JPH0470546B2 - - Google Patents

Info

Publication number
JPH0470546B2
JPH0470546B2 JP28970887A JP28970887A JPH0470546B2 JP H0470546 B2 JPH0470546 B2 JP H0470546B2 JP 28970887 A JP28970887 A JP 28970887A JP 28970887 A JP28970887 A JP 28970887A JP H0470546 B2 JPH0470546 B2 JP H0470546B2
Authority
JP
Japan
Prior art keywords
evaporator
temperature
evaporators
defrosting
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP28970887A
Other languages
Japanese (ja)
Other versions
JPH01131874A (en
Inventor
Toshio Sagara
Toshiaki Myatake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP28970887A priority Critical patent/JPH01131874A/en
Publication of JPH01131874A publication Critical patent/JPH01131874A/en
Publication of JPH0470546B2 publication Critical patent/JPH0470546B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Defrosting Systems (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は3個の蒸発器を備えた低温シヨーケー
スに関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a low-temperature show case equipped with three evaporators.

(ロ) 従来の技術 低温シヨーケースの除霜時、貯蔵室の温度上昇
の抑制を図るために、少なくとも2個の蒸発器を
備え、一方の蒸発器の除霜を行なう間、他方の蒸
発器の冷却を行なう除霜、冷却併用方式がとられ
るものが多くなつてきた。
(b) Prior art In order to suppress the temperature rise in the storage room when defrosting a low-temperature storage case, at least two evaporators are provided, and while one evaporator is being defrosted, the other evaporator is not being defrosted. Increasingly, a combination of defrosting and cooling methods are being adopted.

この除霜、冷却併用方式としては、相互に並列
接続された複数個の蒸発器の総べてを冷気流循環
用の内層に配置する方式があり、かゝる方式は特
公昭62−25952号公報、特開昭60−256773号公報、
米国特許第4633677号で採用されている。
As a combined method for defrosting and cooling, there is a method in which all of a plurality of evaporators connected in parallel are arranged in an inner layer for circulating cold air. Publication, JP-A No. 60-256773,
Adopted in US Pat. No. 4,633,677.

(ハ) 発明が解決しようとする問題点 上記特公昭62−25952号公報に示された低温シ
ヨーケースは、3個の蒸発器を前後方向に重ね合
わせ夫々空気入口面及び空気出口面が同じ高さに
なるように内層に配置している関係上、設計時、
低温シヨーケースの奥行幅が決まつている場合に
は、内層によつて貯蔵室の奥行幅が減る問題点が
ある上、1個の蒸発器の除霜運転の間、隣接する
他方の蒸発器を冷却運転するために、各蒸発器が
相互に他方の蒸発器の温度の影響を受けやすくな
る。このため貯蔵室の設定温度を0℃以下とした
場合には、商品収納及び取出用の開口を閉塞する
エアーカーテンが昇温することを考慮して冷却運
転される蒸発器の冷媒蒸発温度を−10℃以下に設
定する必要があり、従つて、除霜運転されている
蒸発器で熱交換され過冷却液となる高圧液冷媒を
除霜熱源とするには、冷却運転されている蒸発器
の温度が低いために、除霜熱源の熱量が不足し、
設定された除霜時間例えば20分間中に除霜運転さ
れている蒸発器の霜を完全に除去することができ
ない問題点が生じた。又、霜残りの他の原因とし
ては、3個の蒸発器を冷却運転した後に、2個の
蒸発器の冷却運転を接続したまゝ、1個の蒸発器
を除霜運転に切り換えて冷却運転される蒸発器の
個数を減らすために、冷却運転中の蒸発器の冷媒
蒸発温度が極端に低下して冷却運転中の蒸発器へ
の着霜量が多くなることに併わせ、除霜熱源とな
る高圧液冷媒の熱量が不足し、除霜運転中の蒸発
器に霜残りが発生することになる。
(c) Problems to be solved by the invention The low-temperature show case shown in the above-mentioned Japanese Patent Publication No. 62-25952 has three evaporators stacked one on top of the other in the front and back direction, and the air inlet and air outlet surfaces of each are at the same height. Due to the fact that it is placed on the inner layer so that
If the depth of the low-temperature storage case is fixed, there is a problem that the inner layer reduces the depth of the storage chamber, and during defrosting operation of one evaporator, the adjacent evaporator must be Because of the cooling operation, each evaporator is mutually susceptible to the influence of the temperature of the other evaporator. For this reason, when the set temperature of the storage room is set to 0°C or lower, the refrigerant evaporation temperature of the evaporator that is operated for cooling is set to - It is necessary to set the temperature to 10℃ or less, and therefore, in order to use the high-pressure liquid refrigerant that undergoes heat exchange in the evaporator under defrosting operation and becomes supercooled liquid as the defrosting heat source, the temperature must be set at 10℃ or lower. Due to the low temperature, the amount of heat from the defrosting heat source is insufficient,
A problem has arisen in which the defrost cannot be completely removed from the evaporator during the defrosting operation during the set defrosting time, for example, 20 minutes. Another cause of residual frost is that after three evaporators are in cooling operation, two evaporators are connected to cooling operation, one evaporator is switched to defrosting operation, and then one evaporator is switched to defrosting operation. In order to reduce the number of evaporators used for cooling, the refrigerant evaporation temperature of the evaporator during cooling operation drops dramatically, and the amount of frost on the evaporator during cooling operation increases. The amount of heat in the high-pressure liquid refrigerant becomes insufficient, resulting in residual frost on the evaporator during defrosting operation.

又、特開昭60−256773号公報及び米国特許第
4633677号に示された低温シヨーケースは共に内
層の1部を内側路と外側路とに分け、相互に並列
接続された2個の蒸発器のうち一方を内側路に、
他方を外側路に夫々配置し、2個の蒸発器を冷却
運転した後、一方の蒸発器の冷却運転を接続した
まゝ、他方の蒸発器を除霜運転に切り換えるため
に、上記特公昭62−25952号公報と同様に冷却運
転中の蒸発器の冷媒蒸発温度が極端に低下して冷
却運転中の蒸発器への着霜量が多くなることに併
わせ、除霜熱源となる高圧液冷媒の熱量が不足
し、除霜運転中の蒸発器に霜残りが発生する問題
点が生じる。
Also, Japanese Patent Application Laid-Open No. 60-256773 and U.S. Patent No.
The low-temperature case shown in No. 4633677 both divides a part of the inner layer into an inner passage and an outer passage, and has two evaporators connected in parallel with each other, one of which is placed in the inner passage.
The other evaporator is placed in the outer path, and after cooling operation of the two evaporators, the cooling operation of one evaporator is kept connected and the other evaporator is switched to defrosting operation. - Similar to Publication No. 25952, the refrigerant evaporation temperature of the evaporator during cooling operation is extremely low, and the amount of frost on the evaporator during cooling operation is increasing. There is a problem in that the amount of heat is insufficient and frost remains on the evaporator during defrosting operation.

因に低温シヨーケースの周囲温度27℃、周囲湿
度70%の条件下で、第1、第2両蒸発器の冷媒蒸
発温度を−13℃とし、両蒸発器に源圧液冷媒を供
給して冷却作用をさせた後、一方の蒸発器に継続
して減圧液冷媒を供給すると共に、他方の蒸発器
への減圧液冷媒の供給中断を交互に繰り返すと、
第8図に示す如く減圧液冷媒が供給されている蒸
発器の冷媒蒸発温度が−20℃程度に低下するため
に冷却作用中の蒸発器の着霜量が増加するばりで
なく、循環される冷気流も低温となるために、減
圧液冷媒の供給を中断された除霜作用中の蒸発器
の除霜も進行せず、総体的に見れば低温シヨーケ
ースの着霜量が増えるという問題点が生じる。
Incidentally, under the conditions of the ambient temperature of the low-temperature case at 27°C and the ambient humidity of 70%, the refrigerant evaporation temperature of both the first and second evaporators is set to -13°C, and source pressure liquid refrigerant is supplied to both evaporators for cooling. After the evaporator is activated, if the reduced pressure liquid refrigerant is continuously supplied to one evaporator and the supply of the reduced pressure liquid refrigerant to the other evaporator is alternately interrupted,
As shown in Figure 8, the refrigerant evaporation temperature of the evaporator to which the reduced pressure liquid refrigerant is supplied drops to about -20°C, so the amount of frost on the evaporator increases during the cooling action, and the refrigerant is circulated. Since the cold air flow also becomes low temperature, the defrosting of the evaporator during the defrosting operation when the supply of reduced pressure liquid refrigerant is interrupted does not progress, and overall, the problem is that the amount of frost on the low-temperature case increases. arise.

