JPH0470933B2 - - Google Patents

Info

Publication number
JPH0470933B2
JPH0470933B2 JP58058019A JP5801983A JPH0470933B2 JP H0470933 B2 JPH0470933 B2 JP H0470933B2 JP 58058019 A JP58058019 A JP 58058019A JP 5801983 A JP5801983 A JP 5801983A JP H0470933 B2 JPH0470933 B2 JP H0470933B2
Authority
JP
Japan
Prior art keywords
membrane
filtration
liquid
filtered
filtrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58058019A
Other languages
Japanese (ja)
Other versions
JPS59183807A (en
Inventor
Hiroshi Sayamichi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP5801983A priority Critical patent/JPS59183807A/en
Publication of JPS59183807A publication Critical patent/JPS59183807A/en
Publication of JPH0470933B2 publication Critical patent/JPH0470933B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 本発明は膜ろ過法によつて液体をろ過する方法に
関する。更に詳しくは、逆浸透膜、限外ろ過膜な
どを用いて液体をろ過するにあたり、ろ過中に発
生する膜の破れや原液側とろ過液側を隔てるシー
ル部分のもれなど(以下“膜破れ等”と言う。)
を、膜の2次側の液の特性の変動を検出して検知
し、該検出の信号によつてろ過膜への通液を停止
または切り換えることにより、ろ過液が汚染する
ことなくろ過する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for filtering liquids by membrane filtration. In more detail, when filtering liquids using reverse osmosis membranes, ultrafiltration membranes, etc., membrane tears that occur during filtration and leaks in the seal separating the raw solution side and the filtrate side (hereinafter referred to as "membrane tears") etc.)
A method of filtering the filtrate without contaminating the filtrate by detecting changes in the characteristics of the liquid on the secondary side of the membrane and stopping or switching the flow of liquid to the filtration membrane based on the detection signal. Regarding.

近時膜の研究が進み、工業的に応用可能な膜が
大量に生産できるようになつた。又、膜によれば
その膜の孔径に応じた精製度を得ることが出来、
従来の例えばプレコートフイルターなどでは到底
達成出来ない高精度のレベルまで達成可能となつ
た。
In recent years, research on membranes has progressed, and it has become possible to mass-produce membranes that can be used industrially. In addition, with membranes, it is possible to obtain a degree of purification according to the pore size of the membrane,
It has become possible to achieve a level of precision that could never be achieved with conventional methods such as pre-coated filters.

その結果、半導体生産の分野や医薬品製造の分
野に用いる製造用水の精製に膜の応用分野が見出
された。
As a result, an application field for membranes was found in the purification of manufacturing water used in the fields of semiconductor production and pharmaceutical manufacturing.

半導体生産の分野では膜法による大量の洗浄水
なしでは到底LSIの集積度を上げることは出来な
かつたであろう。
In the field of semiconductor production, it would have been impossible to increase the degree of integration of LSIs without the use of large amounts of cleaning water using the membrane method.

医薬品製造の分野では従来の蒸溜水に変わつ
て、安価且つ大量に使用され生産のGMP化へ大
きく寄与している。
In the field of pharmaceutical manufacturing, it is used cheaply and in large quantities as an alternative to conventional distilled water, making a major contribution to the GMP standardization of production.

適切な条件下で用いられる膜ろ過法は、多くの
文献にもあるように (1) 従来の方法では得られなかつた非常に精密な
ろ過ができる。
As stated in many literatures, membrane filtration methods used under appropriate conditions (1) can achieve extremely precise filtration that cannot be achieved with conventional methods;

(2) 操作が非常に簡単であり、高度の運転技術を
必要としない。
(2) It is very easy to operate and does not require advanced driving skills.

(3) パイプライン等の閉鎖系で使用されるために
外部からの汚染がない。
(3) Since it is used in a closed system such as a pipeline, there is no contamination from the outside.

(4) 単純に圧力のみを利用する操作であり、相変
化を伴わないのでエネルギーが節約出来る。
(4) It is an operation that simply uses pressure and does not involve a phase change, so energy can be saved.

(5) 濃縮液の連続的な排出により、連続的に目詰
まりなく運転出来る。
(5) Continuous discharge of concentrated liquid allows continuous operation without clogging.

