回折データが得られている
合成したままの形の全てのAlPO4−39は下記表
の概活パターン内の図形を示す:
[Table] All of the as-synthesized forms of AlPO 4 -39 for which X-ray powder diffraction data have been obtained show the shapes within the general activity pattern in the table below:

【表】 合成したままのAlPO4−39組成物を焼成すなわ
ち、典型的には約300℃〜700℃範囲の十分に高い
温度で加熱するか或いは化学酸化の如き別法で処
理して、結晶内部気孔系内に存在する有機テンプ
レート剤を本質上全て除去するとき、本組成物
は、少くとも下記表Aに掲載のd−間隔を有する
X線粉末回折図形を示す:
[Table] The as-synthesized AlPO 4 -39 composition can be calcined, that is, heated to a sufficiently high temperature, typically in the range of about 300°C to 700°C, or treated by other methods such as chemical oxidation to form crystals. When essentially all of the organic templating agent present within the internal pore system is removed, the composition exhibits an X-ray powder diffraction pattern having at least the d-spacing listed in Table A below:

【表】【table】

【表】 上記のX線図形および後記X線図形の全ては、
標準X線粉末回折技法を用いるか或いは、ニユー
ジヤージー州チエリーヒル所在のシーメンス社よ
り入手しうるシーメンスD−500X線粉末回折計
器を用いたコンピユーターをベースとする技法を
用いることによつて得られる。標準X線技法を用
いる場合、放射線源は、50KV、49mAで作動さ
れる高強度銅ターゲツトX線管である。銅K−α
放射線およびグラフアイトモノクロメータからの
回折図形は、X線分光計、シンチレーシヨン計数
器、波高分析器およびストリツプチヤート記録計
により記録される。 平らな圧縮粉末試料を2度(2シータ)/min
でスキヤニングし、その際2秒の一定時間を用い
た。平面間の間隔(d)(Å単位)は、2〓(シータ)
で表わされる回折ピーク〔θはブラツグ
(Bragg)角であるストリツプチヤート上で観察
される〕の位置から得られる。強度は、バツクグ
ラウンドを減じたあとの回折ピーク高さから決定
した。「Io」は、より強いライン若しくはピーク
の強度であり、「I」は、他のピークの各々の強
度である。 当業者により理解される如く、パラメーター2〓
の決定は、使用技法とは無関係にヒトおよび機械
双方による誤差をこうむりやすく、而してこれら
両誤差のため2〓の各報告値に約0.4°の不確実さが
課されうる。無論、この不確実さは、2〓値より算
定されるd−間隔の報告値でも示される。かかる
不正確は概ね技術全般にわたるもので、従来技術
組成物からの本発明結晶物質の変異を排除するの
に十分でない。掲載したいくつかのX線図形にお
いて、夫々、「非常に強い」、「強い」、「中位」お
よび「弱い」を表わす記号VS、S、MおよびW
により、d−間隔の相対強度が示されている。 AlPO4−39は、これを種々の炭化水素転化およ
び酸化燃焼プロセスで触媒又は触媒担体として有
用なものとする表面特性値を有する。而して、
AlPO4−39は、例えば骨格置換、含浸、ドーピン
グ等により、或るいは触媒組成物の製造業界で慣
例的に用いられている方法により触媒上活性な金
属と結合せしめられうる。 なお、AlPO4−39は、約4.3Å未満の気孔寸法
を有し、それによつて分子種の分離用モレキユラ
ーシーブとしての使用に適したものとなつてい
る。 下記例は、本発明を非制限的に例示する: 例 1 Al2O375.1重量%とH2O24.9重量%とからなる
擬似ベーマイト相水和アルミニウム酸化物27.2g
に85重量%の正りん酸(H3PO4)46.2とH2O46.2
gを混合することによりAlPO4−39を製造した。
得られた混合物を、均質物が観察されるまでかき
混ぜた。次いで、この混合物に氷酢酸
(CH3COOH)12.1gを混ぜ、均質になるまで撹
拌した。この混合物にジ−n−プロピルアミン
(n−Pr2NH)40.5gを加え、得られた混合物を
均質になるまで再度かき混ぜた。反応混合物の酸
化物モル比組成は次の如くであつた: 2.0n−Pr2NH:Al2O3:P2O5:CH3COOH:
40H2O 反応混合物を、ポリテトラフルオロエチレンで
ライニングしたステンレス鋼製圧力容器内に封入
し、自生圧力下150℃の炉内で168時間加熱した。
固体反応生成物を遠心処理で回収し、水で洗浄
し、大気中周囲温度で乾燥した。 固体反応生物の一部分を化学分析し、下記結果
を得た: 重量% 炭 素 8.0 窒 素 1.5 Al2O3 33.2 P2O5 45.9 強熱減量 21.6 この分析結果は、下記酸化物モル比の生成物組
成に相当する: 0.16n−Pr2NH:Al2O3:P2O5:0.9H2O 該固体反応生成物は少量の不純物を含んだが、
主要相は、下記データにより特徴づけられるX線
粉末回折図形を示した:
[Table] All of the above X-ray figures and the following X-ray figures are
It can be obtained using standard X-ray powder diffraction techniques or by using computer-based techniques using a Siemens D-500 X-ray powder diffraction instrument available from Siemens Corporation of Cheery Hill, New Jersey. Using standard x-ray techniques, the radiation source is a high intensity copper target x-ray tube operated at 50 KV, 49 mA. Copper K-α
The radiation and diffraction patterns from the graphite monochromator are recorded by an X-ray spectrometer, scintillation counter, pulse height analyzer and strip chart recorder. Flat compressed powder sample 2 degrees (2 theta)/min
Scanning was performed using a constant time of 2 seconds. The distance between planes (d) (in Å) is 2〓 (theta)
The diffraction peak is obtained from the position of the diffraction peak observed on the striptchaat, where θ is the Bragg angle. Intensity was determined from the height of the diffraction peak after background subtraction. "Io" is the intensity of the stronger line or peak and "I" is the intensity of each of the other peaks. As understood by those skilled in the art, parameter 2〓