(ニ) 問題点を解決するための手段 本発明は上記問題点を解決することを目的とす
るもので、その手段として相互に並列接続された
第1乃至第3蒸発器を備え、第1蒸発器が除霜さ
れているときには、第2、第3両蒸発器が冷却作
用をなし、第2蒸発器が除霜されているときには
第1、第3両蒸発器が冷却作用をなす冷凍装置
と、送風フアンを備え、その1部が分割板にて内
外に分けられ、前記第1蒸発器が配置される内側
路、前記第2蒸発器が配置される外側路を有する
内層と、送風フアン及び前記第3蒸発器を備えた
外層とを具備してなり、前記第2蒸発器は第1蒸
発器と、第3蒸発器との間に位置し、且つ内側半
分が第1蒸発器の外側半分に重なり、外側半分が
第3蒸発器の内側半分に重なるように配置されて
いる低温シヨーケースを提供する。
(d) Means for Solving the Problems The present invention aims to solve the above problems, and as a means thereof, first to third evaporators are connected in parallel to each other, and the first evaporator When the evaporator is being defrosted, both the second and third evaporators have a cooling effect, and when the second evaporator has been defrosted, both the first and third evaporators have a cooling effect. , a blower fan, a part of which is divided into an inner and outer layer by a dividing plate, and an inner layer having an inner path in which the first evaporator is disposed and an outer path in which the second evaporator is disposed; an outer layer having the third evaporator, the second evaporator is located between the first evaporator and the third evaporator, and the inner half is the outer half of the first evaporator. A low-temperature show case is provided, the outer half of which is arranged to overlap the inner half of the third evaporator.

(ホ) 作 用 実施例によれば、第1蒸発器14の除霜開始に
伴ない第1電気ヒータ16の加熱によつて内側路
28の空気温度Aのみが急激に上昇するが、内側
路28を通過することにより第1電気ヒータ16
で加熱され温度上昇した空気と、外側路29を通
過することより第2蒸発器15で冷却され温度低
下した空気とが内層6内で合流する関係上、エア
ーカーテンGAとして開口2に吹き出される冷気
流の温度は除霜の初期から中期にかけて0℃以下
に抑制されるので空気温度(A)も0℃以下に抑制さ
れ、しかも除霜の中期から後期にかけて第3蒸発
器19を通過した空気が0℃以下の冷気流として
開口2に吹き出されてエアーカーテンCAの温度
を引き下げるガードエアーカーテンGAとして作
用する関係上、空気温度(A)の上昇を0℃を跨がる
温度−℃〜1℃に抑制できる。
(e) Effect According to the embodiment, only the air temperature A of the inner passage 28 rises rapidly due to heating of the first electric heater 16 as defrosting of the first evaporator 14 starts; 28, the first electric heater 16
The air that has been heated and has a raised temperature, and the air that has passed through the outer path 29 and been cooled by the second evaporator 15 and has a lower temperature, merge in the inner layer 6, and are blown out to the opening 2 as an air curtain GA. Since the temperature of the cold air stream is suppressed to below 0°C from the early to middle stages of defrosting, the air temperature (A) is also suppressed to below 0°C, and the air that has passed through the third evaporator 19 from the middle to late stages of defrosting is also suppressed to below 0°C. is blown out into the opening 2 as a cold air flow of 0°C or less and acts as a guard air curtain GA that lowers the temperature of the air curtain CA. It can be suppressed to ℃.

又、仕切板4及び分割板27には共に同じ方向
に傾斜部21,30が形成されている関係上、第
1乃至第3各蒸発器14,15,19の配置状態
を平面的に見ると、第3蒸発器19の前半分に第
2蒸発器15の後半分が重なり、第2蒸発器15
の前半分に第1蒸発器14の後半分が重なること
になり、3個の蒸発器14,15,19が配置さ
れているにもかゝわらず、実質上2個の蒸発器1
4,19の配置スペースで3個の蒸発器14,1
5,19を配置できることになる。
Also, since the partition plate 4 and the dividing plate 27 are both formed with inclined portions 21 and 30 in the same direction, the arrangement of the first to third evaporators 14, 15, 19 is viewed from above. , the rear half of the second evaporator 15 overlaps the front half of the third evaporator 19, and the second evaporator 15
The rear half of the first evaporator 14 overlaps the front half of the first evaporator 14, and although three evaporators 14, 15, and 19 are arranged, there are actually two evaporators 1
3 evaporators 14,1 in a space of 4,19
5 and 19 can be placed.

(ヘ) 実施例 以下図面に基づいて本発明の実施例を説明する
と、第1図に示す1は前面に商品収納及び取出用
の開口2を形成した断熱壁3にて本体を構成して
なる低温シヨーケースで、前記断熱壁3の内壁よ
り適当間隔を存して第1、第2両仕切板4,5を
順次配設することにより、冷気流循環用の内層6
と、保護気流循環用の外層7と、複数枚の棚8を
備えた貯蔵室9と、前記開口2の上縁長手方向に
沿う前記内外両層6,7の吹出口10,11と、
前記開口2の下縁長手方向に沿い前記吹出口1
0,11に相対する前記内外両層6,7の吸込口
12,13とが形成される。
(F) Embodiments Below, embodiments of the present invention will be described based on the drawings. 1 shown in FIG. 1 has a main body made up of a heat insulating wall 3 having an opening 2 for storing and taking out products on the front side. In the low-temperature case, by sequentially disposing the first and second partition plates 4 and 5 at an appropriate distance from the inner wall of the heat insulating wall 3, an inner layer 6 for circulating cold air is formed.
, an outer layer 7 for protective airflow circulation, a storage chamber 9 equipped with a plurality of shelves 8, and air outlets 10, 11 of both the inner and outer layers 6, 7 along the longitudinal direction of the upper edge of the opening 2;
The air outlet 1 along the longitudinal direction of the lower edge of the opening 2
Suction ports 12 and 13 of both the inner and outer layers 6 and 7 facing the inner and outer layers 6 and 7 are formed.

前記内層6にはプレートフイン形をなし熱交換
容量が共に同じ第1、第2両蒸発器14,15
と、この両蒸発器の空気入口側の面となる下面に
設けられ、対応する蒸発器14,15の除霜時に
通電される第1、第2電気ヒータ16,17と、
第1図実線矢印の如く内層6の冷気流を強制循環
する軸流形の第1送風フアン18とが配置され、
又前記外層7にはプレートフイン形をなす第3蒸
発器19と、第1図1点鎖線矢印の如く外層7の
保護気流を強制循環する軸流形の第2送風フアン
20とが配置されている。前記第1、第2両送風
フアン18,20は常時運転され、第2送風フア
ン20よりも第1送風フアン18の送風量を多
く、且つ風速を速くするため、第1送風フアン1
8の個数を第2送風フアン20よりも多くしてい
る。
In the inner layer 6, there are first and second evaporators 14 and 15 which are plate-fin shaped and have the same heat exchange capacity.
and first and second electric heaters 16 and 17 that are provided on the lower surfaces of the two evaporators on the air inlet side and are energized during defrosting of the corresponding evaporators 14 and 15,
As shown by the solid line arrow in FIG. 1, an axial type first blower fan 18 for forcibly circulating the cold air flow in the inner layer 6 is arranged.
Further, a third evaporator 19 in the form of a plate fin and a second axial blower fan 20 for forcibly circulating the protective air flow in the outer layer 7 are disposed in the outer layer 7, as indicated by the dashed line arrow in FIG. There is. Both the first and second blowing fans 18 and 20 are constantly operated, and in order to make the amount of air blown by the first blowing fan 18 larger and the wind speed faster than the second blowing fan 20, the first blowing fan 1
8 is made larger than the number of second blowing fans 20.