等の特徴を有する。It has the following characteristics.

通常、膜によるろ過の態様としては、膜法以外
の例えばサンドフイルターやフイルタープレスに
見られるような、原液を全量ろ層の中を通過さ
せ、ろ滓をろ層の中に残すいわゆる「全量ろ過」
の方法をとることは比較的少なく、原液を原液タ
ンクからポンプにより膜表面の一端部に送り、膜
表面に沿つて流し、膜表面の他端部から濃縮液と
して原液タンクへ戻し、原液が膜表面に接してい
る間だけろ過を行う循環ろ過法、又は循環ろ過に
おいて濃縮液の一部又は全部をろ過系外へ取り出
す部分ろ過法が行われる。このような膜独特のろ
過方法により、膜の非常に小さい孔径にもかかわ
らず、取扱の容易なろ過単位操作として定着する
にいたつた。
Normally, membrane filtration is performed using methods other than the membrane method, such as those found in sand filters and filter presses, in which all of the stock solution is passed through a filter layer, and the filtrate is left in the filter layer. ”
This method is relatively rare; the stock solution is pumped from the stock solution tank to one end of the membrane surface, allowed to flow along the membrane surface, and then returned to the stock solution tank as a concentrated solution from the other end of the membrane surface. A circulating filtration method in which filtration is performed only while in contact with the surface, or a partial filtration method in which part or all of the concentrated liquid is taken out of the filtration system in circulating filtration is performed. Due to this unique filtration method of the membrane, it has become established as an easy-to-handle filtration unit operation despite the membrane's extremely small pore size.

しかしながら膜の最大の欠点は、膜の1次側と
2次側が極めて薄い膜1枚で隔てられ、また膜を
支えるシール部分も膜が薄いために極めてデリケ
ートな構造にならざるを得ない事である。
However, the biggest disadvantage of membranes is that the primary and secondary sides of the membrane are separated by a single extremely thin membrane, and the seal that supports the membrane has to have an extremely delicate structure due to the thinness of the membrane. be.

その結果以下のような不安な点を生ずる。 As a result, the following concerns arise.

(1) 膜やシール部分が圧力、温度等の物理的な影
響或いは処理液や洗浄液の化学的影響により、
総合的に徐々に老化して来るためピンホールが
出来る。
(1) Membranes and seals may be damaged due to physical effects such as pressure and temperature, or chemical effects of processing liquids and cleaning liquids.
Pinholes appear because the skin gradually ages overall.

(2) 製膜の段階で滞在していた弱い部分が運転の
シヨツクにより破損する。
(2) The weak parts that remained during the film forming stage are damaged by the shock of operation.

このような事故は、突然または徐々に発生し
て、その時期を予め予想することは極めて難し
い。そして徐々に発生した場合はろ過の効果をす
こしずつ悪くし、気がついた時にはすでに大量の
品質の悪い製品を作り出してしまつている場合が
あつた。事故が突然発生する場合はあきらかに不
良品を作り、生産量の不足や生産コストの上昇を
招く可能性を持つている。
Such accidents occur suddenly or gradually, and it is extremely difficult to predict their timing in advance. If the problem occurs gradually, the filtration effect gradually deteriorates, and by the time the problem is noticed, a large amount of poor quality product has already been produced. If an accident occurs suddenly, there is a possibility that clearly defective products will be produced, leading to a shortage in production volume and an increase in production costs.

膜を採用する者にとつては前述の事故の可能性
は非常に心配な事であつた。
For those employing membranes, the possibility of the aforementioned accidents was of great concern.

これらの問題点に対する従来の対応策は、膜の
寿命を短めに推定して、早目早目に膜の交換を行
うことであつたが、十分に実績の出来る数年間は
トラブルの心配が絶えなかつた。又、高度の安全
性を要求する場合は膜法の採用を躊躇せざるを得
ない場合もあつた。
The conventional solution to these problems was to estimate the membrane lifespan rather short and replace the membrane as soon as possible, but there was no need to worry about troubles for several years when there was a sufficient track record. Nakatsuta. Furthermore, in cases where a high degree of safety is required, there are cases in which it is necessary to hesitate in adopting the membrane method.

