JPH0470662A - Siloxane polymer and resist composition - Google Patents

Siloxane polymer and resist composition

Info

Publication number
JPH0470662A
JPH0470662A JP2177255A JP17725590A JPH0470662A JP H0470662 A JPH0470662 A JP H0470662A JP 2177255 A JP2177255 A JP 2177255A JP 17725590 A JP17725590 A JP 17725590A JP H0470662 A JPH0470662 A JP H0470662A
Authority
JP
Japan
Prior art keywords
group
siloxane polymer
reaction
synthesis example
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2177255A
Other languages
Japanese (ja)
Inventor
Haruyori Tanaka
啓順 田中
Koji Ban
弘司 伴
Jiro Nakamura
二朗 中村
Takao Kimura
隆男 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2177255A priority Critical patent/JPH0470662A/en
Publication of JPH0470662A publication Critical patent/JPH0470662A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a higher glass transition temp. and to improve oxygen plasma resistance by protecting a part or the whole of the hydroxyl group of specific polysiloxane with an alkyl group, substd. alkyl group, arom. group or silyl group. CONSTITUTION:The chemical structure of a ladder type which adopts the siloxane bond as a skeletal structure and uses the multifunctional alkoxysilane as a raw material is adopted in such a manner and the hydroxyl group subjected to ring opening by the introduction of the oxysilane ring is protected by the suitable functional groups, by which alkaline development is enabled. The higher glass transition temp. is obtd. in this way and the oxygen plasma resistance is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はポジパターンを高精度に再現し、かつ酸素プラ
ズマ耐性の高い高エネルギー線用のレジスト組成物に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a resist composition for high-energy radiation that reproduces a positive pattern with high precision and has high resistance to oxygen plasma.

〔従来の技術〕[Conventional technology]

ノボラック樹脂と感光剤のナフトキノンジアジドから成
るポジ形のフォトレジストは、高感度、高解像度、アル
カリ可溶性等の特徴を持つため、リソグラフィの分野に
おいて最近用いられている。さて、2層しジストCB、
 J、リン(B、 J。
Positive-type photoresists made of novolak resin and naphthoquinonediazide as a photosensitizer have recently been used in the field of lithography because they have characteristics such as high sensitivity, high resolution, and alkali solubility. Now, two-layer Gist CB,
J, Lin (B, J.

Lin)、ソリッド ステート テクノロジー(Sol
id 5tate Technol、)、第24巻、第
73頁(1981)]において、高形状比のパターンは
基板上に形成したレジスト薄膜をマスクとして、酸素プ
ラズマエツチング(O□RIB)で異方性エツチングす
ることによって得られている。この0□RIB耐性はレ
ジスト材料にとって極めて重要視されるようになってお
り、0.RIHにより酸化物を形成するような材料、一
般にはケイ素(シリコン)を含む材料がO□RIB耐性
に優れているとされている。しかるに、現用のフォトレ
ジストは、シリコン成分を含んでいないため0□RIB
耐性が悪い欠点があった。これを解決するため、ポリシ
ロキサン系のレジスト材料が提案されているが、この種
の材料は一般にガラス転移温度が低く、このため加工時
にほこりが付き易い、膜厚制御が困難、現像時のパター
ン変形による現像性低下などのプロセスとの適合性に大
きな問題があった。
Lin), Solid State Technology (Sol
id 5tate Technol, Vol. 24, p. 73 (1981)], a pattern with a high shape ratio is anisotropically etched using oxygen plasma etching (O□RIB) using a resist thin film formed on a substrate as a mask. It is obtained by This 0□RIB resistance has become extremely important for resist materials. Materials that form oxides by RIH, generally materials containing silicon, are said to have excellent O□RIB resistance. However, current photoresists do not contain silicon components and therefore have a 0□RIB
It had the disadvantage of poor tolerance. To solve this problem, polysiloxane-based resist materials have been proposed, but this type of material generally has a low glass transition temperature, so it is easy to get dust during processing, it is difficult to control the film thickness, and it is difficult to control the film thickness during development. There were major problems in compatibility with the process, such as deterioration in developability due to deformation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

したがって、ガラス転移温度が高く、また、0、RIB
耐性に優れ、かつ、アルカリ現像タイプのレジスト材料
が期待されている。
Therefore, the glass transition temperature is high, and 0, RIB
Resist materials with excellent resistance and alkaline development are expected.

本発明の目的は、前記課題を解決したシロキサンポリマ
ー及びレジスト組成物を提供することにある。
An object of the present invention is to provide a siloxane polymer and a resist composition that solve the above problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明を概説すれば、本発明の第1の発明はシロキサン
ポリマーに関する発明であって、オキシラン環を有する
アルコキシシランの加水分解・縮合によって得られるポ
リシロキサンの水酸基の一部あるいは全部をアルキル基
、置換アルキル基、芳香族基、又はシリル基で保護した
ことを特徴とする。
To summarize the present invention, the first invention of the present invention relates to a siloxane polymer, in which a part or all of the hydroxyl groups of a polysiloxane obtained by hydrolysis and condensation of an alkoxysilane having an oxirane ring are replaced with an alkyl group, It is characterized by being protected with a substituted alkyl group, aromatic group, or silyl group.

そして、本発明の第2の発明はレジスト組成物に関する
発明であって、第1の発明のシロキサンポリマーと酸発
生剤とを包含してなることを特徴とする。
The second invention of the present invention relates to a resist composition, and is characterized in that it contains the siloxane polymer of the first invention and an acid generator.

本発明は、前記の問題点を解決するために、まず、シロ
キサン結合を骨格構造とすることにより 02RIE耐
性を高め、多官能アルコキシシランを原料とすることに
よる梯子型の化学構造をとることによりガラス転移温度
を高め、また、オキシラン環を導入し、これが開環した
水酸基を適当な官能基で保護することによりアルカリ現
像が可能となるものである。
In order to solve the above-mentioned problems, the present invention first improves the 02RIE resistance by using siloxane bonds as a skeleton structure, and by creating a ladder-type chemical structure using polyfunctional alkoxysilane as a raw material. Alkaline development becomes possible by increasing the transition temperature, introducing an oxirane ring, and protecting the hydroxyl group opened by the ring with an appropriate functional group.

本発明のシロキサンポリマーは一般には次のような方法
によって合成される。まず、特定のアルコキシシランを
エタノールなどのアルコールに溶解し、これに水と塩酸
などの触媒を加える。この触媒は場合によっては除いて
もよい。
The siloxane polymer of the present invention is generally synthesized by the following method. First, a specific alkoxysilane is dissolved in alcohol such as ethanol, and water and a catalyst such as hydrochloric acid are added to this. This catalyst may optionally be omitted.