前記第1仕切板4の背部部分には後下がりに傾
斜する傾斜部21が形成され、又底壁部分には垂
直な立上部22が形成されている関係上、前記内
外両層6,7内の背部区域及び底部区域には通路
幅が広くなる拡路23,24,25,26が形成
され、前記内層6の背部区域の拡路23には第
1、第2両蒸発器14,15、前記外層7の背部
区域の拡路24には第3蒸発器19、前記内層6
の底部区域の拡路25には第1送風フアン18、
前記外層7の底部区域の拡路26には第2送風フ
アン20が夫々配置されている。
The back part of the first partition plate 4 is formed with a sloped part 21 that slopes backward, and the bottom wall part is formed with a vertical rising part 22, so that the inner and outer layers 6, 7 are Enlarged passages 23, 24, 25, 26 are formed in the back area and bottom area of the inner layer 6, and the enlarged passages 23 in the back area of the inner layer 6 are provided with both first and second evaporators 14, 15, A third evaporator 19 is installed in the enlarged channel 24 in the back area of the outer layer 7 and the inner layer 6
A first blower fan 18 is installed in the expanded channel 25 in the bottom area of the
A second blower fan 20 is arranged in each of the enlarged channels 26 in the bottom area of the outer layer 7 .

27は前記内層6の拡路23内に配置され、こ
の拡路23を内側路28と外側路29とに内外2
分するステンレス等金属製の分割板で、その中央
には後下がりに傾斜する傾斜部30が形成され、
又前記第1電気ヒータ16よりも下方に延びる下
部には、前記第1蒸発器14の下面と相対するフ
ランジ31を有する延出部32が形成されてい
る。この分割板27が傾斜部30を形成したこと
により、内側路28の下部及び外側路29の上部
は前記第1、第2両蒸発器14,15を配置する
ための拡幅路33,34となる一方で、内側路2
8の上部及び外側路29の下部は冷気流を絞るた
めの狭幅路35,36となる。又前記分割板27
により内側路28の入口幅は外側路29の入口幅
の約2倍となる一方で、外側路29の出口幅は内
側路28の出口幅の約2倍となつており、着霜の
ない状態における両蒸発器14,15の通風量を
一定としている。
27 is disposed within the enlarged channel 23 of the inner layer 6, and connects the enlarged channel 23 to an inner channel 28 and an outer channel 29.
A dividing plate made of metal such as stainless steel, in the center of which is formed an inclined part 30 that slopes downward from the rear.
Further, an extending portion 32 having a flange 31 facing the lower surface of the first evaporator 14 is formed at a lower portion extending below the first electric heater 16 . Since the dividing plate 27 forms the inclined portion 30, the lower part of the inner passage 28 and the upper part of the outer passage 29 become widened passages 33, 34 for arranging the first and second evaporators 14, 15. On the other hand, medial tract 2
The upper part of 8 and the lower part of the outer passage 29 form narrow passages 35 and 36 for constricting the cold air flow. Also, the dividing plate 27
Therefore, the entrance width of the inner passage 28 is approximately twice the entrance width of the outer passage 29, while the exit width of the outer passage 29 is approximately twice the exit width of the inner passage 28, so that no frost is formed. The amount of ventilation of both evaporators 14 and 15 is kept constant.

前記第1仕切板4及び分割板27には共に同じ
方向に傾斜部21,30が形成されている関係
上、第1乃至第3各蒸発器14,15,19の配
置状態を平面的に見ると、第3蒸発器19の前半
分に第2蒸発器15の後半分が重なり、第2蒸発
器15の前半分に第1蒸発器14の後半分が重な
ることになり、3個の蒸発器14,15,19が
配置されているにもかゝわらず、実質上2個の蒸
発器14,19の配置スペースで3個の蒸発器1
4,15,19を配置できる構成となつている。
Since the first partition plate 4 and the dividing plate 27 are both formed with inclined portions 21 and 30 in the same direction, the arrangement of the first to third evaporators 14, 15, 19 is viewed from above. Then, the rear half of the second evaporator 15 overlaps the front half of the third evaporator 19, and the rear half of the first evaporator 14 overlaps the front half of the second evaporator 15, so that three evaporators 14, 15, and 19, three evaporators 1 are actually installed in the space for two evaporators 14, 19.
4, 15, and 19 can be arranged.

37は前記第1蒸発器14の前面に配置された
ステンレス等金属製の第3仕切板で、この仕切板
の配置に伴ない、前記第2仕切板5の背壁38下
部との間に上部が開口し、下部が閉塞された側路
39が形成される。40は前記背壁38下部に形
成され、前記側路39と貯蔵室9の下部区域とを
連通させる多数の通孔である。
Reference numeral 37 denotes a third partition plate made of metal such as stainless steel and placed in front of the first evaporator 14. Due to the arrangement of this partition plate, there is a space between the upper part and the lower part of the back wall 38 of the second partition plate 5. is open, and a side channel 39 whose lower part is closed is formed. Reference numeral 40 designates a number of holes formed in the lower part of the back wall 38 to communicate the side passage 39 with the lower area of the storage chamber 9.

第2図は前記低温シヨーケース1を冷却するた
めの冷凍装置を示し、この冷凍装置は冷媒圧縮機
41、空冷式凝縮器42、受液器43、乾燥器4
4、サイトグラス45、第1乃至第3各電磁弁4
6,47,48、減圧装置である第1乃至第3各
膨張弁49,50,51、前記第1乃至第3各蒸
発器14,15,19、気液分離器52を高圧ガ
ス管53、高圧液管54、この高圧液管に入口が
接続される3本の高圧液技管55,56,57、
3本の低圧液管58,59,60、3本の低圧ガ
ス枝管61,62,63、この各低圧ガス枝管の
出口が接続される低圧ガス管64を環状に接続す
ることにより、前記第1乃至第3各蒸発器14,
15,19が対応する第1乃至第3各電磁弁4
6,47,48及び膨張弁49,50,51と直
列関係をなし、且つ相互に並列関係をなす閉回路
として構成されている。
FIG. 2 shows a refrigeration system for cooling the low-temperature show case 1, which includes a refrigerant compressor 41, an air-cooled condenser 42, a liquid receiver 43, and a dryer 4.
4, sight glass 45, first to third solenoid valves 4
6, 47, 48, first to third expansion valves 49, 50, 51 which are pressure reducing devices, first to third evaporators 14, 15, 19, gas-liquid separator 52 to high pressure gas pipe 53, High pressure liquid pipe 54, three high pressure liquid pipes 55, 56, 57 whose inlets are connected to this high pressure liquid pipe,
By connecting three low pressure liquid pipes 58, 59, 60, three low pressure gas branch pipes 61, 62, 63, and a low pressure gas pipe 64 to which the outlet of each low pressure gas branch pipe is connected in an annular manner, the above-mentioned Each of the first to third evaporators 14,
15, 19 correspond to each of the first to third solenoid valves 4
6, 47, 48 and expansion valves 49, 50, 51 in series, and are configured as a closed circuit in parallel with each other.

第3図は冷凍装置の他の実施例を示し、上記第
2図で示した第1乃至第3各電磁弁46,47,
48及び第1乃至第3各膨張弁49,50,51
の代わりに開閉機能及び減圧機能を備えステツピ
ングモータにより弁軸を上下方向進退自在となす
第1乃至第3各電子膨張弁65,66,67を用
いてもよい。
FIG. 3 shows another embodiment of the refrigeration system, in which the first to third solenoid valves 46, 47 shown in FIG.
48 and each of the first to third expansion valves 49, 50, 51
Instead, first to third electronic expansion valves 65, 66, and 67 may be used, each of which has an opening/closing function and a pressure reducing function, and whose valve shaft can be moved forward and backward in the vertical direction by a stepping motor.

