JPH01131874A - Low-temperature showcase - Google Patents

Low-temperature showcase

Info

Publication number
JPH01131874A
JPH01131874A JP28970887A JP28970887A JPH01131874A JP H01131874 A JPH01131874 A JP H01131874A JP 28970887 A JP28970887 A JP 28970887A JP 28970887 A JP28970887 A JP 28970887A JP H01131874 A JPH01131874 A JP H01131874A
Authority
JP
Japan
Prior art keywords
evaporator
temperature
air
evaporators
defrosting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28970887A
Other languages
Japanese (ja)
Other versions
JPH0470546B2 (en
Inventor
Toshio Sagara
相良 寿夫
Toshiaki Miyatake
俊明 宮武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP28970887A priority Critical patent/JPH01131874A/en
Publication of JPH01131874A publication Critical patent/JPH01131874A/en
Publication of JPH0470546B2 publication Critical patent/JPH0470546B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Defrosting Systems (AREA)

Abstract

PURPOSE: To suppress the frosting of a low-temperature showcase by providing an inner layer with an inner path where a first evaporator is arranged and an outer path where a second evaporator is arranged and an outer layer with a blowing fan and a third evaporator, and arranging the second evaporator so that the inner half overlaps with the outer half of the first evaporator and the outer half overlaps with the inner half of the third evaporator. CONSTITUTION: Only the air temperature of an inner path 28 rapidly increases due to the heating of a first electrical heater 16 as a first evaporator 14 starts defrosting. However, since air whose temperature is increased by heating the first electrical heater 16 and air whose temperature is reduced due to cooling by a second evaporator 15 caused by passing through an outer path 29 merge in an inner layer 6, the temperature of a cold air flow being discharged from an opening 2 as an air curtain CA is suppressed to 0 deg.C or less from the initial to middle stages of defrosting. Also, air passing through a third evaporator 19 from the middle to later stages of defrosting is discharged to the opening 2 as a cold air liquid, thus reducing the temperature of the air curtain CA and hence suppressing the increase in an air temperature A to a temperature deg.C striding over 0 deg.C-1 deg.C.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は3個の蒸発器を備えた低温ショーケースに関す
る。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a low temperature showcase equipped with three evaporators.

(口〉従来の技術 低温ショーケースの除霜時、貯蔵室の温度上昇の抑制を
図るために、少なくとも2個の蒸発器を備え、一方の蒸
発器の除霜を行なう間、他方の蒸発器の冷却を行なう除
霜、冷却併用方式がとられるものが多くなってきた。
(Example) Conventional technology When defrosting a low-temperature showcase, at least two evaporators are provided in order to suppress the temperature rise in the storage room, and while one evaporator is defrosting, the other evaporator is Increasingly, a combination of defrosting and cooling methods are being adopted.

この除霜、冷却併用方式としては、相互に並列接続され
た複数個の蒸発器の総べてを冷気流循環用の内層に配置
する方式があり、か〜る方式は特公昭62−25952
号公報、特開昭60−256773号公報、米国特許第
4633677号で採用されている。
As a combined method for defrosting and cooling, there is a method in which all of a plurality of evaporators connected in parallel are arranged in an inner layer for circulating cold air.
No. 60-256773, and U.S. Pat. No. 4,633,677.