この反応は常温で進行するが、必要に応じて加熱しても
よい。所定時間経過後、反応溶液を水中に投入し、沈殿
した生成物をろ別した後乾燥する。この段階での生成物
を実用に供しても良いし、また、更に高重合体を所望す
る場合には、生成物を適当な溶媒中、アルカリ触媒など
により更に反応を進めれば良い。あるいは、バルク状で
更に加熱して縮合を進める方法も有効である。これらの
反応過程において、オキシラン環は開環するために、相
応する水酸基に変化するため、アルカリ水溶液に溶解す
る。このポリシロキサンの水酸基の一部あるいは全部を
適当な官能基で保護することによりアルカリ水溶液に難
溶性のシロキサンポリマーが得られる。
This reaction proceeds at room temperature, but may be heated if necessary. After a predetermined period of time has elapsed, the reaction solution is poured into water, and the precipitated product is filtered out and then dried. The product at this stage may be used for practical purposes, or if a higher polymer is desired, the product may be further reacted with an alkali catalyst in an appropriate solvent. Alternatively, it is also effective to proceed with condensation by further heating in bulk. In these reaction processes, the oxirane ring opens and changes into a corresponding hydroxyl group, which dissolves in an aqueous alkaline solution. By protecting some or all of the hydroxyl groups of this polysiloxane with an appropriate functional group, a siloxane polymer that is sparingly soluble in aqueous alkaline solutions can be obtained.

また、本発明のアルコキシシランの加水分解・縮合によ
って得られたポリシロキサンは、般に末端にシラノール
基を有するため、これが縮合を起こし経時的に特性を変
化しつる可能性がある。これを避けるためには、シリル
化剤によりシラノール基を他の非反応性の置換基に置換
することができる。
Furthermore, since the polysiloxane obtained by hydrolysis and condensation of the alkoxysilane of the present invention generally has a silanol group at the end, there is a possibility that this condensation may cause the properties to change over time. To avoid this, the silanol group can be replaced by another non-reactive substituent using a silylating agent.

本発明において用いられるオキシラン環を有するアルコ
キシシランは特に限定するものではなく、分子中に、オ
キシラン環を持つ2官能あるいは3官能のアルコキシシ
ランである。具体的には、3−グリシドキシプロピルト
リメトキシシラン、3−グリシドキシプロビルメチルジ
メトキシシラン、2− (3,4−エポキシシクロヘキ
シル)エチルトリメトキシシラン、3−(N−アリル−
N−グリシジル)アミノプロピルトリメトキシシラン、
3− (N、N−ジグリシジル)アミノプロピルトリメ
トキシシラン、N−グリシジル−N、N−ビス〔3−(
メチルジメトキシシリル)プロピル〕アミン、N−グリ
シジル−N、N−ビス−[3−()リメトキシシリル)
プロピル〕アミン、3−グリシドキシプロビルトリエト
キシシラン、3−グリシドキシプロピルメチルジェトキ
シシラン、2−(3,4−エポキシシクロヘキシル)エ
チルトリエトキシシラン、3−(N−アリル−N−グリ
シジル)アミノプロピルトリエトキシシラン、3−(N
、N−ジグリシジル)アミノプロピルトリエトキシシラ
ン、N−グリシジル−N、  N−ビス〔3−(メチル
ジェトキシシリル)プロピル〕アミン、N−グリシジル
−N、N−ビス[3−()リエトキシシラン)プロピル
]アミン等が例示される。
The alkoxysilane having an oxirane ring used in the present invention is not particularly limited, and is a bifunctional or trifunctional alkoxysilane having an oxirane ring in the molecule. Specifically, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-(N-allyl-
N-glycidyl)aminopropyltrimethoxysilane,
3-(N,N-diglycidyl)aminopropyltrimethoxysilane, N-glycidyl-N,N-bis[3-(
methyldimethoxysilyl)propyl]amine, N-glycidyl-N,N-bis-[3-()rimethoxysilyl)
propyl]amine, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyljethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltriethoxysilane, 3-(N-allyl-N- glycidyl)aminopropyltriethoxysilane, 3-(N
, N-diglycidyl)aminopropyltriethoxysilane, N-glycidyl-N, N-bis[3-(methyljethoxysilyl)propyl]amine, N-glycidyl-N, N-bis[3-()ethoxysilane ) propyl] amine and the like.

また、本発明にはオキシラン環を有するアルコキシシラ
ンと、汎用の金属アルコキシドあるいは金属塩化物との
共重合によって得られるポリシロキサンも含まれる。こ
の種の汎用の金属アルコキシドは特に限定するものでは
ないが、次のようなものが例示される。ジメトキシジメ
チルシラン、ジェトキシジメチルシラン、ジメトキシメ
チル−3,3,3−トリフルオロプロピルシラン、ジェ
トキシビニルシラン、ジェトキシジエチルシラン、3−
アミノプロピルジェトキシメチルシラン、3− (2−
アミノエチルアミノ)プロピルジメトキシメチルシラン
、ジメトキシメチルフェニルシラン、ジェトキシメチル
フェニルシラン、ジメトキシジフェニルシラン、ジェト
キシジフェニルシラン、トリス−(2−メトキシエトキ
シ)ビニルシラン、メチルトリメトキシシラン、エチル
トリメトキシシラン、3,3.3−)リフルオロプロピ
ルトリメトキシシラン、メチルトリエトキシシラン、3
−(N−メチルアミノ)プロピルトリメトキシシラン、
メチルトリス−(2−γミノエトキシ)シラン、トリア
セトキシビニルシラン、トリエトキシビニルシラン、エ
チルトリエトキシシラン、3−メルカプトプロピルトリ
エトキシシラン、3−(2−アミノエチルアミノ)プロ
ピルトリメトキシシラン、フェニルトリメトキシシラン
、2−シアノエチルトリエトキシシラン、アリルトリエ
トキシシラン、プロピルトリエトキシシラン、ヘキシル
トリメトキシシラン、3−アミノプロピルトリエトキシ
シラン、3−メタクリロキシプロピルトリメトキシシラ
ン、メチルトリプロポキシシラン、フェニルトリエトキ
シシラン、3−〔N−アリル−N−(2−アミノエチル
)〕アミノプロピルトリメトキシシラン、4−トリメト
キシシリルテトラヒドロフタル酸無水物、4−トリエト
キシシリルテトラヒドロフタル酸無水物、4−トリイソ
プロポキシシリルテトラヒドロフタル酸無水物、4−ト
リメトキシシリルテトラヒドロフタル酸、4−トリエト
キシシリルテトラヒドロフタル酸、4−トリイソプロポ
キシシリルテトラヒドロフタル酸、テトラメトキシシラ
ン、テトラエトキシシラン、テトラブトキシチタン、テ
トラエトキシジルコン、テトラブトキシジルコン、テト
ライソプロポキシジルコン、テトラメトキシゲルマン、
テトラエトキシチタン、テトラブトキシチタン、テトラ
ブトキシスズ、ペンタブトキシニオブ、ペンタブトキシ
タリウム、トリエトキシポロン、トリブトキシガリウム
、ジブトキシ鉛、トリブトキシネオジム、トリブトキシ
エルビウム。これらのうち、特に好ましいのは、原料の
入手しやすさ、反応性、得られた生成物の特性等の点か
ら、フェニルトリエトキシシラン、メチルトリエトキシ
シラン及びテトラエトキシシランである。また、金属塩
化物としては、n−ブチルトリクロロシラン、ジメチル
ジクロロシラン、エチルトリクロロシラン、メチルトリ
クロロシラン、フェニルトリクロロシラン、トリクロロ
ビニルシラン、ジフェニルジクロロシラン等が例示され
る。
The present invention also includes polysiloxanes obtained by copolymerizing an alkoxysilane having an oxirane ring with a general-purpose metal alkoxide or metal chloride. Although this type of general-purpose metal alkoxide is not particularly limited, the following are exemplified. Dimethoxydimethylsilane, jetoxydimethylsilane, dimethoxymethyl-3,3,3-trifluoropropylsilane, jetoxyvinylsilane, jetoxydiethylsilane, 3-
Aminopropyljethoxymethylsilane, 3- (2-
Aminoethylamino)propyldimethoxymethylsilane, dimethoxymethylphenylsilane, jetoxymethylphenylsilane, dimethoxydiphenylsilane, jetoxydiphenylsilane, tris-(2-methoxyethoxy)vinylsilane, methyltrimethoxysilane, ethyltrimethoxysilane, 3 ,3.3-)lifluoropropyltrimethoxysilane, methyltriethoxysilane, 3
-(N-methylamino)propyltrimethoxysilane,
Methyltris-(2-γminoethoxy)silane, triacetoxyvinylsilane, triethoxyvinylsilane, ethyltriethoxysilane, 3-mercaptopropyltriethoxysilane, 3-(2-aminoethylamino)propyltrimethoxysilane, phenyltrimethoxysilane, 2-cyanoethyltriethoxysilane, allyltriethoxysilane, propyltriethoxysilane, hexyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, methyltripropoxysilane, phenyltriethoxysilane, 3 -[N-allyl-N-(2-aminoethyl)]aminopropyltrimethoxysilane, 4-trimethoxysilyltetrahydrophthalic anhydride, 4-triethoxysilyltetrahydrophthalic anhydride, 4-triisopropoxysilyltetrahydro Phthalic anhydride, 4-trimethoxysilyltetrahydrophthalic acid, 4-triethoxysilyltetrahydrophthalic acid, 4-triisopropoxysilyltetrahydrophthalic acid, tetramethoxysilane, tetraethoxysilane, tetrabutoxytitanium, tetraethoxyzircon, tetra butoxyzircon, tetraisopropoxyzircon, tetramethoxygermane,
Tetraethoxytitanium, tetrabutoxytitanium, tetrabutoxytin, pentabutoxyniobium, pentabutoxytalium, triethoxypolone, tributoxygallium, dibutoxylead, tributoxyneodymium, tributoxyerbium. Among these, phenyltriethoxysilane, methyltriethoxysilane and tetraethoxysilane are particularly preferred from the viewpoint of raw material availability, reactivity, properties of the obtained product, etc. Examples of metal chlorides include n-butyltrichlorosilane, dimethyldichlorosilane, ethyltrichlorosilane, methyltrichlorosilane, phenyltrichlorosilane, trichlorovinylsilane, diphenyldichlorosilane, and the like.