第4図は前記冷凍装置を作動させるための電気
回路で、3相200V電源のR、S、T各相には後
述する圧縮機用電磁接触器52Cの接点52Ca
を介して圧縮機モータCMが接続されている。前
記S相には運転スイツチSWが接続され、又R、
S両相間にはデユーテイサイクル用(以下D用と
いう)タイマTが接続されている。このD用タイ
マTは例えば30分用のサイクルタイマであつて、
駆動開始から25分間その接点Taを閉じ、残りの
5分間前記接点Taを開き、この5分が経過する
と初期状態にリセツトされる機構となつている。
尚、前記接点Taの閉、開両時間は制御対象とな
る貯蔵室9の設定温度に応じてその長さを任意に
変更できる。THは前記貯蔵室9の温度を制御す
るサーモスタツト等の温度スイツチで、前記接点
Ta及びリレーXと直列回路を構成する一方、前
記D用タイマTに並列接続されている。この温度
スイツチTHは例えば−6℃〜+5℃の範囲で±
0.5℃のデイフアレンシヤルをもつて開閉される
機構となつているが、温度スイツチTHの特性か
ら冷気温度の変化に即座に追従できない関係上、
設定温度を−3℃(下限設定温度−3.5℃、上限
設定温度−2.5℃)としても実験は−4℃で開動
作、−1℃で閉動作を行ない、貯蔵室9を約−3
℃の平均温度に制御する。52Cは圧縮機モータ
CMを駆動させるための電磁接触器で、前記冷凍
装置の高圧、低圧両スイツチ63H,63Lと直
列回路を構成する一方、前記D用タイマTに対し
て並列接続されている。STは霜取用(以下S用
という)タイマで、第1乃至第4各常開接点
STa1,STa2,STa3,STa4と、第1、第2両常
閉接点STb1,STb2とを備えている。このS用タ
イマSTは例えば6時間タイマからなるもので、
駆動開始から2時間45分経過すると、15分間第1
常閉接点STb1を開、第1、第3両常開接点
STa1,STa3を閉とする第1出力を出し、駆動開
始から5時間45分経過すると、15分間第2常閉接
点STb2を開、第2、第4両常開接点STa2
STa4を閉とする第2出力を出し、6時間経過す
ると初期状態にリセツトされ、以降同様に第1、
第2両出力を出す機構となつている。前記第1電
磁弁46は前記S用タイマSTの第1常閉接点
STb1及び前記リレーXの常開接点Xaと直列回路
を構成しており、又前記第2電磁弁47は前記S
用タイマSTの第2常閉接点STb2と直列接続され
ると共に、前記第1常閉接点STb1及び第1電磁
弁46に対して並列接続されている。又前記第3
電磁弁48は前記リレーXの常閉接点Xbと直列
接続されている。この常閉接点Xbには前記S用
タイマSTの第3、第4両常開接点STa3,STa4
が並列接続されている。又、前記第1電気ヒータ
16は前記S用タイマSTの第1常開接点STa1
び第1蒸発器14の温度乃至はこの蒸発器14を
通過した空気の温度に基づいて開閉される第1高
温復帰サーモスイツチDT1と直列接続され、又前
記第2電気ヒータ17は前記S用タイマSTの第
2常開接点STa2及び第3蒸発器15の温度乃至
はこの蒸発器を通過した空気の温度に基づいて開
閉される第2高温復帰サーモスイツチDT2と直列
接続されている。前記第1、第2両高温復帰サー
モスイツチDT1,DT2は5℃以上で開となつて第
1、第2両電気ヒータ16,17を遮断状態と
し、又5℃未満で閉となつて第1、第2両電気ヒ
ータ16,17を通電可能状態となすものであ
る。尚、前記第1、第2両送風フアン18,20
は運転スイツチSWの投入に伴ない連続運転され
るように接続されている。
FIG. 4 shows an electric circuit for operating the refrigeration system, and each phase of the 3-phase 200V power supply is connected to a contact 52Ca of an electromagnetic contactor 52C for the compressor, which will be described later.
The compressor motor CM is connected through. The operation switch SW is connected to the S phase, and the R,
A duty cycle (hereinafter referred to as D) timer T is connected between the S and both phases. This timer T for D is, for example, a 30 minute cycle timer,
The contact Ta is closed for 25 minutes from the start of driving, the contact Ta is opened for the remaining 5 minutes, and after the 5 minutes have passed, the device is reset to the initial state.
Incidentally, the length of the closing and opening times of the contact Ta can be arbitrarily changed depending on the set temperature of the storage chamber 9 to be controlled. TH is a temperature switch such as a thermostat that controls the temperature of the storage chamber 9;
It constitutes a series circuit with Ta and relay X, and is connected in parallel to the D timer T. For example, this temperature switch TH is ±6°C to +5°C.
It is a mechanism that opens and closes with a differential of 0.5℃, but due to the characteristics of the temperature switch TH, it cannot immediately follow changes in cold air temperature.
Even if the set temperature was set at -3℃ (lower limit set temperature -3.5℃, upper limit set temperature -2.5℃), the experiment was performed by opening at -4℃ and closing at -1℃.
Control to an average temperature of °C. 52C is compressor motor
This is an electromagnetic contactor for driving the CM, and forms a series circuit with both the high-voltage and low-voltage switches 63H and 63L of the refrigeration system, and is connected in parallel to the D timer T. ST is a defrost timer (hereinafter referred to as S timer), and each of the 1st to 4th normally open contacts
It includes STa 1 , STa 2 , STa 3 , STa 4 and both first and second normally closed contacts STb 1 and STb 2 . This S timer ST consists of a 6-hour timer, for example.
After 2 hours and 45 minutes from the start of operation, the first 15 minute
Open normally closed contact STb 1 , both 1st and 3rd normally open contacts
The first output that closes STa 1 and STa 3 is output, and when 5 hours and 45 minutes have passed from the start of driving, the second normally closed contact STb 2 is opened for 15 minutes, and both the second and fourth normally open contacts STa 2 ,
The second output that closes STa 4 is output, and after 6 hours, it is reset to the initial state, and from then on, the first,
It has a mechanism that outputs the second output. The first solenoid valve 46 is the first normally closed contact of the S timer ST.
A series circuit is formed with STb 1 and the normally open contact Xa of the relay X, and the second solenoid valve 47 is connected to the S
It is connected in series with the second normally closed contact STb 2 of the timer ST, and in parallel with the first normally closed contact STb 1 and the first solenoid valve 46 . Also, the third
The solenoid valve 48 is connected in series with the normally closed contact Xb of the relay X. This normally closed contact Xb includes the third and fourth normally open contacts STa 3 and STa 4 of the S timer ST.
are connected in parallel. The first electric heater 16 is a first electrical heater that is opened and closed based on the first normally open contact STa 1 of the S timer ST and the temperature of the first evaporator 14 or the temperature of the air that has passed through the evaporator 14. The second electric heater 17 is connected in series with the high temperature return thermoswitch DT 1 , and the second electric heater 17 is connected to the second normally open contact STa 2 of the S timer ST and the temperature of the third evaporator 15 or the temperature of the air passing through this evaporator. It is connected in series with a second high temperature return thermoswitch DT 2 that opens and closes based on temperature. Both the first and second high temperature return thermoswitches DT 1 and DT 2 are opened at temperatures above 5°C to cut off both the first and second electric heaters 16 and 17, and closed at temperatures below 5°C. Both the first and second electric heaters 16 and 17 are enabled to be energized. Incidentally, both the first and second blowing fans 18, 20
is connected to operate continuously when the operation switch SW is turned on.

次に第1図乃至第4図を参照して低温シヨーケ
ース1の運転について説明する。
Next, the operation of the low-temperature show case 1 will be explained with reference to FIGS. 1 to 4.