発明者は以上のような不安を解消し、膜ろ過技
術の信用を高めるために、これまでも鋭意研究を
重ねてきた。
The inventor has been conducting extensive research in order to resolve the above concerns and increase credibility of membrane filtration technology.

即ち、膜破れ等を検出する為に原液中にトレー
サーを混入し、微量漏れだしてくるトレーサーを
磁気により濃縮して検出する方法である特開昭56
−44817号「隔壁のピンホール検出法」を提案し
た。然しこの方法は検出容易なトレーサーを用い
るだけに応用は易いが、もともと原液には含まれ
ない成分を混入するだけに、トレーサーがろ過液
に混入した場合の悪影響或いはトレーサーと液と
の化学的物理的親和性等、解決すべき問題も多く
必ずしも一般的に用いることはできなかつた。
In other words, in order to detect membrane breaks, etc., a tracer is mixed into the stock solution, and the tracer that leaks out in small amounts is concentrated and detected using magnetism.
-Proposed No. 44817 "Method for detecting pinholes in partition walls". However, although this method is easy to apply because it uses a tracer that is easy to detect, since it mixes components that are not originally included in the original solution, there may be adverse effects if the tracer mixes with the filtrate or the chemical physics between the tracer and the solution. There were many problems that needed to be solved, such as compatibility with other people, and it was not necessarily possible to use it generally.

そこでなお引続き、適切なトレーサーとその検
出方法を検討するうちに図らずも本発明に到達し
た。即ち本発明は、膜ろ過法による液体のろ過に
おいて、ほぼ同じ特性を持つ逆浸透膜あるいは限
外ろ過膜のいずれかから成る第1膜および第2膜
を直列に配置し、第1膜は循環ろ過、部分ろ過又
は全量ろ過の方法により、第2膜は全量ろ過の方
法により、両膜を遂次ろ過通過させ、両膜の中間
の液対と第2膜通過後の液体の特性の差を検出す
ることにより、第1膜の破れを検知し、該検出信
号によりろ過を停止または他のろ過装置へ切換え
ることを特徴とする膜ろ過方法であつて、通常の
膜ろ過装置(第1膜)によりろ過されたろ過液の
全部または一部を第1膜とほぼ同等の孔径を持つ
第2の膜により全量ろ過濃縮し、第2膜の1次側
の液と2次側の液との特性の差を検出することに
より、第1膜の膜破れ等を検知するものである。
Therefore, while continuing to study appropriate tracers and methods for detecting them, we unexpectedly arrived at the present invention. That is, in the filtration of liquid by the membrane filtration method, the present invention arranges in series a first membrane and a second membrane consisting of either a reverse osmosis membrane or an ultrafiltration membrane having almost the same characteristics, and the first membrane is used for circulation. Using filtration, partial filtration, or total filtration, the second membrane is passed through both membranes sequentially by total filtration, and the difference in characteristics between the liquid pair between the two membranes and the liquid after passing through the second membrane is evaluated. A membrane filtration method characterized by detecting a break in the first membrane and stopping filtration or switching to another filtration device based on the detection signal, which is a normal membrane filtration device (first membrane). All or a part of the filtrate is filtered and concentrated through a second membrane having a pore size approximately equal to that of the first membrane, and the characteristics of the liquid on the primary side and the liquid on the secondary side of the second membrane are determined. By detecting the difference between the two, it is possible to detect a break in the first film.

第2膜の1次側と2次側の特性の差の検出に
は、原液の中に含まれる被ろ過物の性質と量によ
り適当な特性を選定できるが、濁度、圧力、微粒
子数、電気伝導度、エンドトキシン濃度等の特性
が便利に使用できる。
To detect the difference in characteristics between the primary and secondary sides of the second membrane, appropriate characteristics can be selected depending on the nature and amount of the substance to be filtered contained in the stock solution. Properties such as electrical conductivity and endotoxin concentration can be conveniently used.