本発明のシロキサンポリマーは1μmの厚さで248n
mにおける光の透過率は90%以上であり、またフェニ
ルトリエトキシシランを共重合させた場合でも70%以
上であり、エキシマレーザ用レジストとして有望である
The siloxane polymer of the present invention is 248nm with a thickness of 1μm.
The light transmittance at m is 90% or more, and even when phenyltriethoxysilane is copolymerized, it is 70% or more, making it promising as a resist for excimer lasers.

本発明において用いられる触媒は特に限定するものでは
なく、酸触媒及びアルカリ触媒が用いられる。このよう
な酸触媒としては、塩酸、フッ化水素酸、硝酸、硫酸、
酢酸、ギ酸等が例示される。また、アルカリ触媒として
は、アンモニア、水酸ナトリウム、水酸化カリウム、水
酸化カルシウム等が例示される。
The catalyst used in the present invention is not particularly limited, and acid catalysts and alkali catalysts are used. Such acid catalysts include hydrochloric acid, hydrofluoric acid, nitric acid, sulfuric acid,
Examples include acetic acid and formic acid. Furthermore, examples of the alkali catalyst include ammonia, sodium hydroxide, potassium hydroxide, calcium hydroxide, and the like.

第1の発明のシロキサンポリマーは適当な酸発生剤との
組合せで様々な用途に応用できる。
The siloxane polymer of the first invention can be applied to various uses in combination with a suitable acid generator.

本発明の第2の発明はこのような組合せの1つであり、
シロキサンポリマーは水酸基の一部あるいは全部が保護
されているためにアルカリ水溶液に難溶性であるが、電
子線等の高エネルギ−線の照射により酸発生剤から生成
する酸を触媒として保護基の脱離反応を生じ、アルカリ
可溶性の水酸基に変化する。すなわち、本発明のレジス
ト組成物は高エネルギー線照射により、照射部分のシロ
キサンポリマーの保護基がはずれ相応する水酸基となり
、照射部はアルカリ現像で除去されるためポジ型レジス
ト特性を示す。
The second invention of the present invention is one of such combinations,
Siloxane polymers are poorly soluble in alkaline aqueous solutions because some or all of the hydroxyl groups are protected, but the protective groups can be removed using the acid generated from the acid generator as a catalyst when irradiated with high-energy beams such as electron beams. A dissociation reaction occurs and it changes to an alkali-soluble hydroxyl group. That is, when the resist composition of the present invention is irradiated with high-energy rays, the protective groups of the siloxane polymer in the irradiated areas are removed and become corresponding hydroxyl groups, and the irradiated areas are removed by alkaline development, so that they exhibit positive resist properties.

このレジスト組成物において酸発生剤は、アルカリ液に
対するシロキサンポリマーの溶解防止剤としての役割も
果す。酸発生剤の添加量は、通常0.5〜20重量%の
範囲であり、0,5%未満では発生する酸の量が少ない
。このため、高感度化が困難となる。また20%を越え
るとレジスト材料としてのシリコン含有率が低下し、酸
素プラズマ耐性が低下する。また、248nmでの吸収
が大きくなる問題がある。一般には5%程度が好ましい
添加量である。
In this resist composition, the acid generator also serves as an agent for preventing the siloxane polymer from dissolving in the alkaline solution. The amount of acid generator added is usually in the range of 0.5 to 20% by weight, and if it is less than 0.5%, the amount of acid generated is small. This makes it difficult to achieve high sensitivity. Moreover, if it exceeds 20%, the silicon content as a resist material decreases, and the oxygen plasma resistance decreases. Further, there is a problem that absorption at 248 nm becomes large. Generally, a preferable addition amount is about 5%.

本発明における酸発生剤とは特に限定するものではない
が、下記−殺伐11■、■:ArN*”MXn−(I 
) Ar21’MXn−(n ) Ar2S”MXn−(m ) (式中MXnはBF、、PF、、Ash及びSbF6の
群から選択された1種を示す)で表されるオニウム塩あ
るいはハロゲン化メチルトリアジン、テトラブロモビス
フェノールA1ニトロベンジルエステル化物などが使用
できる。酸発生剤の中には波長が300nm以上の紫外
線には低感度のものがあるが、その場合、フェノチアジ
ンのような分光増感剤を添加することも可能である。
The acid generator in the present invention is not particularly limited, but includes the following:
) Ar21'MXn-(n) Ar2S"MXn-(m) (wherein MXn represents one selected from the group of BF, PF, Ash and SbF6) or methyl halide Triazine, tetrabromobisphenol A1 nitrobenzyl ester, etc. can be used.Some acid generators have low sensitivity to ultraviolet rays with a wavelength of 300 nm or more, but in that case, a spectral sensitizer such as phenothiazine may be used. It is also possible to add.