運転スイツチ(SW)を閉じると、D用タイマ
T及びS用タイマSTが駆動されることに併わせ、
電磁接触器52Cが励磁され、更に第1、第2両
送風フアン18,20が運転される。前記電磁接
触器52Cの励磁に伴ない接点52Caが閉じて
圧縮機モータCMが駆動されて圧縮機41が運転
され、冷媒循環が開始される。又、前記Dタイマ
Tへの通電と同時に接点Taが閉じ、この接点Ta
及び温度スイツチTHを通してリレーXが励磁さ
れて常開接点Xaが閉じると共に、常閉接点Xbが
開き、第1、第2両電磁弁46,47は第1、第
2両常閉接点STb1,STb2及び常開接点Xaを通
して通電開放されると共に、第3電磁弁48は非
通電となつて閉鎖される。前記第1、第2両電磁
弁46,47の開放に伴ない第1、第2両蒸発器
14,15の冷却運転即ち第1モードが開始さ
れ、第1、第2両膨張弁49,50を夫々通して
第1、第2両蒸発器14,15に減圧液冷媒が供
給されて内層6を強制循環されている冷気流と熱
交換される。この熱交換を繰り返すうことにより
冷気流の温度は徐々に下がり、この冷気流により
第1図に示す如く開口2に形成されるエアーカー
テンCAも冷たくなる。尚、第3蒸発器19には
減圧液冷媒が供給されないので、外層7を強制循
環されている保護気流は、前記エアーカーテン
CAの外側にガードエアーカーテンGAとして形
成されたときに前記冷気流の影響により若干温度
を引き下げられることになる。前記第1、第2両
蒸発器14,15の冷却運転中、冷気温度が温度
スイツチTHの下限設定地に達して温度スイツチ
THが開となるサーモオフ時間のとき、又はD用
タイマTのヂユーテイオフ時間となつて接点Ta
が開となつた第2モードのときには、リレーXが
非励磁となつて常開接点Xaが開、常閉接点Xbが
閉となり、この開閉動作に伴ない第1、第2両電
磁弁46,47が非通電となつて共に閉鎖される
一方、第3電磁弁48は常閉接点Xbを通して通
電開放される。前記第1、第2両電磁弁46,4
7の閉鎖に伴ない第1、第2両蒸発器14,15
への減圧液冷媒の供給が中断され、代わりに第3
蒸発器19に減圧液冷媒が供給されて外層7を強
制循環されている保護気流と熱交換される。この
熱交換をサーモオフ時間又はデユーテイオフ時間
の間、繰り返すことにより保護気流の温度は徐々
に下がり、この保護気流でもつて形成されるガー
ドエアーカーテンGAも冷たくなり、冷気流によ
るエアーカーテンGAの温度に近づくことにな
る。この間、第1、第2両蒸発器14,15は第
1送風フアン18によつて強制循環される冷気流
でもつてオフサイクル除霜される。尚、第3蒸発
器19に付着した霜はサーモオン時間及びデユー
テイオン時間に保護気流によつてオフサイクル除
霜される。
When the operation switch (SW) is closed, timer T for D and timer ST for S are driven.
The electromagnetic contactor 52C is excited, and both the first and second blowing fans 18, 20 are operated. As the electromagnetic contactor 52C is energized, the contact 52Ca is closed, the compressor motor CM is driven, the compressor 41 is operated, and refrigerant circulation is started. Also, at the same time as the D timer T is energized, the contact Ta closes.
Relay X is energized through temperature switch TH and normally open contact Xa is closed, and normally closed contact Xb is opened . The third solenoid valve 48 is de-energized and closed while being energized and opened through STb 2 and the normally open contact Xa. As both the first and second solenoid valves 46, 47 are opened, the cooling operation of the first and second evaporators 14, 15, that is, the first mode is started, and both the first and second expansion valves 49, 50 are opened. The reduced pressure liquid refrigerant is supplied to both the first and second evaporators 14 and 15 through the evaporators 14 and 15, respectively, and exchanges heat with the cold air flow that is being forcedly circulated through the inner layer 6. By repeating this heat exchange, the temperature of the cold air stream gradually decreases, and the air curtain CA formed in the opening 2 also becomes cold due to this cold air stream, as shown in FIG. Incidentally, since the reduced pressure liquid refrigerant is not supplied to the third evaporator 19, the protective air flow forced to circulate through the outer layer 7 is not supplied to the third evaporator 19.
When a guard air curtain GA is formed outside the CA, the temperature will be lowered slightly due to the influence of the cold air flow. During the cooling operation of both the first and second evaporators 14 and 15, the temperature of the cold air reaches the lower limit setting of the temperature switch TH, and the temperature switch is turned off.
When the thermo-off time is reached when TH is open, or when the duty-off time of timer T for D is reached, contact Ta is opened.
When in the second mode, in which the relay 47 are de-energized and closed together, while the third solenoid valve 48 is energized and opened through the normally closed contact Xb. Both the first and second solenoid valves 46, 4
Due to the closure of 7, both the first and second evaporators 14, 15
The supply of vacuum liquid refrigerant to the third
The reduced pressure liquid refrigerant is supplied to the evaporator 19 and undergoes heat exchange with the protective air flow that is forcedly circulated through the outer layer 7 . By repeating this heat exchange during the thermo-off time or duty-off time, the temperature of the protective airflow gradually decreases, and the guard air curtain GA formed by this protective airflow also becomes colder, approaching the temperature of the air curtain GA caused by the cold airflow. It turns out. During this time, both the first and second evaporators 14 and 15 are subjected to off-cycle defrosting with a cold air flow forced to be circulated by the first blower fan 18. Note that the frost adhering to the third evaporator 19 is defrosted in the off-cycle by the protective air flow during the thermo-on time and the duty-on time.

そして冷気温度が温度スイツチTHの上限設定
地に達して温度スイツチTHが閉となり、且つデ
ユーテイオン時間となつて接点Taが閉となつた
ときには、リレーXが励磁され常開接点Xaが閉、
常閉接点Xbが開となつて第1、第2両電磁弁4
6,47が通電開放される一方、第3電磁弁48
が非通電閉鎖され、上述した第1、第2両蒸発器
14,15による冷却運転即ち第1モードに復帰
する。尚、この冷却運転中にも上述した第2モー
ド即ちサーモオフ時間又はデユーテイオフ時間が
数回とられる。
Then, when the cold air temperature reaches the upper limit setting of the temperature switch TH and the temperature switch TH is closed, and the duty ion time is reached and the contact Ta is closed, the relay X is energized and the normally open contact Xa is closed.
When the normally closed contact Xb opens, both the first and second solenoid valves 4
6 and 47 are energized and opened, while the third solenoid valve 48
is closed and de-energized, and the cooling operation by both the first and second evaporators 14 and 15 described above, that is, returns to the first mode. It should be noted that during this cooling operation, the above-mentioned second mode, that is, the thermo-off time or duty-off time is taken several times.

冷却運転が進行して第1、第2両蒸発器14,
15の冷却運転の開始、即ち前記S用タイマST
の駆動から2時間45分経過すると、S用タイマ
STから15分間第1、第3両常開接点STa1
STa3を閉、第1常閉接点STb1を開とする第1出
力が出され、第1電気ヒータ16が通電されると
共に、第3常開接点STa3を通して第3電磁弁4
8が通電開放される反面、第1電磁弁46が非通
電閉鎖となつて第1蒸発器14への減圧液冷媒の
供給が中断され、第1蒸発器14の除霜運転即ち
第3モードとなる。この除霜運転の間、D用タイ
マTの動作に関係なく第3電磁弁48が開放され
て第3蒸発器19が冷却運転されると共に、引き
続き第2蒸発器15も冷却運転され、外層7を強
制循環されている保護気流と、内層6の外側路2
9を通過中の冷気流と冷却され、又、第1蒸発器
14の配置された内層6の内側路28を通過中の
冷気流は第1電気ヒータ16の加熱によつて徐々
に昇温する。即ち第1蒸発器14の除霜運転に伴
ない、第2、第3両蒸発器15,19が冷却運転
されることになり、この間、D用タイマTの開動
作は有効に作用しない。
As the cooling operation progresses, both the first and second evaporators 14,
15, the start of the cooling operation, that is, the S timer ST
When 2 hours and 45 minutes have passed since the S timer
15 minutes from ST both 1st and 3rd normally open contacts STa 1 ,
A first output that closes STa 3 and opens the first normally closed contact STb 1 is output, energizing the first electric heater 16 and connecting the third solenoid valve 4 through the third normally open contact STa 3 .
8 is energized and opened, on the other hand, the first solenoid valve 46 is de-energized and closed, and the supply of reduced pressure liquid refrigerant to the first evaporator 14 is interrupted, and the first evaporator 14 is in defrosting operation, that is, in the third mode. Become. During this defrosting operation, the third solenoid valve 48 is opened and the third evaporator 19 is operated for cooling regardless of the operation of the D timer T, and the second evaporator 15 is also operated for cooling, and the outer layer 7 Protective airflow that is forced to circulate through the outer passage 2 of the inner layer 6
The temperature of the cold air flowing through the inner passage 28 of the inner layer 6 in which the first evaporator 14 is arranged is gradually increased by the heating of the first electric heater 16. . That is, in conjunction with the defrosting operation of the first evaporator 14, both the second and third evaporators 15 and 19 are operated for cooling, and during this period, the opening operation of the D timer T does not work effectively.