本発明は、第1膜が完全である間は第2膜によ
り除去されるべき負荷が無いので、第2膜の1次
側と2次側との前記特性の差は殆ど一定の値を示
し、変動が少ない。若し第1膜に膜破れなどがで
きて被ろ過物が漏れ始めた場合は、第2膜を全量
ろ過濃縮型に設置しているので、第2膜の表面で
直ちに濃縮され圧力上昇や濃縮による濁度、微粒
子数やエンドトキシン濃度等の上昇が始まる。故
にこれらの特性を連続的或いは定期的に測定し記
録し管理することにより本発明の目的を達成出来
る。
In the present invention, since there is no load to be removed by the second film while the first film is intact, the difference in the characteristics between the primary side and the secondary side of the second film exhibits an almost constant value. , less fluctuation. If the first membrane is torn or the like and the filtered material begins to leak, the second membrane is installed in a total filtration and concentration type, so it will be immediately concentrated on the surface of the second membrane, preventing pressure rise and concentration. turbidity, the number of fine particles, endotoxin concentration, etc. begin to increase. Therefore, the object of the present invention can be achieved by measuring, recording, and managing these characteristics continuously or periodically.

本発明を実施しない場合は、例えば非常に小さ
いピンホール1個より流出してくる被ろ過物は極
めて微量であり、正常にろ過されてくる大量のろ
過液に薄められて到底分析可能な濃度ではない。
If the present invention is not carried out, for example, the amount of material to be filtered that flows out from a single very small pinhole will be extremely small, and will be diluted in a large amount of filtrate that is normally filtered, so that it will not reach a concentration that can be analyzed. do not have.

これに反して本発明を実施すると、被ろ過物の
漏れだしがまだ極めて僅かである場合でも第2膜
の表面に確実に補足され、濃縮される上、測定の
比較に用いられる第2膜のろ過液は2度のろ過工
程を経ているので完全に被ろ過物が除かれている
ため、その差の増加を検出することははるかに容
易である。
On the other hand, when the present invention is implemented, even if the leakage of the material to be filtered is extremely small, it is reliably captured and concentrated on the surface of the second membrane, and the second membrane used for comparison of measurements is Since the filtrate has undergone two filtration steps, the substances to be filtered are completely removed, so it is much easier to detect an increase in the difference.

被ろ過物が膜面に蓄積して膜のろ過抵抗を増す
ような場合は、第2膜の1次側と2次側のぞれぞ
れに圧力計を取りつけ、またはその差圧を検出す
るような差圧計を取りつけ、膜面の目詰まりの増
加、即ち第1膜の漏れを監視することができる。
If the substances to be filtered accumulate on the membrane surface and increase the filtration resistance of the membrane, install pressure gauges on the primary and secondary sides of the second membrane, or detect the differential pressure. A differential pressure gauge such as the one described above can be attached to monitor the increase in clogging of the membrane surface, that is, the leakage of the first membrane.

被ろ過物が微粒子であり、濁度や微粒子数の計
測ができる場合はこれらの特性により本発明の目
的を達成できる。
If the object to be filtered is fine particles and the turbidity and number of fine particles can be measured, the object of the present invention can be achieved due to these characteristics.

被ろ過物がイオンである場合は電気伝導度や電
気抵抗の測定により本発明の目的を達成できる。
When the substance to be filtered is an ion, the object of the present invention can be achieved by measuring electrical conductivity or electrical resistance.

被ろ過物が極めて僅かである、例えば超純水の
ような場合には、上記のような計測方法では特性
の差を検出しにくいが、エンドトキシンの濃度の
測定を行うことにより本発明の目的を達成でき
る。
When the amount of material to be filtered is extremely small, such as ultrapure water, it is difficult to detect differences in characteristics using the measurement method described above, but the purpose of the present invention can be achieved by measuring the concentration of endotoxin. It can be achieved.

本発明における重要な特色は、トレーサーに原
液の中にすでに含まれている被ろ過物を用いるこ
と、敢えてろ過膜を2段に設置しているためにあ
る意味で経済性を悪くしていること、第2膜には
通常のろ過常識を無視した全量濃縮の手段を用い
ているところにある。この技術思想は通常の膜ろ
過のそれとは正に逆転の思想であり、先人の思い
及ばなかつたところである。
The important features of the present invention are that the tracer uses a substance to be filtered that is already contained in the stock solution, and that the filtration membrane is deliberately installed in two stages, which in a sense makes it uneconomical. , the second membrane uses a means of total concentration that ignores common filtration principles. This technical concept is the exact opposite of that of ordinary membrane filtration, and was something that our predecessors had never thought of.