次に、本発明のレジスト組成物を用いて、パターンを形
成する方法の1例を述べる。まず、シリコンなどの基板
上に有機高分子材料の膜を形成し、その上に本発明のレ
ジスト組成物を塗布して2層構造とする。次いで熱処理
した後、高エネルギー線照射したのち、熱処理により照
射部分をアルカリ水溶液に可溶性とし、次いでアルカリ
現像により照射部のレジスト組成物を除去する。次に、
非照射部のレジスト組成物をマスクとして、酸素ガスを
用いるドライエツチングによって、下層の有機高分子膜
をエツチング除去することにより、パターンを形成する
Next, an example of a method for forming a pattern using the resist composition of the present invention will be described. First, a film of an organic polymer material is formed on a substrate such as silicon, and the resist composition of the present invention is applied thereon to form a two-layer structure. Next, after heat treatment and irradiation with high energy rays, the irradiated area is made soluble in an alkaline aqueous solution by heat treatment, and then the resist composition in the irradiated area is removed by alkaline development. next,
Using the resist composition in the non-irradiated area as a mask, a pattern is formed by dry etching using oxygen gas to remove the underlying organic polymer film.

上記の有機高分子材料としては、酸素プラズマによりエ
ツチングされるものであればその種類を問わないが、パ
ターン形成後、これをマスクとして基板をドライエツチ
ングする際、耐性が必要とされるため、芳香族含有ポリ
マーが望ましい。
The above-mentioned organic polymer material may be of any type as long as it can be etched by oxygen plasma, but after pattern formation, when dry etching the substrate using this as a mask, resistance is required, so Group-containing polymers are preferred.

〔実施例〕〔Example〕

以下、本発明のシロキサンポリマーの合成例及び実施例
により本発明を更に具体的に説明するが、本発明はこれ
ら各側に限定されない。
Hereinafter, the present invention will be explained in more detail with reference to synthesis examples and examples of the siloxane polymer of the present invention, but the present invention is not limited to these aspects.

以下にシロキサンポリマーの合成例を示す。Examples of synthesis of siloxane polymers are shown below.

合成例1 3−グリシドキシプロビルトリメトキシシラン23.6
g(0,1モル)をエタノールに溶解し、かくはんしな
がらこれに塩酸水溶液を添加した。
Synthesis example 1 3-glycidoxypropyltrimethoxysilane 23.6
g (0.1 mol) was dissolved in ethanol, and an aqueous hydrochloric acid solution was added thereto with stirring.

常温で24時間反応させた後、更に60℃で14444
時間反応た。室温に冷却後アンモニアを加えて更に24
時間反応を続けた。反応後、反応溶液を蒸留水中に投入
し、生成した沈殿物をろ別し白色のポリマーを得た。生
成物はテトラヒドロフラン(THF)  エタノール、
エチレングリコールモノエチルエーテル(エチルセロソ
ルブ) メチルイソブチルケトン(M I BK) ア
セトン等の溶媒に可溶であった。これらの溶液からは透
明で均一な膜が得られた。重量平均分子量は約1000
であった。赤外吸収スペクトルにおいて3400 cm
−’付近にOH基(水酸基)の伸縮振動に基づく吸収が
認められ、エポキシ基が反応過程で開環していることが
確認された。これとジターシャリブチルジカルボナート
をピリジンを触媒として反応させることにより、ターシ
ャリブトキシカルボニル基で保護されたシロキサンポリ
マーを得た。保護することにより、水酸基の吸収は小さ
くなった。
After reacting at room temperature for 24 hours, 14444 was further heated at 60°C.
It took time to react. After cooling to room temperature, add ammonia and further cool for 24 hours.
The reaction continued for hours. After the reaction, the reaction solution was poured into distilled water, and the generated precipitate was filtered off to obtain a white polymer. The product is tetrahydrofuran (THF) ethanol,
Ethylene glycol monoethyl ether (ethyl cellosolve) Methyl isobutyl ketone (M I BK) Soluble in solvents such as acetone. Clear, uniform films were obtained from these solutions. Weight average molecular weight is approximately 1000
Met. 3400 cm in infrared absorption spectrum
Absorption based on the stretching vibration of the OH group (hydroxyl group) was observed near -', and it was confirmed that the epoxy group was ring-opened during the reaction process. A siloxane polymer protected with a tert-butoxycarbonyl group was obtained by reacting this with di-tert-butyl dicarbonate using pyridine as a catalyst. By protecting it, the absorption of hydroxyl group became smaller.

248nmにおける光の透過率は92%(1μm厚さ)
であった。
Light transmittance at 248 nm is 92% (1 μm thickness)
Met.

合成例2 3−グリシドキシプロビルトリメトキシシラン11.8
g(0,05モル)及ヒフェニルトリエトキシシラン1
2.Og(0,05モル)をエタノールに溶解し、かく
はんしながらこれに塩酸水溶液を添加した。常温で24
時間反応させた後、更に60℃で144時間反応させた
。反応後反応溶液を蒸留水中に投入し、生成した沈殿物
をろ別し白色のポリマーを得た。生成物はTHF、エタ
ノール、エチルセロソルブ、MIBK、アセトン、酢酸
エチル等の溶媒に可溶であった。
Synthesis example 2 3-glycidoxyprobyltrimethoxysilane 11.8
g (0.05 mol) and Hyphenyltriethoxysilane 1
2. Og (0.05 mol) was dissolved in ethanol and an aqueous hydrochloric acid solution was added thereto with stirring. 24 at room temperature
After reacting for an hour, the reaction was further carried out at 60° C. for 144 hours. After the reaction, the reaction solution was poured into distilled water, and the generated precipitate was filtered off to obtain a white polymer. The product was soluble in solvents such as THF, ethanol, ethyl cellosolve, MIBK, acetone, and ethyl acetate.

これらの溶液からは透明で均一な膜が得られた。Clear, uniform films were obtained from these solutions.

このポリシロキサンを合成例1と同様の方法でターシャ
リブトキシカルボニル基で保護し、アルカリ難溶性のシ
ロキサンポリマーを得た。
This polysiloxane was protected with a tertiary butoxycarbonyl group in the same manner as in Synthesis Example 1 to obtain a poorly alkali-soluble siloxane polymer.

248nmにおける光の透過率は75%(1μm厚さ)
であった。
Light transmittance at 248 nm is 75% (1 μm thickness)
Met.