この第1蒸発器14の除霜運転が進行して第1
蒸発器14を通過した冷気流の温度が5℃に達す
ると、第1高温復帰サーモスイツチDT1が開とな
つて第1電気ヒータ16が非通電となり、この後
の除霜終了時刻迄はドレンを排出するための水切
り時間となる。設定された除霜時間が過ぎると、
第1蒸発器14に減圧液冷媒が供給され、第1、
第2両蒸発器14,15双方の冷却運転即ち第1
モードとなる一方で、第3蒸発器19は減圧液冷
媒の供給を中断されることになり、第3蒸発器1
9に付着した霜はサーモオン及びデユーテイオン
時間中に保護気流によつてオフサイクル除霜され
ることになる。尚、この冷却運転中にも上述した
第2モード即ちサーモオフ又はデユーテイオフ時
間が数回とられることになる。
As the defrosting operation of the first evaporator 14 progresses, the first
When the temperature of the cold air flow that has passed through the evaporator 14 reaches 5°C, the first high temperature return thermoswitch DT 1 is opened, the first electric heater 16 is de-energized, and the drain is turned off until the defrosting end time. This is the time to drain the water. When the set defrost time has passed,
A reduced pressure liquid refrigerant is supplied to the first evaporator 14;
Cooling operation of both the second evaporators 14 and 15, that is, the first
mode, the supply of reduced pressure liquid refrigerant to the third evaporator 19 is interrupted, and the third evaporator 1
9 will be defrosted off-cycle by the protective air flow during the thermo-on and duty-on periods. It should be noted that during this cooling operation, the above-mentioned second mode, that is, thermo-off or duty-off time will be taken several times.

更に冷却運転が進行して第1、第2両蒸発器1
4,15の冷却運転の開始、即ち前記S用タイマ
STの駆動から5時間45分経過すると、S用タイ
マSTから15分間第2、第4両常開接点STa2
STa4を閉、第2常閉接点STb2を開とする第2出
力が出され、第2電気ヒータ17が通電されると
共に、第4常開接点STa4を通して第3電磁弁4
8が通電開放される反面、第2電磁弁47が非通
電閉鎖となつて第2蒸発器15への減圧液冷媒の
供給が中断され、第2蒸発器15の除霜運転即ち
第4モードとなる。この除霜運転の間、D用タイ
マTの動作に関係なく第3電磁弁48が開放され
て第3蒸発器19が冷却運転されると共に、引き
続き第1蒸発器14も冷却運転され、外層7を強
制循環されている保護気流と、内層6の内側路2
8を通過中の冷気流とが冷却され、又、第2蒸発
器15の配置された内層6の外側路29を通過中
の冷気流は第2電気ヒータ17の加熱によつて
徐々に昇温する。即ち第2蒸発器15の除霜運転
に伴ない、第1、第3両蒸発器14,19が冷却
運転されることになり、この間、D用タイマTの
開動作は有効に作用しない。
As the cooling operation further progresses, both the first and second evaporators 1
4 and 15, the start of the cooling operation, that is, the S timer
When 5 hours and 45 minutes have passed since ST was driven, both the second and fourth normally open contacts STa 2 ,
A second output that closes STa 4 and opens the second normally closed contact STb 2 is output, energizing the second electric heater 17 and connecting the third solenoid valve 4 through the fourth normally open contact STa 4.
8 is energized and opened, while the second solenoid valve 47 is de-energized and closed, and the supply of reduced pressure liquid refrigerant to the second evaporator 15 is interrupted, and the second evaporator 15 is in defrosting operation, that is, in the fourth mode. Become. During this defrosting operation, the third solenoid valve 48 is opened and the third evaporator 19 is operated for cooling regardless of the operation of the D timer T, and the first evaporator 14 is also operated for cooling, and the outer layer 7 Protective airflow that is forced to circulate and the inner passage 2 of the inner layer 6
The cold air flow passing through the inner layer 6 is cooled, and the temperature of the cold air flow passing through the outer passage 29 of the inner layer 6 where the second evaporator 15 is arranged is gradually increased by heating by the second electric heater 17. do. That is, in conjunction with the defrosting operation of the second evaporator 15, both the first and third evaporators 14 and 19 are operated for cooling, and during this time, the opening operation of the D timer T does not work effectively.

この第2蒸発器15の除霜運転が進行して第2
蒸発器15を通過した冷気流の温度が5℃に達す
ると、第2高温復帰サーモスイツチDT2が開とな
つて第2電気ヒータ17が非通電となり、この後
の除霜終了時刻迄はドレンを排出するための水切
り時間となる。設定された除霜時間が過ぎると、
第2蒸発器15に減圧液冷媒が供給され、第1、
第2両蒸発器14,15双方の冷却運転即ち第1
モードとなる一方で、第3蒸発器19は減圧液冷
媒の供給を中断させることになり、第3蒸発器1
9に付着した霜はサーモオン及びデユーテイオン
時間中に保護気流によつてオフサイクル除霜され
ることになる。尚、この冷却運転中にも上述した
第2モード即ちサーモオフ又はデユーテイオフ時
間が数回とられることになる。
As the defrosting operation of the second evaporator 15 progresses, the second
When the temperature of the cold air flow that has passed through the evaporator 15 reaches 5°C, the second high temperature return thermoswitch DT 2 is opened, the second electric heater 17 is de-energized, and the drain is turned off until the end of defrosting. This is the time to drain the water. When the set defrost time has passed,
The reduced pressure liquid refrigerant is supplied to the second evaporator 15, and the first,
Cooling operation of both the second evaporators 14 and 15, that is, the first
mode, the third evaporator 19 interrupts the supply of reduced pressure liquid refrigerant, and the third evaporator 19
9 will be defrosted off-cycle by the protective air flow during the thermo-on and duty-on periods. It should be noted that during this cooling operation, the above-mentioned second mode, that is, thermo-off or duty-off time will be taken several times.

第2蒸発器15の除霜時間が終了すると、S用
タイマSTが初期状態にリセツトされ、上述した
第1モード、第3モード、第1モード、第4モー
ドの繰り返しが行なわれ、第1モードの中で第2
モードが行なわれ、第5図に示すタイムチヤート
となる。
When the defrosting time of the second evaporator 15 ends, the S timer ST is reset to the initial state, and the above-mentioned first mode, third mode, first mode, and fourth mode are repeated, and the first mode second among
The mode is executed and the time chart shown in FIG. 5 is obtained.

前記低温シヨーケース1の周囲温度27℃、周囲
湿度70%の条件下で、第1、第2両蒸発器14,
15の冷却蒸発温度を−13℃、第3蒸発器19の
冷却蒸発温度を−8℃、貯蔵室9の設定温度を−
3℃(上限設定温度−2.5℃、下限設定温度−3.5
℃)として運転すると、第1モードでは各蒸発器
14,15,19の蒸発温度は第6図に示す特性
となる。即ち、第1、第2両蒸発器14,15は
減圧液冷媒が供給されているサーモオン及びデユ
ーテイオン時間には−13℃迄引き下げられる反
面、減圧液冷媒の供給が中断されるサーモオフ又
はデユーテイオン時間には−2℃迄上昇する。一
方、第3蒸発器19は減圧液冷媒が供給されてい
るサーモオフ及びデユーテイオフ時間には−8℃
迄引き下げられる反面、減圧液冷媒の供給が中断
されるサーモオン及びデユーテイオン時間には+
1.5℃迄上昇する。
Both the first and second evaporators 14,
The cooling evaporation temperature of the third evaporator 15 is -13°C, the cooling evaporation temperature of the third evaporator 19 is -8°C, and the set temperature of the storage chamber 9 is -13°C.
3℃ (upper limit set temperature -2.5℃, lower limit set temperature -3.5
℃), the evaporation temperatures of each evaporator 14, 15, and 19 have the characteristics shown in FIG. 6 in the first mode. That is, both the first and second evaporators 14 and 15 are lowered to -13°C during thermo-on and duty-on times when reduced-pressure liquid refrigerant is supplied, but on the other hand, during thermo-off or duty-on times when the supply of reduced-pressure liquid refrigerant is interrupted. The temperature rises to -2℃. On the other hand, the third evaporator 19 is -8°C during the thermo-off and duty-off times when the reduced pressure liquid refrigerant is supplied.
On the other hand, during thermo-on and duty-on times when the supply of reduced pressure liquid refrigerant is interrupted, +
The temperature rises to 1.5℃.