The determination of is subject to both human and machine error, independent of the technique used, and both these errors can impose an uncertainty of approximately 0.4° on each reported value of 2〓. Of course, this uncertainty is also reflected in the reported value of the d-spacing calculated from the 2〓 value. Such inaccuracies are generally art-wide and are not sufficient to exclude variations of the crystalline material of the present invention from prior art compositions. In some of the X-ray diagrams posted, the symbols VS, S, M, and W represent "very strong,""strong,""moderate," and "weak," respectively.
shows the relative strength of the d-spacing. AlPO4-39 has surface properties that make it useful as a catalyst or catalyst support in a variety of hydrocarbon conversion and oxidative combustion processes. Then,
AlPO 4 -39 can be combined with the catalytically active metal, for example, by skeletal substitution, impregnation, doping, etc., or by methods conventionally used in the industry for the production of catalyst compositions. It should be noted that AlPO 4 -39 has a pore size of less than about 4.3 Å, making it suitable for use as a molecular sieve for the separation of molecular species. The following examples illustrate the invention in a non-limiting manner: Example 1 27.2 g of pseudo-boehmite phase hydrated aluminum oxide consisting of 75.1% by weight of Al 2 O 3 and 4.9% by weight of H 2 O
85% by weight of orthophosphoric acid (H 3 PO 4 ) 46.2 and H 2 O 46.2
AlPO 4 -39 was produced by mixing g.
The resulting mixture was stirred until a homogeneity was observed. This mixture was then mixed with 12.1 g of glacial acetic acid (CH 3 COOH) and stirred until homogeneous. 40.5 g of di-n-propylamine (n- Pr2NH ) was added to this mixture and the resulting mixture was stirred again until homogeneous. The oxide molar ratio composition of the reaction mixture was as follows: 2.0n- Pr2NH : Al2O3 : P2O5 : CH3COOH :
The 40H 2 O reaction mixture was sealed in a polytetrafluoroethylene lined stainless steel pressure vessel and heated in a furnace at 150° C. under autogenous pressure for 168 hours.
The solid reaction product was collected by centrifugation, washed with water, and dried in air at ambient temperature. A portion of the solid reactant was chemically analyzed and the following results were obtained: wt% Carbon 8.0 Nitrogen 1.5 Al 2 O 3 33.2 P 2 O 5 45.9 Loss on ignition 21.6 The solid reaction product contained a small amount of impurities , but the solid reaction product contained a small amount of impurities.
The main phase exhibited an X-ray powder diffraction pattern characterized by the following data:

【表】【table】

【表】 例 2 (a) 結晶化時間を48時間としたほかは例1の如く
AlPO4−39を製造した。 得られた固体反応生成物を遠心処理により回
収し、水で洗浄し、大気中周囲温度で乾燥し
た。該固体反応生成物は、下記データにより特
徴づけられるX線粉末回折図形を示した:
[Table] Example 2 (a) Same as Example 1 except that the crystallization time was 48 hours.
AlPO4-39 was produced. The resulting solid reaction product was collected by centrifugation, washed with water, and dried in air at ambient temperature. The solid reaction product exhibited an X-ray powder diffraction pattern characterized by the following data:

【表】 (b) 反応生成物の一部分を大気中約600℃で4.75
時間焼成した。焼成物は、下記表Cに掲載のX
線粉末回折図形を示した:
[Table] (b) A portion of the reaction product is 4.75 at about 600℃ in the atmosphere.
Baked for an hour. The fired product is X listed in Table C below.
The line powder diffraction pattern was shown:

【表】 (c) AlPO4−39〔上記(b)で製造〕に関する吸着容
量は、標準マクベイン・バクア(Mc Bain−
Bakr)重量吸着装置を使つて測定した。下記
データは、350℃で賦活した上記(b)の焼成試料
に関して得たものである:
[Table] (c) The adsorption capacity for AlPO 4 -39 [produced in (b) above] is the standard Mc Bain-Baqua (Mc Bain-
Bakr) was measured using a gravimetric adsorption device. The following data were obtained for the calcined sample of (b) above activated at 350°C:

【表】 上記データから、焼成物の気孔寸法が、酸素
(動直径3.46A)吸着によつて示されるように
約3.46Aより大きく且つn−ブタン(動直径
4.3A)無吸着によつて示されるように約4.3Å
より小さいと決定された。 (d) 上記(c)でマクベイン・バクア重量吸着測定に
用いた同じ試料を、X線粉末回折図形を調べる
べく分析した結果、上記表Cに掲載のX線図形
により特徴づけられるとわかつた。
[Table] From the above data, the pore size of the fired product is larger than about 3.46A as shown by oxygen (dynamic diameter 3.46A) adsorption and n-butane (dynamic diameter 3.46A).
4.3A) approximately 4.3Å as shown by non-adsorption
determined to be smaller. (d) The same sample used in the McBain-Bacqua gravimetric adsorption measurement in (c) above was analyzed for its X-ray powder diffraction pattern and was found to be characterized by the X-ray pattern listed in Table C above.

Claims (1)

【特許請求の範囲】 1 酸化物のモル比で表わされる化学組成が Al2O3:1.0±0.2P2O5 である基本骨格構造を有し且つ、少なくとも下記
d−間隔d(A) 相対強度 9.32〜9.29 S 6.58 M 4.81〜4.79 M 4.17〜4.16 VS 3.88〜3.89 VS 2.95〜2.96 M を含む特徴的なX線粉末回折図形を有する微孔質
結晶アルミノホスフエート。 2 酸化物のモル比で表わされる化学組成が Al2O3:1.0±0.2P2O5 である基本骨格構造を有し且つ、少くとも下記d
−間隔d(A) 相対強度 9.32〜9.29 S 6.58 M 4.81〜4.79 M 4.17〜4.16 VS 3.88〜3.89 VS 2.95〜2.96 M を含む特徴的なX線粉末回折図形を有する微孔質
結晶アルミノホスフエートを少くとも300℃の温
度で〓焼することから生ずる微孔質結晶アルミノ
ホスフエート。 3 酸化物のモル比で表わされる化学組成が Al2O3:1.0±0.2P2O5 である基本骨格構造を有し且つ、少なくとも下記
d−間隔d(A) 相対強度 9.28 W〜M 6.53 VS 4.65〜4.76 W 4.14 W〜M 3.82〜3.93 W 3.06 W 3.02 W を含む特徴的なX線粉末回折図形を有する微孔質
結晶アミルノホスフエート。 4 酸化物のモル比で表わされる化学組成が Al2O3:1.0±0.2P2O5 である基本骨格構造を有し且つ、少くとも下記d
−間隔d(A) 相対強度 9.32〜9.29 S 6.58 M 4.81〜4.79 M 4.17〜4.16 VS 3.88〜3.89 VS 2.95〜2.96 M を含む特徴的なX線粉末回折図形を有する微孔質
結晶アルミノホスフエートの製造方法であつて、
酸化物モル比で表わされる下記組成 Al2O3:1.0±0.5P2O5:7〜100H2O を有し且つ、Al2O31モル当り約1.5〜2モルのジ
−n−プロピルアミンおよびAl2O31モル当り約
0.25〜1.5モルの有機酸若しくは鉱酸を含む反応
混合物を形成し、かくして形成された反応混合物
を、前記アルミノホスフエートの結晶が生成する
まで自生圧力下少くとも100℃の温度で加熱する
ことよりなる、方法。 5 反応混合物中に存在する酸を酢酸とし、ジ−
n−プロピルアミンをAl2O31モル当り約2モル
量で存在させる、特許請求の範囲第4項記載の方
法。
[Scope of Claims] 1. Has a basic skeletal structure whose chemical composition expressed as a molar ratio of oxides is Al 2 O 3 :1.0±0.2P 2 O 5 , and has at least the following d-spacing d(A) relative A microporous crystalline aluminophosphate with a characteristic X-ray powder diffraction pattern comprising an intensity of 9.32-9.29 S 6.58 M 4.81-4.79 M 4.17-4.16 VS 3.88-3.89 VS 2.95-2.96 M. 2. It has a basic skeleton structure whose chemical composition expressed as a molar ratio of oxides is Al 2 O 3 :1.0±0.2P 2 O 5 and at least the following d
- a microporous crystalline aluminophosphate with a characteristic X-ray powder diffraction pattern containing a relative intensity of 9.32-9.29 S 6.58 M 4.81-4.79 M 4.17-4.16 VS 3.88-3.89 VS 2.95-2.96 M Microporous crystalline aluminophosphate resulting from calcination at temperatures of at least 300°C. 3. It has a basic skeleton structure whose chemical composition expressed by the molar ratio of oxides is Al2O3 :1.0± 0.2P2O5 , and at least the following d-spacing d( A ) relative strength 9.28 W to M 6.53 A microporous crystalline amylnophosphate having a characteristic X-ray powder diffraction pattern comprising VS 4.65-4.76 W 4.14 W-M 3.82-3.93 W 3.06 W 3.02 W. 4 Has a basic skeletal structure whose chemical composition expressed as a molar ratio of oxides is Al 2 O 3 : 1.0±0.2P 2 O 5 and at least the following d
- spacing d(A) of a microporous crystalline aluminophosphate with a characteristic X-ray powder diffraction pattern containing a relative intensity of 9.32-9.29 S 6.58 M 4.81-4.79 M 4.17-4.16 VS 3.88-3.89 VS 2.95-2.96 M A manufacturing method,
It has the following composition expressed in oxide molar ratio: Al 2 O 3 : 1.0±0.5 P 2 O 5 : 7 to 100 H 2 O, and about 1.5 to 2 mol of di-n-propyl per 1 mol of Al 2 O 3 per mole of amine and Al 2 O 3 approx.
by forming a reaction mixture containing 0.25 to 1.5 moles of organic or mineral acid and heating the reaction mixture thus formed at a temperature of at least 100° C. under autogenous pressure until crystals of said aluminophosphate form. A method. 5 Let the acid present in the reaction mixture be acetic acid, di-
5. The method of claim 4, wherein n-propylamine is present in an amount of about 2 moles per mole of Al2O3 .
JP29684786A 1986-12-15 1986-12-15 Crystalline aluminophosphate composition Granted JPH01126211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29684786A JPH01126211A (en) 1986-12-15 1986-12-15 Crystalline aluminophosphate composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29684786A JPH01126211A (en) 1986-12-15 1986-12-15 Crystalline aluminophosphate composition