合成例3 3−グリシドキシプロピルトリメトキシシラン11.8
g(0,05モル)及びメチルトリエトキシシラン8.
9g(0,05モル)をエタノールに溶解し、かくはん
しながらこれに塩酸水溶液を添加した。常温で24時間
反応させた後、更に60℃144時間反応させた。反応
後反応溶液を蒸留水中に投入し、生成した沈殿物をろ別
し白色のポリマーを得た。生成物はTHF、エタノール
、エチルセロソルブ、MIBK、アセトン、酢酸エチル
等の溶媒に可溶であった。これらの溶液からは透明で均
一な膜が得られた。
Synthesis example 3 3-glycidoxypropyltrimethoxysilane 11.8
g (0.05 mol) and methyltriethoxysilane8.
9 g (0.05 mol) was dissolved in ethanol, and an aqueous hydrochloric acid solution was added thereto while stirring. After reacting at room temperature for 24 hours, the reaction was further carried out at 60° C. for 144 hours. After the reaction, the reaction solution was poured into distilled water, and the generated precipitate was filtered off to obtain a white polymer. The product was soluble in solvents such as THF, ethanol, ethyl cellosolve, MIBK, acetone, and ethyl acetate. Clear, uniform films were obtained from these solutions.

これを合成例1と同様の方法でターシャリブトキシカル
ボニル基で保護し、アルカリ難溶性のシロキサンポリマ
ーを得た。248 nmにおける光の透過率は94%(
1μm厚さ)であった。
This was protected with a tertiary butoxycarbonyl group in the same manner as in Synthesis Example 1 to obtain a poorly alkali-soluble siloxane polymer. The light transmittance at 248 nm is 94% (
1 μm thick).

合成例4 3−グリシドキシプロピルトリメトキシシラン4.72
g(0,02モル) メチルトリエトキシシラン8.9
g(0,05モル)及びテトラエトキシシラン6.24
 g (0,03モル)をエタノールに溶解し、かくは
んしながらこれに塩酸水溶液を添加した。常温で6時間
反応させた後、アンモニア水を加えて更に60℃24時
間反応させた。反応後反応溶液を蒸留水中に投入し、生
成した沈殿物をろ別し白色のポリマーを得た。
Synthesis example 4 3-glycidoxypropyltrimethoxysilane 4.72
g (0.02 mol) methyltriethoxysilane 8.9
g (0.05 mol) and tetraethoxysilane 6.24
g (0.03 mol) was dissolved in ethanol, and an aqueous hydrochloric acid solution was added thereto with stirring. After reacting at room temperature for 6 hours, ammonia water was added and the reaction was further carried out at 60°C for 24 hours. After the reaction, the reaction solution was poured into distilled water, and the generated precipitate was filtered off to obtain a white polymer.

重量平均分子量は5000であった。生成物はTHF、
エタノール、エチルセロソルブ、MIBK、アセトン、
酢酸エチル等の溶媒に可溶であった。これらの溶液から
は透明で均一な膜が得られた。これを合成例1と同様の
方法でターシャリブトキシカルボニル基で保護し、アル
カリ難溶性のシロキサンポリマーを得た。248nmに
おける光の透過率は90%(1μm厚さ)であった。
The weight average molecular weight was 5,000. The product is THF,
Ethanol, ethyl cellosolve, MIBK, acetone,
It was soluble in solvents such as ethyl acetate. Clear, uniform films were obtained from these solutions. This was protected with a tertiary butoxycarbonyl group in the same manner as in Synthesis Example 1 to obtain a poorly alkali-soluble siloxane polymer. The light transmittance at 248 nm was 90% (1 μm thickness).

合成例5 2−(3,4−エポキシシクロヘキシル)エチルトリメ
トキシシラン24.6g(0,1モル)をエタノールに
溶解し、かくはんしながらこれに塩酸水溶液を添加した
。常温で24時間反応させた後、更に60℃で144時
間反応させた。
Synthesis Example 5 24.6 g (0.1 mol) of 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane was dissolved in ethanol, and an aqueous hydrochloric acid solution was added thereto while stirring. After reacting at room temperature for 24 hours, it was further reacted at 60° C. for 144 hours.

反応後、反応溶液を蒸留水中に投入し、生成した沈殿物
をろ別し白色のポリマーを得た。生成物はTHF、エタ
ノール、エチルセロソルブ、MIBK、アセトン等の溶
媒に可溶であった。
After the reaction, the reaction solution was poured into distilled water, and the generated precipitate was filtered off to obtain a white polymer. The product was soluble in solvents such as THF, ethanol, ethyl cellosolve, MIBK, and acetone.

これらの溶液からは透明で均一な膜が得られた。Clear, uniform films were obtained from these solutions.

これを合成例1と同様の方法でターシャリブトキシカル
ボニル基で保護し、アルカリ難溶性のシロキサンポリマ
ーを得た。248nmにおける光の透過率は90%(1
μm厚さ)であった。
This was protected with a tertiary butoxycarbonyl group in the same manner as in Synthesis Example 1 to obtain a poorly alkali-soluble siloxane polymer. The light transmittance at 248 nm is 90% (1
(μm thickness).

合成例6 2−(3,4−エポキシシクロヘキシル)エチルトリメ
トキシシラン12.3g(0,05モル)及びフェニル
トリエトキシシラン12. Og (0,05モル)を
エタノールに溶解し、かくはんしながらこれに塩酸水溶
液を添加した。常温で24時間反応させた後、更に60
℃で144時間反応させた。反応後反応溶液を蒸留水中
に投入し、生成した沈殿物をろ別し白色のポリマーを得
た。生成物はTHF、エタノール、エチルセロソルブ、
MIBK、アセトン、酢酸エチル等の溶媒に可溶であっ
た。これらの溶液からは透明で均一な膜が得られた。こ
れを合成例1と同様の方法でターシャリブトキシカルボ
ニル基で保護し、アルカリ難溶性のシロキサンポリマー
を得た。248nmにおける光の透過率は74%(1μ
m厚さ)であった。
Synthesis Example 6 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane 12.3g (0.05 mol) and phenyltriethoxysilane 12. Og (0.05 mol) was dissolved in ethanol and an aqueous hydrochloric acid solution was added thereto with stirring. After reacting at room temperature for 24 hours, an additional 60
The reaction was carried out at ℃ for 144 hours. After the reaction, the reaction solution was poured into distilled water, and the generated precipitate was filtered off to obtain a white polymer. The products are THF, ethanol, ethyl cellosolve,
It was soluble in solvents such as MIBK, acetone, and ethyl acetate. Clear, uniform films were obtained from these solutions. This was protected with a tertiary butoxycarbonyl group in the same manner as in Synthesis Example 1 to obtain a poorly alkali-soluble siloxane polymer. The light transmittance at 248 nm is 74% (1μ
m thickness).

合成例7 2−(3,4−エポキシシクロヘキシル)エチルトリメ
トキシシラン12.3g(0,05モル)及びメチルト
リエトキシシラン8.9 g (0,05モル)をエタ
ノールに溶解し、かくはんしながらこれに塩酸水溶液を
添加した。常温で24時間反応させた後、更に60℃1
44時間反応させた。反応後反応溶液を蒸留水中に投入
し、生成した沈殿物をろ別し白色のポリマーを得た。
Synthesis Example 7 12.3 g (0.05 mol) of 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane and 8.9 g (0.05 mol) of methyltriethoxysilane were dissolved in ethanol and dissolved while stirring. To this was added an aqueous hydrochloric acid solution. After reacting at room temperature for 24 hours, further react at 60℃1
The reaction was allowed to proceed for 44 hours. After the reaction, the reaction solution was poured into distilled water, and the generated precipitate was filtered off to obtain a white polymer.