前記第3蒸発器19は第1、第2両蒸発器1
4,15に比べ蒸発温度を高く設定されることに
併わせ、第3蒸発器19への減圧液冷媒の供給時
間が第1、第2両蒸発器14,15への減圧液冷
媒の供給時間よりも短かくなつている関係上、第
1、第2両蒸発器14,15の蒸発温度よりも第
3蒸発器19の蒸発温度が低くなることはない
が、仮に第3蒸発器19の蒸発温度が第1、第2
両蒸発器14,15の蒸発温度よりも低くなつた
としても第3蒸発器19が外層7に配置されてお
り、外層7を通過する保護気流の温度を引き下げ
る点から見れば好ましい状態となる。
The third evaporator 19 includes both the first and second evaporators 1.
In addition to setting the evaporation temperature higher than 4 and 15, the supply time of reduced pressure liquid refrigerant to the third evaporator 19 is set to be shorter than the supply time of reduced pressure liquid refrigerant to both the first and second evaporators 14 and 15. The evaporation temperature of the third evaporator 19 will not be lower than the evaporation temperature of both the first and second evaporators 14 and 15, but if Temperature is first and second
Even if the evaporation temperature becomes lower than the evaporation temperature of both evaporators 14 and 15, the third evaporator 19 is arranged in the outer layer 7, which is a preferable condition from the viewpoint of lowering the temperature of the protective air flow passing through the outer layer 7.

第7図は前述した周囲温度27℃、周囲湿度70%
の条件下における第3モード、即ち第1蒸発器1
4の除霜時の空気温度特性を示し、Aは貯蔵室9
の空気温度、Bは第1蒸発器14を通過直後の空
気温度、Cは第2蒸発器15を通過直後の空気温
度、Dは第3蒸発器19を通過して開口2に吹き
出された空気温度である。図によれば空気温度A
及びBは第3モードの開始前には第1、第2両蒸
発器14,15が冷却作用をなす第1モードであ
るため−5℃であるが、第3モードの開始に伴な
い第1電気ヒータ16の加熱によつて空気温度A
のみが急激に上昇するが、内側路28を通過する
こにより第1電気ヒータ16で加熱され温度上昇
した空気と、外側路29を通過することにより第
2蒸発器15で冷却され温度低下した空気とが内
層6内で合流する関係上、エアーカーテンCAと
して開口2に吹き出される冷気流の温度は第3モ
ードの初期から中期にかけて0℃以下に抑制され
るので空気温度Aも0℃以下に抑制される。又、
第3モードの中期から後期にかけて第3蒸発器1
9を通過した空気が0℃以下の冷気流として開口
2に吹き出されてエアーカーテンCAの温度を引
き下げるガードエアーカーテンGAとして作用す
る関係上、空気温度Aの上昇を0℃を跨がる温度
−1℃〜1℃に抑制できる。
Figure 7 shows the ambient temperature 27℃ and ambient humidity 70% as described above.
The third mode under the conditions of , that is, the first evaporator 1
4 shows the air temperature characteristics during defrosting, and A is storage room 9.
B is the air temperature immediately after passing through the first evaporator 14, C is the air temperature immediately after passing through the second evaporator 15, and D is the air temperature after passing through the third evaporator 19 and blown out into the opening 2. It's temperature. According to the figure, the air temperature A
and B are -5°C before the start of the third mode because both the first and second evaporators 14 and 15 are in the first mode performing a cooling action, but with the start of the third mode, the temperature in the first The air temperature A is increased by heating the electric heater 16.
The air that passes through the inner passage 28 is heated by the first electric heater 16 and its temperature rises, and the air that passes through the outer passage 29 and is cooled by the second evaporator 15 and whose temperature decreases. Since the cold air flows into the opening 2 as the air curtain CA, the temperature of the cold air stream blown out to the opening 2 as the air curtain CA is suppressed to below 0°C from the beginning to the middle of the third mode, so the air temperature A also becomes below 0°C. suppressed. or,
3rd evaporator 1 from middle to late stage of 3rd mode
The air passing through 9 is blown out into the opening 2 as a cold air flow below 0°C and acts as a guard air curtain GA that lowers the temperature of the air curtain CA. It can be suppressed to 1°C to 1°C.

即ち、第1電気ヒータ16の潜熱は第3モード
の初期から中期にかけて第1蒸発器14の霜を解
かすために多く費やされる反面、内側路28を通
過する空気を加熱するための量は僅かであること
に加え、霜が流路抵抗となるために内側路28を
通過する空気の量は外側29を通過する空気の量
に比べて少ない関係上、内側路28を通過した空
気と、外側路29を通過した空気とを内層6で合
流させることにより、0℃以下の冷気流とできる
ので、空気温度Aを0℃以下に抑制できる。又、
第1電気ヒータ16の潜熱は第3モードの中期か
ら後期にかけて第1蒸発器14の霜を解かす量よ
りも第1蒸発器14を通過する空気を緩める量の
方が徐々に多くなることに併わせ、霜が徐々に解
けることに伴ない内側路28を通過する空気の量
が徐々に増す関係上、外側路29を通過した空気
を合流させることにより、内層6を通過する冷気
流の温度の上昇を初期から中期程に抑制できない
が、外層7から開口2に吹き出されガードエアー
カーテンGAを形成する保護気流が0℃以下であ
るために開口2においてエアーカーテンCAを冷
却できるためにエアーカーテンCAで冷却される
貯蔵室9の空気温度Aの上昇を抑制することがで
きる。
That is, while the latent heat of the first electric heater 16 is largely used to defrost the first evaporator 14 from the beginning to the middle of the third mode, only a small amount is used to heat the air passing through the inner passage 28. In addition, the amount of air passing through the inner passage 28 is smaller than the amount of air passing through the outside 29 because frost acts as a flow path resistance. By merging the air that has passed through the passage 29 at the inner layer 6, a cold air flow with a temperature of 0° C. or lower can be created, so that the air temperature A can be suppressed to 0° C. or lower. or,
The amount of latent heat of the first electric heater 16 that loosens the air passing through the first evaporator 14 gradually becomes larger than the amount that defrosts the first evaporator 14 from the middle to the latter half of the third mode. In addition, since the amount of air passing through the inner passage 28 gradually increases as the frost gradually melts, the temperature of the cold air flow passing through the inner layer 6 can be increased by combining the air that has passed through the outer passage 29. Although the rise in temperature cannot be suppressed from the initial to middle stage, the protective airflow that is blown out from the outer layer 7 to the opening 2 and forms the guard air curtain GA is below 0°C, so the air curtain CA can be cooled at the opening 2. It is possible to suppress an increase in the air temperature A in the storage room 9 cooled by CA.

又、内層6内に内側路28と外側路29とが
夫々独立して形成され、この内側路、外側路を通
過した空気の合流区域の上流側に第1、第2両高
温復帰サーモスイツチDT1,DT2が設けられてい
る関係上、第3モードの後期において第1高温復
帰サーモスイツチDT1が5℃に達して開となり第
1電気ヒータ16の通電を遮断した時には、内層
6から吹き出される冷気流の温度は第1高温復帰
サーモスイツチDT1の温度より低く、従つて第1
モードに復帰した場合には、貯蔵室9の温度を設
定温度に引き下げる迄の時間が早くなる。
Further, an inner passage 28 and an outer passage 29 are formed independently in the inner layer 6, and first and second high temperature return thermoswitches DT are provided upstream of the confluence area of the air that has passed through the inner passage and the outer passage. 1 and DT 2 , when the first high-temperature return thermoswitch DT 1 reaches 5°C and opens to cut off the power supply to the first electric heater 16 in the latter half of the third mode, air is blown from the inner layer 6. The temperature of the cold air flow is lower than the temperature of the first high temperature return thermoswitch DT 1 and therefore
When returning to the mode, it takes less time to lower the temperature of the storage chamber 9 to the set temperature.