本発明を図面を用いて更に詳しく説明する。 The present invention will be explained in more detail using the drawings.

第1図は本発明によらない膜ろ過装置のフロー
シートの例である。フローシートの左側1より入
つた原液は循環タンク2から加圧ポンプ3により
加圧され膜モジユール4にはいる。ろ過液はパイ
プ6により次の工程へ送られ、膜面に沿つて膜面
を洗浄しながら流れた原液はろ過により濃縮液と
なつてパイプ5を通り循環タンク2へもどる。
FIG. 1 is an example of a flow sheet for a membrane filtration device not according to the present invention. The stock solution entering from the left side 1 of the flow sheet is pressurized from the circulation tank 2 by the pressure pump 3 and enters the membrane module 4. The filtrate is sent to the next step through a pipe 6, and the undiluted solution that flows along the membrane surface while washing the membrane surface becomes a concentrated solution through filtration and returns to the circulation tank 2 through the pipe 5.

第2図は本発明による膜ろ過装置のフローシー
トの例である。フローシートの左側11より入つ
た原液は循環タンク12から加圧ポンプ13によ
り加圧され第1膜モジユール14にはいる。濃縮
液はパイプ15を通つて循環タンク12へもど
り、ろ過液はパイプ16により第2膜モジユール
17へながれ、そこで循環されることなく全量ろ
過され、ろ過液はパイプ18により次の工程へ送
られる。
FIG. 2 is an example of a flow sheet for a membrane filtration device according to the present invention. The stock solution entering from the left side 11 of the flow sheet is pressurized by the pressurizing pump 13 from the circulation tank 12 and enters the first membrane module 14. The concentrated liquid returns to the circulation tank 12 through the pipe 15, and the filtrate flows through the pipe 16 to the second membrane module 17, where the entire amount is filtered without being circulated, and the filtrate is sent to the next process through the pipe 18. .

第2図では第一膜と第二膜を別々の場所に設置
するごとく描いであるが、平膜の場合のように膜
を2枚重ねることができる場合もある。
In Figure 2, the first membrane and the second membrane are depicted as being installed in separate locations, but in some cases, two membranes can be stacked one on top of the other, as in the case of flat membranes.

第3図は本発明による膜ろ過装置のフローシー
トの別の例である。第1膜のろ過液はパイプ16
において全量第2膜の流れず一部のみが第2膜へ
供給されている。しかし、第2膜からの循環戻り
パイプなく、第2膜へ供給された液は全量ろ過さ
れる。
FIG. 3 is another example of a flow sheet for a membrane filtration device according to the present invention. The filtrate of the first membrane is pipe 16
In this case, the entire amount of the second membrane does not flow, and only a portion is supplied to the second membrane. However, there is no circulation return pipe from the second membrane, and the liquid supplied to the second membrane is completely filtered.

第1膜の分画分子量(膜により阻止される最小
の粒子の大きさをその分子量で表現した孔径の表
現単位)は分離する不織物の大きさにより任意に
設定できる。
The molecular weight cutoff (the unit of expression of the pore size in which the size of the smallest particle blocked by the membrane is expressed by its molecular weight) of the first membrane can be arbitrarily set depending on the size of the nonwoven fabric to be separated.

第2膜の分画分子量が第1膜のそれよりも大き
い場合は第1膜の漏れのなかで粒度の大きいもの
のみしか検出出来ないので検出精度が悪い。
If the molecular weight cutoff of the second membrane is larger than that of the first membrane, only particles with large particle sizes can be detected among the leakage of the first membrane, resulting in poor detection accuracy.

第2膜の分画分子量が第1膜のそれよりも小さ
い場合は第1膜に漏れがなくても、第1膜を通過
してくる微粒子の第2膜上への蓄積が常に起こる
のでやはり検出精度をおとす。
If the molecular weight cut-off of the second membrane is smaller than that of the first membrane, even if there is no leakage in the first membrane, particulates passing through the first membrane will always accumulate on the second membrane. Decreases detection accuracy.