生成物はTHF、エタノール、エチルセロソルブ、MI
BK、アセトン、酢酸エチル等の溶媒に可溶であった。
The products are THF, ethanol, ethyl cellosolve, MI
It was soluble in solvents such as BK, acetone, and ethyl acetate.

これらの溶液からは透明で均一な膜が得られた。これを
合成例1と同様の方法でターシャリブトキシカルボニル
基で保KNし、アルカリ難溶性のシロキサンポリマーを
得た。
Clear, uniform films were obtained from these solutions. This was KN-retained with a tertiary butoxycarbonyl group in the same manner as in Synthesis Example 1 to obtain a poorly alkali-soluble siloxane polymer.

248 nmにおける光の透過率は94%(1μm厚さ
)であった。
The light transmittance at 248 nm was 94% (1 μm thickness).

合成例8 2−(3,4−エポキシシクロヘキシル)二チルトリメ
トキシシラン4.92 g (0,02モル)メチルト
リエトキシシラン8.9 g (0,05モル)及びテ
トラエトキシシラン6.24g(0,03モル)をエタ
ノールに溶解し、かくはんしながらこれに塩酸水溶液を
添加した。常温で6時間反応させた後、アンモニア水を
加えて更に60℃24時間反応させた。室温に冷却後、
アンモニアを加え更に12時間反応を続けた。反応後反
応溶液を蒸留水中に投入し、生成した沈殿物をろ別し白
色のポリマーを得た。生成物はTHF、エタノール、エ
チルセロソルブ、MIBK、アセトン、酢酸エチル等の
溶媒に可溶であった。
Synthesis Example 8 2-(3,4-epoxycyclohexyl)dityltrimethoxysilane 4.92 g (0.02 mol) methyltriethoxysilane 8.9 g (0.05 mol) and tetraethoxysilane 6.24 g ( 0.03 mol) was dissolved in ethanol, and an aqueous hydrochloric acid solution was added thereto while stirring. After reacting at room temperature for 6 hours, ammonia water was added and the reaction was further carried out at 60°C for 24 hours. After cooling to room temperature,
Ammonia was added and the reaction was continued for an additional 12 hours. After the reaction, the reaction solution was poured into distilled water, and the generated precipitate was filtered off to obtain a white polymer. The product was soluble in solvents such as THF, ethanol, ethyl cellosolve, MIBK, acetone, and ethyl acetate.

これらの溶液からは透明で均一な膜が得られた。Clear, uniform films were obtained from these solutions.

これを合成例1と同様の方法でターシャリブトキシカル
ボニル基で保護し、アルカリ難溶性のシロキサンポリマ
ーを得た。248nmにおける光の透過率は94%(1
μm厚さ)であった。
This was protected with a tertiary butoxycarbonyl group in the same manner as in Synthesis Example 1 to obtain a poorly alkali-soluble siloxane polymer. The light transmittance at 248 nm is 94% (1
(μm thickness).

合成例9 2−(3,4−エポキシシクロヘキシル)エチルトリメ
トキシシラン4.92 g (0,02モル)及びフェ
ニルトリエトキシシラン19.2 g (0,08モル
)をエタノールに溶解し、かくはんしながらこれに塩酸
水溶液を添加した。常温で24時間反応させた後、更に
60℃で144時間反応させた。反応後反応溶液を蒸留
水中に投入し、生成した沈殿物をろ別し白色のポリマー
を得た。
Synthesis Example 9 4.92 g (0.02 mol) of 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane and 19.2 g (0.08 mol) of phenyltriethoxysilane were dissolved in ethanol and stirred. At the same time, an aqueous hydrochloric acid solution was added thereto. After reacting at room temperature for 24 hours, it was further reacted at 60° C. for 144 hours. After the reaction, the reaction solution was poured into distilled water, and the generated precipitate was filtered off to obtain a white polymer.

生成物はTHF、エタノール、エチルセロソルブ、MI
BK、アセトン、酢酸エチル等の溶媒に可溶であった。
The products are THF, ethanol, ethyl cellosolve, MI
It was soluble in solvents such as BK, acetone, and ethyl acetate.

これらの溶液からは透明で均一な膜が得られた。これを
合成例1と同様の方法でターシャリブトキシカルボニル
基で保護し、アルカリ難溶性のシロキサンポリマーを得
た。
Clear, uniform films were obtained from these solutions. This was protected with a tertiary butoxycarbonyl group in the same manner as in Synthesis Example 1 to obtain a poorly alkali-soluble siloxane polymer.

248nmにおける光の透過率は74%(1μm厚さ)
であった。
Light transmittance at 248 nm is 74% (1 μm thickness)
Met.

合成例10 2−(3,4−エポキシシクロヘキシル)エチルトリメ
トキシシラン4.92g(0,02モル)及びメチルト
リエトキシシラン14.2 g (0,08モル)をエ
タノールに溶解し、かくはんしながらこれに塩酸水溶液
を添加した。常温で24時間反応させた後、更に60℃
で144時間反応させた。反応後反応溶液を蒸留水中に
投入し、生成した沈殿物をろ別し白色のポリマーを得た
Synthesis Example 10 4.92 g (0.02 mol) of 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane and 14.2 g (0.08 mol) of methyltriethoxysilane were dissolved in ethanol and dissolved while stirring. To this was added an aqueous hydrochloric acid solution. After reacting at room temperature for 24 hours, further react at 60℃
The reaction was carried out for 144 hours. After the reaction, the reaction solution was poured into distilled water, and the generated precipitate was filtered off to obtain a white polymer.

生成物はTHF、エタノール、エチルセロソルブ、MI
BK、アセトン、酢酸エチル等の溶媒に可溶であった。
The products are THF, ethanol, ethyl cellosolve, MI
It was soluble in solvents such as BK, acetone, and ethyl acetate.

これらの溶液からは透明で均一な膜が得られた。これを
合成例1と同様の方法でターシャリブトキシカルボニル
基で保護し、アルカリ難溶性のシロキサンポリマーを得
た。
Clear, uniform films were obtained from these solutions. This was protected with a tertiary butoxycarbonyl group in the same manner as in Synthesis Example 1 to obtain a poorly alkali-soluble siloxane polymer.

248nmにおける光の透過率は92%(1μm厚さ)
であった。
Light transmittance at 248 nm is 92% (1 μm thickness)
Met.

合成例11 合成例1において合成されたポリシロキサンの水酸基を
パラトルエンスルホン酸を触媒としてイソブチレンと反
応させることにより、ターシャリブチルエーテルとして
シロキサンポリマーを得た。248nmにおける光の透
過率は90%(1μm厚さ)であった。
Synthesis Example 11 A siloxane polymer was obtained as tertiary butyl ether by reacting the hydroxyl group of the polysiloxane synthesized in Synthesis Example 1 with isobutylene using para-toluenesulfonic acid as a catalyst. The light transmittance at 248 nm was 90% (1 μm thickness).