(ハ)発明が解決しようとする問題点 上記特公昭62−25952号公報に示きれた低温ショ
ーケースは、3個の蒸発器を前後方向に重ね合わせ夫々
の空気入口面及び空気出口面が同じ高さになるよう内層
に配置している関係上、設計時、低温ショーケースの奥
行幅が決まっている場合には、内層によって貯蔵室の奥
行幅が減る問題点がある上、1個の蒸発器の除TJ運転
の間、隣接する他方の蒸発器を冷却運転するために、各
蒸発器が相互に他方の蒸発器の温度の影うを受けやすく
なる。このため貯蔵室の設定温度を0°C以下とした場
合には、商品収納及び取出用の開口を閉室するエアーカ
ーテンが昇温することを考應して冷却運転される蒸発器
の冷媒蒸発温度を一10°C以下に設定する必要があり
、従って、除霜運転されている蒸発器で熱交換きれ過冷
却液となる高圧液冷媒を除霜熱源とするには、冷却運転
されている蒸発器の温度が低いために、除霜熱源の熱量
が不足し、設定された除霜時間例えば20分間中に除霜
運転されている蒸発器の霜を完全に除去することができ
ない問題点が生じた。又、霜残りの他の原因としては、
3個の蒸発器を冷却運転した後に、2個の蒸発器の冷却
運転を継続したまへ、1個の蒸発器を除霜運転に切り換
えて冷却運転される蒸発器の個数を減らすために、冷却
運転中の蒸発器の冷媒蒸発温度が極端に低下して冷却運
転中の蒸発器への着霜量が多くなることに併わせ、除霜
熱源となる高圧液冷媒の熱量が不足し、除M運転中の蒸
発器に霜残りが発生することになる。
(c) Problems to be solved by the invention The low-temperature showcase shown in the above-mentioned Japanese Patent Publication No. 62-25952 has three evaporators stacked one on top of the other in the front and back direction, so that the air inlet surface and air outlet surface of each are the same. If the depth of the low-temperature showcase is fixed at the time of design, there is a problem that the depth of the storage chamber is reduced by the inner layer, and one evaporation During the TJ operation of the evaporator, since the other adjacent evaporator is operated for cooling, each evaporator is susceptible to the influence of the temperature of the other evaporator. For this reason, when the set temperature of the storage room is set to 0°C or lower, the refrigerant evaporation temperature of the evaporator that is operated for cooling should be adjusted, taking into consideration that the temperature of the air curtain that closes the openings for storing and taking out products will rise. Therefore, in order to use the high-pressure liquid refrigerant that undergoes heat exchange in the evaporator under defrosting operation and becomes supercooled liquid as the defrosting heat source, the evaporator under cooling operation must be Due to the low temperature of the evaporator, the amount of heat from the defrosting heat source is insufficient, resulting in the problem that the defrost from the evaporator cannot be completely removed during the set defrosting time, for example, 20 minutes. Ta. In addition, other causes of frost residue include:
After performing cooling operation on three evaporators, one evaporator is switched to defrosting operation while continuing cooling operation on two evaporators to reduce the number of evaporators operated on cooling operation. The refrigerant evaporation temperature of the evaporator during cooling operation drops extremely, and the amount of frost on the evaporator increases during cooling operation.In addition, the amount of heat in the high-pressure liquid refrigerant, which is the defrosting heat source, becomes insufficient, and the defrosting Residual frost will occur in the evaporator during M operation.

又、特開昭50−256773号公報及び米国特許第4
633677号に示された低温ショーケースは共に内層
の1部を内側路と外側路とに分け、相互に並列接読され
た2個の蒸発器のうち一方を内側路に、他方を外側路に
夫々配置し、2個の蒸発器を冷却運転した後、一方の蒸
発器の冷却運転を継続したま〜、他方の蒸発器を除霜運
転に切り換えるために、上記特公昭62−25952号
公報と同様に冷却運転中の蒸発器の冷媒蒸発温度が極端
に低下して冷却運転中の蒸発器へのB霜量が多くなるこ
とに併わせ、除霜熱源となる高圧液冷媒の熱量が不足し
、除霜運転中の蒸発器に霜残りが発生する問題点が生じ
る。
Also, Japanese Patent Application Laid-open No. 50-256773 and U.S. Patent No. 4
The low-temperature showcase shown in No. 633677 both divides a part of the inner layer into an inner passage and an outer passage, and has two evaporators connected in parallel with each other, one of which is placed in the inner passage and the other is placed in the outer passage. After cooling the two evaporators, one evaporator is kept in cooling operation, while the other evaporator is switched to defrosting operation. Similarly, the refrigerant evaporation temperature of the evaporator in the evaporator during cooling operation drops dramatically, and the amount of B frost on the evaporator during cooling operation increases, and the amount of heat in the high-pressure liquid refrigerant, which serves as the defrosting heat source, becomes insufficient. , a problem arises in that frost remains on the evaporator during defrosting operation.