故に、第2膜の分画分子量は第1膜のそれと同
じか或いは第1膜の分画分子量は10分の1ないし
10倍の範囲のものが好ましい。
Therefore, the molecular weight cutoff of the second membrane is the same as that of the first membrane, or the molecular weight cutoff of the first membrane is 1/10 or less.
A range of 10 times is preferred.

第2膜は使用に先立つてバブルテストは勿論エ
ンドトキシンチヤレンジテスト等使用目的に応じ
た検出精度を持つことを確認しておく必要があ
る。また、第2膜には経済的な見地より長期間の
寿命を期待するよりも、つねに新しい老化してい
ないものを用い正確を期すべきである。
Before use, it is necessary to confirm that the second membrane has a detection accuracy suitable for the purpose of use, such as a bubble test or an endotoxin challenge test. Furthermore, from an economical point of view, rather than expecting a long service life for the second membrane, it is better to always use a new, unaged membrane and ensure accuracy.

第2膜の膜面積は、第2図に示すたようにろ過
液全部をろ過する場合と第3図に示したようにろ
過液の一部をろ過する場合の違いや、第2膜に許
される圧力低下の範囲によつて適宜選択すべきで
ある。
The membrane area of the second membrane depends on the difference between when all the filtrate is filtered as shown in Figure 2 and when a part of the filtrate is filtered as shown in Figure 3, and the allowance for the second membrane. It should be selected appropriately depending on the range of pressure drop to be achieved.

実施例 1 製薬用パイロジエンフリー水の製造装置を以下
のごとく組立てて実験を行つた。
Example 1 An apparatus for producing pyrogen-free water for pharmaceutical use was assembled as follows and an experiment was conducted.

第1膜;限外ろ過膜、膜面積9.4m2、分画分子
量6000のものを用いた。第2膜;第1膜と同じ膜
を同じ面積用いた。装置のフローシートは第2図
の通りとした。
First membrane: An ultrafiltration membrane with a membrane area of 9.4 m 2 and a molecular weight cut off of 6000 was used. Second film: The same film as the first film was used in the same area. The flow sheet of the device was as shown in Figure 2.

供給水にはイオン交換水をもちいた。運転条件
は1.5m3/Hrの負荷をとるように常に圧力調整を
行つた。
Ion-exchanged water was used as the supply water. The operating conditions were such that the pressure was constantly adjusted to maintain a load of 1.5 m 3 /Hr.

運転の成績の判定は第2図16の部分よりサン
プルをとり、リムラルテスト法すなわちプレゲル
R(帝国臓器製)によりエンドトキシンの有無の
測定によりおこなつた。成績を第4図に丸で示し
た。
The performance of the operation was determined by taking a sample from the area shown in FIG. 2, 16, and measuring the presence or absence of endotoxin using the rimural test method, ie, Pregel R (manufactured by Teikoku Kinki Co., Ltd.). The results are shown in circles in Figure 4.

図中−はエンドトキシンが認められなかつたこ
とを、±は明らかに認められなかつたことを、+は
明からに認められたことを、++は多量に認めら
れたことをそれぞれ表示する。
In the figure, - indicates that endotoxin was not observed, ± indicates that it was clearly not observed, + indicates that it was clearly observed, and ++ indicates that a large amount of endotoxin was observed.

10日目までは第1膜のエンドトキシン阻止能力
が不十分あつたので、エンドトキシン濃度の上昇
が認められなかつた。11日めに直径約0.7mmのピ
ンホールを1個積極的にあけ実験を続けた結果、
15日目の測定以降のエンドトキシンの濃縮が認め
られた。第4図にその結果をしめした。参考まで
に第1膜ろ過液の分析を15日目以降もおこなつた
がエンドトキシンの濃度は検出限外以下であり前
記ピンホールの効果を検出することはできなかつ
た。
Until the 10th day, the endotoxin blocking ability of the first membrane was insufficient, so no increase in endotoxin concentration was observed. As a result of continuing the experiment by actively drilling one pinhole with a diameter of approximately 0.7 mm on the 11th day,
Concentration of endotoxin was observed after measurement on day 15. Figure 4 shows the results. For reference, the first membrane filtrate was analyzed after the 15th day, but the endotoxin concentration was below the detection limit and the effect of the pinholes could not be detected.