合成例12 合成例1において合成されたポリシロキサンの水酸基を
パラトルエンスルホン酸を触媒とし、2.3−ジヒドロ
−4H−ピランと反応させることにより、テトラヒドロ
ピラニルエーテルとしたシロキサンポリマーを得た。2
48nmにおける光の透過率は89%(1μm厚さ)で
あった。
Synthesis Example 12 The hydroxyl group of the polysiloxane synthesized in Synthesis Example 1 was reacted with 2,3-dihydro-4H-pyran using para-toluenesulfonic acid as a catalyst, to obtain a siloxane polymer as tetrahydropyranyl ether. 2
The light transmittance at 48 nm was 89% (1 μm thickness).

合成例13 合成例1にふいて合成されたポリシロキサン・の水酸基
をパラトルエンスルホン酸を触媒とし、アセトアルデヒ
ドと反応させることにより、アセタールとしたシロキサ
ンポリマーを得た。
Synthesis Example 13 The hydroxyl groups of the polysiloxane synthesized in Synthesis Example 1 were reacted with acetaldehyde using para-toluenesulfonic acid as a catalyst, to obtain a siloxane polymer in the form of acetal.

248nmにおける光の透過率は92%(1μm厚さ)
であった。
Light transmittance at 248 nm is 92% (1 μm thickness)
Met.

合成例14 合成例1において合成されたポリシロキサンの水酸基を
ピリジンを触媒とし、トリメチルクロロシランと反応さ
せることにより、シリル化したシロキサンポリマーを得
た。248nmにおける光の透過率は94%(1μm厚
さ)であった。
Synthesis Example 14 A silylated siloxane polymer was obtained by reacting the hydroxyl group of the polysiloxane synthesized in Synthesis Example 1 with trimethylchlorosilane using pyridine as a catalyst. The light transmittance at 248 nm was 94% (1 μm thickness).

以下、実施例に付いて述べるが、本発明はこれに限定さ
れるものではあい。
Examples will be described below, but the present invention is not limited thereto.

実施例1 合成例1〜14で得たシロキサンポリマーに2.6−シ
ニトロペンジルトシレートを10重量%添加したレジス
ト組成物をスピンコード法により約0.3μWの厚さで
シリコンウェハに塗布し、80℃で20分プリベークし
た。プリベーク後、高エネルギー線(電子線、X線、遠
紫外線)を照射した。照射後、110℃のホットプレー
ト上で5分間熱処理し、続いてマイクロポジット240
1 (シブレイ社製)と水の比が1/1の現像液でそれ
ぞれ現像し、照射部の残膜がなくなるところの照射量り
。を感度とした。
Example 1 A resist composition prepared by adding 10% by weight of 2,6-sinitropendyl tosylate to the siloxane polymer obtained in Synthesis Examples 1 to 14 was applied to a silicon wafer at a thickness of about 0.3 μW by a spin cord method. , prebaked at 80°C for 20 minutes. After prebaking, high energy beams (electron beams, X-rays, far ultraviolet rays) were irradiated. After irradiation, heat treatment was performed on a 110°C hot plate for 5 minutes, followed by Microposite 240
1 (manufactured by Sibley) and water in a developer solution with a ratio of 1:1. was taken as the sensitivity.

表1に感度と解像性を示す。解像性はライン&スペース
パターンを形成して評価し、いずれの材料も0.3μm
以下のパターンが形成できた。
Table 1 shows the sensitivity and resolution. The resolution was evaluated by forming a line & space pattern, and the resolution was 0.3 μm for each material.
The following pattern was formed.

実施例2 実施例1のレジスト組成物に分光増感剤としてフェノチ
アジンをポリマーに対し、0.5重量%添加したレジス
ト組成物を約0.3μmの厚さでシリコンウェハに塗布
し、80℃で20分間プリベークした。プリベーク後マ
スクアライナ(キャノン社製)を用いて紫外線照射した
Example 2 A resist composition prepared by adding 0.5% by weight of phenothiazine as a spectral sensitizer to the polymer to the resist composition of Example 1 was applied to a silicon wafer to a thickness of about 0.3 μm, and heated at 80°C. Prebaked for 20 minutes. After prebaking, ultraviolet rays were irradiated using a mask aligner (manufactured by Canon).

照射後、実施例1と同様の方法で熱処理をし、続いて同
じ現像液で現像し、照射部の残膜が0となる照射量を感
度として求めた。
After irradiation, heat treatment was performed in the same manner as in Example 1, followed by development with the same developer, and the sensitivity was determined as the irradiation amount at which the remaining film in the irradiated area was 0.

表2に感度と解像性を示す。解像性はライン&スペース
パターンを形成して評価し、いずれの材料も0,5μm
幅のパターンが形成できた。
Table 2 shows the sensitivity and resolution. The resolution was evaluated by forming a line & space pattern, and the resolution was 0.5 μm for each material.
A wide pattern was formed.

実施例3 シリコンウェハに^Z−1350レジスト (へ牛スト
社製)を3μmの厚さに塗布し、200℃で30分間加
熱し不溶化させた。このAZレジストの上に実施例1あ
るいは実施例2で用いたレジスト組成物を約0.3μm
の厚さに塗布し、80℃で20分間プリベークした。プ
リベータ後、高エネルギー線(実施例1の場合は電子線
、X線、遠紫外線、実施例2の場合は紫外線)を照射し
、実施例1あるいは実施例2と同様の方法で熱処理をし
、続いて同一組成の現像液で現像を行いパターンを形成
した。その後、平行平板型スパッタエツチング装置で酸
素ガスをエツチングガスとして、また上記レジストパタ
ーンをマスクとしてAZレジストをエツチングした。
Example 3 Z-1350 resist (manufactured by Hegyusto Co., Ltd.) was applied to a silicon wafer to a thickness of 3 μm, and heated at 200° C. for 30 minutes to insolubilize it. On this AZ resist, apply the resist composition used in Example 1 or Example 2 to a thickness of about 0.3 μm.
The coating was applied to a thickness of 100.degree. C. and prebaked at 80.degree. C. for 20 minutes. After pre-beta, it is irradiated with high-energy rays (electron beam, X-ray, far ultraviolet rays in the case of Example 1, ultraviolet rays in the case of Example 2), and heat treated in the same manner as in Example 1 or Example 2. Subsequently, development was performed with a developer having the same composition to form a pattern. Thereafter, the AZ resist was etched using a parallel plate type sputter etching apparatus using oxygen gas as an etching gas and using the above resist pattern as a mask.

RFパワー0.2 W/cm’、02ガス圧20ミリト
ールの条件で15分エツチングすることにより、レジス
トパターンに覆われていない部分のAZレジストは完全
に消滅した。
By etching for 15 minutes under the conditions of RF power of 0.2 W/cm' and O2 gas pressure of 20 mTorr, the AZ resist in the portions not covered by the resist pattern was completely eliminated.