因に低温ショーケースの周囲温度27°C1周囲湿度7
0%の条件下で、第1.第2両蒸発器の冷媒蒸発温度を
一13°Cとし、両蒸発器に減圧液冷媒を供給して冷却
作用をさせた後、一方の蒸発器に継続して減圧液冷媒を
供給すると共に、他方の蒸発器への減圧液冷媒の供給中
断を交互に繰り返すと、第8図に示す如く減圧液冷媒が
供給されている蒸発器の冷媒蒸発温度が一20°C程度
に低下するために冷却作用中の蒸発器の着i量が増加す
るばかりでなく、循環される冷気流も低温となるために
、減圧液冷媒の供給を中断された除霜作用中の蒸発器の
除霜も進行せず、総体的に見れば低温ショーケースの着
霜量が増えるという問題点が生じる。
Incidentally, the ambient temperature of the low-temperature showcase is 27°C, and the ambient humidity is 7.
Under the condition of 0%, the first. After setting the refrigerant evaporation temperature of both second evaporators to -13°C and supplying reduced pressure liquid refrigerant to both evaporators to have a cooling effect, continuously supplying reduced pressure liquid refrigerant to one evaporator, and When the supply of reduced pressure liquid refrigerant to the other evaporator is alternately interrupted, the refrigerant evaporation temperature of the evaporator to which the reduced pressure liquid refrigerant is supplied drops to about 120°C, as shown in Figure 8, and cooling is interrupted. Not only does the amount of contamination on the evaporator during operation increase, but also the temperature of the circulating cold air stream becomes low, so that defrosting of the evaporator during defrosting operation when the supply of vacuum liquid refrigerant is interrupted does not proceed. First, overall, a problem arises in that the amount of frost on the low-temperature showcase increases.

(ニ)問題点を解決するための手段 本発明は上記問題点を解決することを目的とするもので
、その手段として相互に並列接続された第1乃至第3蒸
発器を備え、第1蒸発器が除霜されているときには、第
2.第3両蒸発器が冷却作用をなし、第2蒸発器が除霜
されているときには第1.第3両蒸発器が冷却作用をな
す冷凍装置と、送風ファンを備え、その1部が分割板に
て内外に分けられ、前記第1蒸発器が配置詐れる内側路
、前記第2蒸発器が配置される外側路を有する内層と、
送風ファン及び前記第3蒸発器を備えた外層とを具備し
てなり、前記第2蒸発器は第1蒸発器と、第3蒸発器と
の間に位置し、且つ内側半分が第1蒸発器の外側半分に
重なり、外側半分が第3蒸発器の内側半分に重なるよう
に配置されている低温シジーケースを提供する。
(d) Means for Solving the Problems The present invention aims to solve the above problems, and as a means thereof, first to third evaporators are connected in parallel to each other. When the container is being defrosted, the second. Both the third evaporator performs the cooling function, and when the second evaporator is defrosted, the first evaporator. Both third evaporators are equipped with a refrigeration device that performs a cooling action, and a blower fan, a part of which is divided into an inner and outer part by a dividing plate, and an inner path in which the first evaporator is misplaced, and an inner path in which the second evaporator is an inner layer having an outer tract disposed;
an outer layer including a blower fan and the third evaporator, the second evaporator being located between the first evaporator and the third evaporator, and an inner half of the second evaporator having an inner half of the first evaporator. The third evaporator is provided with a low-temperature syszy case arranged so as to overlap the outer half of the third evaporator and the outer half overlap the inner half of the third evaporator.