Publications (2)

Publication Number Publication Date
JPH01126211A JPH01126211A (en) 1989-05-18
JPH0471003B2 true JPH0471003B2 (en) 1992-11-12

Family

ID=17838930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29684786A Granted JPH01126211A (en) 1986-12-15 1986-12-15 Crystalline aluminophosphate composition

Country Status (1)

Country Link
JP (1) JPH01126211A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970073723A (en) * 1996-05-17 1997-12-10 성기웅 Crystalline aluminophosphate molecular sieve composition having a novel structure and a process for producing the same

Also Published As

Publication number Publication date
JPH01126211A (en) 1989-05-18

Similar Documents

Publication Publication Date Title
EP0121233B1 (en) Crystalline aluminophosphate compositions
JPH07277726A (en) Crystalline microporous solid composed of aluminophosphate substituted with metal and optionally silicon and belonging to fau structure type and its synthesis and application
RU2154022C2 (en) Crystalline metal phosphates and method of preparation thereof
JPS60239313A (en) Crystalline zirconium phosphate and its manufacture
CN111099603A (en) SCM-18 molecular sieve and preparation method thereof
US4663139A (en) Crystalline AlPO4 -39
US4938937A (en) Crystalline aluminophosphate composition
US5232683A (en) Crystalline aluminophosphates and related compounds
EP0254075B1 (en) Crystalline aluminophosphate of the molecular-sieve type, and method for its preparation
JPH0471003B2 (en)
JPS59116120A (en) Ferrosilicate molecular sieve composition
EP0293919A2 (en) Solution synthesis of aluminophosphate crystalline compositions
US5013535A (en) Stabilized aluminophosphate compositions and process for preparing same
US5049366A (en) Crystalline aluminophosphates compositions
JP2890551B2 (en) Crystalline aluminophosphate and method for producing the same
US5035870A (en) Crystalline aluminophosphate compositions
US5045293A (en) Novel crystalline aluminophosphates and related compounds
Wilson et al. Crystalline AlPO 4-39
NO882468L (en) CRYSTALLIC ALUMINOPHOSPHATE PREPARATION.
JP4565377B2 (en) Metallophosphate type IM-6 crystalline solid and process for preparing it
JP2819572B2 (en) Crystalline aluminophosphate and method for producing the same
JPH03177309A (en) Novel crystalline aluminophosphate and related compound
CN111099634B (en) SCM-21 metal phosphoaluminate and preparation method thereof
CN111099604B (en) SCM-26 aluminophosphate and preparation method thereof
CN111099633B (en) SCM-22 molecular sieve and its synthesis method