実施例 2 第3図のフローに従つて第1膜に約10平方米の
限外ろ過膜を用い、第2膜に約0.2平方米の同様
の孔径の限外ろ過膜を用いた。ろ過原液には電着
塗料を用い、第2膜の前後での検出装置には濁度
をもちいた。
Example 2 According to the flow shown in FIG. 3, an ultrafiltration membrane with a size of about 10 square meters was used as the first membrane, and an ultrafiltration membrane with a similar pore size of about 0.2 square meters was used as the second membrane. Electrodeposition paint was used as the filtration stock solution, and turbidity was used as the detection device before and after the second membrane.

第1膜の漏れの検出には従来も濁度検知器を第
1膜のろ過液パイプの途中に設置していたが、本
発明の第2膜を用いたことにより従来の検出感度
よりもはるかに高感度で漏れを検出できることが
わかつた。
Conventionally, a turbidity detector was installed in the middle of the filtrate pipe of the first membrane to detect leakage from the first membrane, but by using the second membrane of the present invention, the detection sensitivity was much higher than that of the conventional one. It was found that leaks can be detected with high sensitivity.

以上実施例中で述べたように、本装置によれ
ば、実用的にはまだ十分に安全な段階で異常が検
出できる。検出精度については、第2段目膜のろ
過量とサンプル量のバランスを適当に選ぶことに
よつてどのようにも調整出来るので、極めて便利
且つ安全である。
As described above in the embodiments, according to the present device, an abnormality can be detected at a stage that is still sufficiently safe for practical use. The detection accuracy can be adjusted in any way by appropriately selecting the balance between the filtration amount of the second stage membrane and the sample amount, making it extremely convenient and safe.

本発明の実施例により、従来兎角信頼性に欠け
るとみられた膜ろ過法の欠点が改善されて、今後
おおいに工業的に応用されることが期待される。
It is expected that the embodiments of the present invention will improve the drawbacks of membrane filtration methods, which were considered to lack reliability in the past, and will be widely applied industrially in the future.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によらない膜ろ過装置のフロー
シートの例である。第2図は本発明による膜ろ過
装置のフローシートの例であり、第3図も本発明
による膜ろ過装置の他の例である。第4図は実施
例1における第2膜による濃縮液に対するリムラ
テストの結果を、運転日数に対応させて図示した
ものである。
FIG. 1 is an example of a flow sheet for a membrane filtration device not according to the present invention. FIG. 2 is an example of a flow sheet of a membrane filtration device according to the present invention, and FIG. 3 is also another example of a membrane filtration device according to the present invention. FIG. 4 shows the results of the Rimura test on the concentrated liquid using the second membrane in Example 1, in relation to the number of operating days.

Claims (1)

【特許請求の範囲】 1 膜ろ過法による液体のろ過において、ほぼ同
じ特性を持つ逆浸透膜あるいは限外ろ過膜のいず
れかからなる第1膜および第2膜を直列に配置
し、第1膜は循環ろ過、部分ろ過又は全量ろ過の
方法により、第2膜は全量ろ過の方法により、両
膜を遂次ろ過通過させ、両膜の中間の液体と第2
膜通過後の液体の特性の差を検出することによ
り、第1膜の破れを検知し、該検出信号によりろ
過を停止または他のろ過装置へ切換えることを特
徴とする膜ろ過方法。 2 液体の特性の差の検出手段が濁度、微粒子
数、圧力または電気伝導度のいずれかの測定によ
るものであることを特徴とする特許請求の範囲第
1項記載の膜ろ過方法。 3 液体の特性の差の検出手段がエンドトキシン
濃度の測定によるものであることを特徴とする特
許請求の範囲第1項記載の膜ろ過方法。
[Claims] 1. In liquid filtration by membrane filtration, a first membrane and a second membrane consisting of either a reverse osmosis membrane or an ultrafiltration membrane having substantially the same characteristics are arranged in series, and the first membrane The liquid is filtered through both membranes successively by circulation filtration, partial filtration, or total filtration, and the second membrane is filtered by total filtration.
A membrane filtration method characterized in that a break in the first membrane is detected by detecting a difference in the characteristics of the liquid after passing through the membrane, and filtration is stopped or switched to another filtration device based on the detection signal. 2. The membrane filtration method according to claim 1, wherein the means for detecting the difference in liquid properties is based on measurement of turbidity, number of particles, pressure, or electrical conductivity. 3. The membrane filtration method according to claim 1, wherein the means for detecting the difference in liquid properties is based on measurement of endotoxin concentration.
JP5801983A 1983-04-04 1983-04-04 Membrane filtration Granted JPS59183807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5801983A JPS59183807A (en) 1983-04-04 1983-04-04 Membrane filtration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5801983A JPS59183807A (en) 1983-04-04 1983-04-04 Membrane filtration