また、実施例1で用いたいずれのレジスト組成物でも0
.3μmライン&スペースパターンが約3μmの厚さで
形成でき、実施例2の組成物を用いた場合は0.5μm
のライン&スペースパターンが形成できた。
Furthermore, any of the resist compositions used in Example 1 had 0
.. A 3 μm line and space pattern can be formed with a thickness of about 3 μm, and when the composition of Example 2 is used, it is 0.5 μm thick.
A line and space pattern was formed.

実施例4 合成例1で得られたシロキサンポリマーに以下の酸発生
剤を添加したレジスト組成物を調製し、実施例1と同様
の方法でレジスト特性を評価した。その結果を表3に示
す。
Example 4 A resist composition was prepared by adding the following acid generator to the siloxane polymer obtained in Synthesis Example 1, and the resist properties were evaluated in the same manner as in Example 1. The results are shown in Table 3.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明のシロキサンポリマーは、
アルカリ可溶性のポリシロキサンの水酸基を適当な官能
基で保護することにより、アルカリ難溶性にしたもので
ある。それに高エネルギー線照射により酸を発生する酸
発生剤を添加したレジスト組成物は酸を触媒として、保
護基が脱離し元の水酸基に変化するため、アルカリ現像
可能な非膨潤型ポジ型レジストになる。
As explained above, the siloxane polymer of the present invention is
By protecting the hydroxyl groups of an alkali-soluble polysiloxane with an appropriate functional group, it is made poorly alkali-soluble. In addition, a resist composition containing an acid generator that generates acid when irradiated with high-energy rays uses the acid as a catalyst to remove the protective group and change to the original hydroxyl group, resulting in a non-swellable positive resist that can be developed with alkali. .

また、シリコンを含有するため酸素プラズマ耐性が高く
、したがって、2層レジストの上層レジストとして使用
できる。2層レジストに使用できるため、0.5μm以
下の微細パターンが高アスペクト比で形成できる利点が
ある。
Furthermore, since it contains silicon, it has high resistance to oxygen plasma, and therefore can be used as an upper layer resist of a two-layer resist. Since it can be used in a two-layer resist, it has the advantage that fine patterns of 0.5 μm or less can be formed with a high aspect ratio.

特許出願人  日本電信電話株式会社Patent applicant: Nippon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】 1、オキシラン環を有するアルコキシシランの加水分解
・縮合によって得られるポリシロキサンの水酸基の一部
あるいは全部をアルキル基、置換アルキル基、芳香族基
、又はシリル基で保護したことを特徴とするシロキサン
ポリマー。 2、請求項1に記載のシロキサンポリマーと酸発生剤と
を包含してなることを特徴とするレジスト組成物。
[Claims] 1. Part or all of the hydroxyl groups of a polysiloxane obtained by hydrolysis/condensation of an alkoxysilane having an oxirane ring are protected with an alkyl group, a substituted alkyl group, an aromatic group, or a silyl group. A siloxane polymer characterized by: 2. A resist composition comprising the siloxane polymer according to claim 1 and an acid generator.
JP2177255A 1990-07-06 1990-07-06 Siloxane polymer and resist composition Pending JPH0470662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2177255A JPH0470662A (en) 1990-07-06 1990-07-06 Siloxane polymer and resist composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2177255A JPH0470662A (en) 1990-07-06 1990-07-06 Siloxane polymer and resist composition

Publications (1)

Publication Number Publication Date
JPH0470662A true JPH0470662A (en) 1992-03-05

Family

ID=16027879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2177255A Pending JPH0470662A (en) 1990-07-06 1990-07-06 Siloxane polymer and resist composition

Country Status (1)

Country Link
JP (1) JPH0470662A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05333553A (en) * 1992-06-03 1993-12-17 Oki Electric Ind Co Ltd Silicone resin and composition using that
JPH0680879A (en) * 1992-08-31 1994-03-22 Oki Electric Ind Co Ltd Silicone resin composition and production of silicic acid glass thin film using the same
EP1142928A1 (en) * 2000-04-07 2001-10-10 JSR Corporation Polysiloxane, method of manufacturing same, silicon-containing alicyclic compound, and radiation-sensitive resin compounds
JP2002055457A (en) * 2000-05-31 2002-02-20 Shipley Co Llc Photoresist for imaging with high energy radiation
US7031591B2 (en) 2002-07-18 2006-04-18 Shin-Etsu Chemical Co., Ltd. Optical waveguide, forming material and making method
JP2015038221A (en) * 2007-02-27 2015-02-26 エイゼット・エレクトロニック・マテリアルズ・ユーエスエイ・コーポレイション Silicon-based composition for antireflection coating

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05333553A (en) * 1992-06-03 1993-12-17 Oki Electric Ind Co Ltd Silicone resin and composition using that
JPH0680879A (en) * 1992-08-31 1994-03-22 Oki Electric Ind Co Ltd Silicone resin composition and production of silicic acid glass thin film using the same
EP1142928A1 (en) * 2000-04-07 2001-10-10 JSR Corporation Polysiloxane, method of manufacturing same, silicon-containing alicyclic compound, and radiation-sensitive resin compounds
JP2002055457A (en) * 2000-05-31 2002-02-20 Shipley Co Llc Photoresist for imaging with high energy radiation
US7031591B2 (en) 2002-07-18 2006-04-18 Shin-Etsu Chemical Co., Ltd. Optical waveguide, forming material and making method
JP2015038221A (en) * 2007-02-27 2015-02-26 エイゼット・エレクトロニック・マテリアルズ・ユーエスエイ・コーポレイション Silicon-based composition for antireflection coating

Similar Documents

Publication Publication Date Title
US5457003A (en) Negative working resist material, method for the production of the same and process of forming resist patterns using the same
KR20160147652A (en) Wet-strippable silicon-containing antireflectant
JP4244315B2 (en) Resist pattern forming material
KR20110096155A (en) Wet-etchable antireflective coatings
KR20090128386A (en) Silicone coating composition
JPH0987391A (en) Polysiloxane compound and positive resist material
TWI490656B (en) Switchable antireflective coatings
JP2021534315A (en) Silanol-containing organic-non-organic hybrid coating for high resolution patterning
JPH07331173A (en) Coating composition for formation of optical material and optical material
JPH04338958A (en) Resist material, its manufacture, and pattern forming method using same
EP0466025B1 (en) Resist material, method for the production of the same and process of forming resist patterns using the same
JP2005352107A (en) Sacrificial film forming composition, pattern forming method, sacrificial film and method for removing the same
JP2001083710A (en) Material for electronic parts and electronic parts obtained by curing the material
JPH06273936A (en) Photosensitive resin composition and pattern forming method using the same
JPH0470662A (en) Siloxane polymer and resist composition
JPH03287627A (en) Polysiloxane
JPH03288857A (en) Resist material and photosensitive resin composition
JPH0425530A (en) Siloxane polymer and resist composition
JPH03260653A (en) Pattern forming method and photosensitive resin composition
JPH06248082A (en) Method of synthesis of polysilsesquioxane and utilization of obtained compound
JPH1160734A (en) Polymer, resist resin composition and formation of pattern using the same
JPH03100021A (en) Polysiloxane
JPH03100553A (en) Resist material and photosensitive resin composition
JPWO2022059506A5 (en)
JPH0470663A (en) Photosensitive resin composition