尚、第2蒸発期15が除霜される第4モードの
際も第7図で示す温度特性と同様の特性が得られ
る。
Note that the same temperature characteristics as shown in FIG. 7 can be obtained also in the fourth mode in which the second evaporation period 15 is defrosted.

(ト) 発明の効果 上述した本発明によれば、次に列挙する効果が
生じる。
(g) Effects of the invention According to the present invention described above, the following effects are produced.

第1、第2両蒸発器に減圧液冷媒を供給して
2個の蒸発器が冷却作用しているときと、第1
蒸発器が除霜作用、第2、第3両蒸発器が冷却
作用をしているとき、及び第2蒸発器が除霜作
用、第1、第3両蒸発器が冷却作用をしている
ときとは、共に2個の蒸発器に常に減圧液冷媒
が供給されている関係上、冷凍装置における減
圧液冷媒の供給量が略一定となり、その結果、
1個の蒸発器が除霜作用、2個の蒸発器が冷却
作用しているときにおいても冷却作用中の蒸発
器に極端な冷媒蒸発温度の低下及びこの冷媒蒸
発温度の低下が起因する着霜の大幅な増加を未
然に回避できることに併わせ、1個の蒸発器の
除霜時における貯蔵室の温度上昇を抑制するこ
とができる。
When the two evaporators are cooling by supplying reduced pressure liquid refrigerant to both the first and second evaporators, and
When the evaporator has a defrosting function and both the second and third evaporators have a cooling function, and when the second evaporator has a defrosting function and both the first and third evaporators have a cooling function. Because reduced pressure liquid refrigerant is always supplied to both evaporators, the amount of reduced pressure liquid refrigerant supplied to the refrigeration system is approximately constant, and as a result,
Even when one evaporator has a defrosting function and two evaporators have a cooling function, there is an extreme drop in the refrigerant evaporation temperature of the evaporator during the cooling function, and frost formation due to this drop in refrigerant evaporation temperature. In addition to being able to avoid a significant increase in the temperature, it is also possible to suppress the temperature rise in the storage room during defrosting of one evaporator.

第1乃至第3各蒸発器の配置状態を平面的に
見ると、第3蒸発器の前半分に第2蒸発器の後
半分が重なり、第2蒸発器の前半分に第1蒸発
器の後半分が重なることになり、3個の蒸発器
が配置されているにもかゝわらず、実質上2個
の蒸発器の配置スペースで3個の蒸発器を配置
できる構成となつている関係上、定温シヨーケ
ース全体の奥行幅を蒸発器1個分丈狭くするこ
とができる。
When looking at the arrangement of the first to third evaporators in plan, the front half of the third evaporator overlaps the rear half of the second evaporator, and the front half of the second evaporator overlaps the rear half of the first evaporator. Although three evaporators are installed, the configuration is such that three evaporators can be installed in the space required for two evaporators. , it is possible to reduce the depth of the entire constant-temperature case by the length of one evaporator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第7図は本発明低温シヨーケースに
かゝる実施例を示し、第1図は縦断側面図、第2
図は冷媒回路図、第3図は他の実施例を示す冷媒
回路図、第4図は電気回路図、第5図は運転タイ
ムチヤート、第6図は冷媒蒸発温度を示す特性
図、第7図は1個の蒸発器を除霜、2個の蒸発器
を冷却としたときにおける定温シヨーケースの空
気温度を示す特性図、第8図は第6図に対応する
従来技術の特性図である。 6……内層、7……外層、14……第1蒸発
器、15……第2蒸発器、18……送風フアン、
19……第3蒸発器、20……送風フアン、27
……分割板、28……内側路、29……外側路。
1 to 7 show an embodiment of the low-temperature show case of the present invention, FIG. 1 is a longitudinal sectional side view, and FIG.
Figure 3 is a refrigerant circuit diagram, Figure 3 is a refrigerant circuit diagram showing another embodiment, Figure 4 is an electric circuit diagram, Figure 5 is an operation time chart, Figure 6 is a characteristic diagram showing refrigerant evaporation temperature, and Figure 7 is a diagram showing refrigerant evaporation temperature. The figure is a characteristic diagram showing the air temperature of a constant temperature show case when one evaporator is used for defrosting and two evaporators are used for cooling, and FIG. 8 is a characteristic diagram of the prior art corresponding to FIG. 6. 6...Inner layer, 7...Outer layer, 14...First evaporator, 15...Second evaporator, 18...Blower fan,
19...Third evaporator, 20...Blower fan, 27
...dividing plate, 28...medial path, 29...lateral path.

Claims (1)

【特許請求の範囲】[Claims] 1 相互に並列接続された第1乃至第3蒸発器を
備え、第1蒸発器が除霜されているときには、第
2、第3両蒸発器が冷却作用をなし、第2蒸発器
が除霜されているときには第1、第3両蒸発器が
冷却作用をなす冷凍装置と、送風フアンを備え、
その1部が分割板にて内外に分けられ、前記第1
蒸発器が配置される内側路、前記第2蒸発器が配
置される外側器を有する内層と、送風フアン及び
前記第3蒸発器を備えた外層とを具備してなり、
前記第2蒸発器は第1蒸発器と、第3蒸発器との
間に位置し、且つ内側半分が第1蒸発器の外側半
分に重なり、外側半分が第3蒸発器の内側半分に
重なるように配置されている低温シヨーケース。
1 Equipped with first to third evaporators connected in parallel to each other, when the first evaporator is defrosting, both the second and third evaporators perform a cooling action, and the second evaporator performs the defrosting function. When the first and third evaporators are used, the first and third evaporators are equipped with a refrigeration device and a blower fan,
One part is divided into inner and outer parts by a dividing plate, and the first part is divided into inner and outer parts by a dividing plate.
an inner layer having an inner channel in which an evaporator is disposed, an outer vessel in which the second evaporator is disposed, and an outer layer including a blower fan and the third evaporator;
The second evaporator is located between the first evaporator and the third evaporator, and the inner half overlaps the outer half of the first evaporator and the outer half overlaps the inner half of the third evaporator. A low-temperature case located in the.
JP28970887A 1987-11-17 1987-11-17 Low-temperature showcase Granted JPH01131874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28970887A JPH01131874A (en) 1987-11-17 1987-11-17 Low-temperature showcase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28970887A JPH01131874A (en) 1987-11-17 1987-11-17 Low-temperature showcase

Publications (2)

Publication Number Publication Date
JPH01131874A JPH01131874A (en) 1989-05-24
JPH0470546B2 true JPH0470546B2 (en) 1992-11-11

Family

ID=17746723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28970887A Granted JPH01131874A (en) 1987-11-17 1987-11-17 Low-temperature showcase

Country Status (1)

Country Link
JP (1) JPH01131874A (en)

Also Published As

Publication number Publication date
JPH01131874A (en) 1989-05-24

Similar Documents

Publication Publication Date Title
US5375428A (en) Control algorithm for dual temperature evaporator system
US5675983A (en) Synergistic refrigerated display case
US4964281A (en) Low-temperature showcase
US3421338A (en) Self-defrosting refrigerators
KR100186666B1 (en) Defrosting device of low temperature
JP2000161835A (en) Cooling devices
JPH01131880A (en) Method of operating low-temperature showcase
KR20130028841A (en) Refrigerator
JPH0470546B2 (en)
JPH11148759A (en) Refrigerator equipped with two sets of evaporators
JP2573005B2 (en) How to operate a low-temperature showcase
JPS6327629B2 (en)
KR100913144B1 (en) Time divided multi-cycle type cooling apparatus
JP4103384B2 (en) refrigerator
JPH01131876A (en) Low-temperature showcase
JPH01131879A (en) Refrigerator
JPH01131878A (en) Method of operating low-temperature showcase
JPH01131875A (en) Method of operating low-temperature showcase
JPH01131881A (en) Method of operating low-temperature showcase
JPH01131877A (en) Method of cooling low-temperature showcase
JPH0570073B2 (en)
JP2547926B2 (en) How to defrost a frozen / refrigerated open showcase
JPS6255592B2 (en)
JPS62217080A (en) Method of operating cryogenic showcase
JPH11304331A (en) Control method for refrigerator