Publications (2)

Publication Number Publication Date
JPS59183807A JPS59183807A (en) 1984-10-19
JPH0470933B2 true JPH0470933B2 (en) 1992-11-12

Family

ID=13072247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5801983A Granted JPS59183807A (en) 1983-04-04 1983-04-04 Membrane filtration

Country Status (1)

Country Link
JP (1) JPS59183807A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976867A (en) * 1989-04-05 1990-12-11 Hoechst Celanese Corporation Systems and methods for predetermining maximum pressure differentials for microporous hollow fibers employed in liquid-liquid extractions
JPH0813353B2 (en) * 1990-05-16 1996-02-14 日立プラント建設株式会社 Pure water production equipment
JP5048239B2 (en) * 2005-11-22 2012-10-17 株式会社マーフィード Water purifier
JP6670206B2 (en) * 2016-08-24 2020-03-18 オルガノ株式会社 Ultrapure water production equipment
WO2024100713A1 (en) * 2022-11-07 2024-05-16 株式会社クボタ Monitoring device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS555713A (en) * 1978-06-28 1980-01-16 Iwai Kikai Kogyo Kk Filter unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS555713A (en) * 1978-06-28 1980-01-16 Iwai Kikai Kogyo Kk Filter unit

Also Published As

Publication number Publication date
JPS59183807A (en) 1984-10-19

Similar Documents

Publication Publication Date Title
EP1159058B1 (en) Method and apparatus for evaluating a membrane
Shirazi et al. Inorganic fouling of pressure-driven membrane processes—A critical review
KR101301457B1 (en) Method for testing separation modules
US8404119B2 (en) Method of membrane separation and membrane separation apparatus
JPH03110445A (en) Completeness testing method
Jönsson et al. Influence of the concentration of a low-molecular organic solute on the flux reduction of a polyethersulphone ultrafiltration membrane
JP4591703B2 (en) Liquid processing method and apparatus
Anderson Concentration of dilute industrial wastes by direct osmosis
JPH0470933B2 (en)
JPH08252440A (en) Method for detecting breakage of membrane and device therefor
JP2003299937A (en) Performance evaluation method for reverse osmosis membrane element
JP3401541B2 (en) Membrane separation device and its operation method
US20090066316A1 (en) Electrokinetic Method for Determining the Electrostatic Charge State of a Porous Membrane During Filtering and the Use Thereof
KR101766457B1 (en) Measuring apparatus for membrane fouling index
JP3560708B2 (en) Membrane separation device, its leak detection method and its operation method
JPH04142445A (en) Completeness testing method
JPH11165046A (en) Defect detecting method of hollow fiber membrane module
JP2007263942A (en) Method and apparatus for detecting membrane defect, and filtering device
JP3690818B2 (en) Membrane separator
JP2000279769A (en) Membrane failure detection, apparatus therefor and membrane separator
WO2023127810A1 (en) Diagnosis method for separation membrane module and deterioration diagnosis device for separation membrane module
JP2001343320A (en) Leakage inspecting method of separation membrane module
Koo et al. Experimental investigation on performance of fouling prediction devices for NF/RO system
KR20120044079A (en) Apparatus and method for detecting damage of filtration membrane using trans membrane pressure
CN115672046A (en) Method for detecting water filtration pollution index of ultrafiltration membrane and nanofiltration membrane