(*)作用 実施例によれば、第1蒸発器(14)の除霜開始に伴な
い第1電気ヒータ(16)の加熱によって内側路(28
)の空気温度(A)のみが急激に上昇するが、内側路(
28)を通過することにより第1電気ヒータ(16)で
加熱され温度上昇した空気と、外側路(29)を通過す
ることにより第2蒸発器(15)で冷却され温度低下し
た空気とが内層(6)内で合流する関係上、エアーカー
テン(CA)として開口(2)に吹き出される冷気流の
温度は除霜の初期から中期にかけて0℃以下に抑制され
るので空気温度(A)も0°C以下に抑制され、しかも
除霜の中期から後期にかけて第3蒸発器(19)を通過
した空気が0°C以下の冷気流として開口(2)に吹き
出されてエアーカーテン(CA)の温度を引き下げるガ
ードエアーカーテン(GA)として作用する関係上、空
気温度(A)の上昇を0°Cを跨がる温度−℃〜1°C
に抑制できる。
(*) According to the working example, the inner path (28
) only the air temperature (A) rises rapidly, but in the inner passage (
28), the air is heated by the first electric heater (16) and the temperature is increased, and the air that is cooled by the second evaporator (15) and lowered in temperature by passing through the outer path (29) forms the inner layer. (6), the temperature of the cold air flow blown out to the opening (2) as an air curtain (CA) is suppressed to below 0℃ from the early to mid-stage of defrosting, so the air temperature (A) is also The air that has been suppressed to below 0°C and has passed through the third evaporator (19) during the middle to late stages of defrosting is blown out to the opening (2) as a cold air flow of below 0°C, and is blown out of the air curtain (CA). Because it acts as a guard air curtain (GA) that lowers the temperature, the increase in air temperature (A) is reduced from -℃ to 1℃ over 0℃.
can be suppressed to

又、仕切板(4)及び分割板(27)には共に同じ方向
に傾斜部(21)(30)が形成されている関係上、第
1乃至第3各蒸発器(14)(15)(19)の配置状
態を平面的に見ると、第3蒸発器(19)の前半分に第
2蒸発器(15)の後半分が重なり、第2蒸発器(15
)の前半分に第1蒸発器(14)の後半分が重なること
になり、3個の蒸発器<14)(15)(19)が配置
されているにもかへわらず、実質上2個の蒸発器(14
)(19)の配置スペースで3個の蒸発器(14)(1
5)(19)を配置できることになる。
In addition, since the partition plate (4) and the dividing plate (27) are both formed with inclined parts (21) (30) in the same direction, the first to third evaporators (14) (15) ( 19), the rear half of the second evaporator (15) overlaps the front half of the third evaporator (19).
), the rear half of the first evaporator (14) overlaps with the front half of the evaporators (14
) (19) in the installation space of three evaporators (14) (1
5) (19) can be placed.

(へ)実施例 以下図面に基づいて本発明の詳細な説明すると、第1図
に示ず(1)は前面に商品収納及び取出用の開口(2)
を形成した断熱壁(3)にて本体を構成してなる低温シ
ョーケースで、前記断熱壁〈3)の内壁より適当間隔を
存して第1.第2両仕切板(4)(5)を順次配設する
ことにより、冷気流循環用の内層(6)と、保護気流循
環用の外層(7)と、複数枚の棚(8)を備えた貯蔵室
(9)と、前記開口(2)の上縁長手方向に沿う前記内
外両層(6)<7)の吹出口(10)(11)と、前記
開口(2)の下縁長手方向に沿い前記吹出口(10)(
11)に相対する前記内外両Wj(6)(7)の吸込口
(12)(13)とが形成される。
(F) Example The present invention will be explained in detail based on the drawings below. (1) not shown in Figure 1 is an opening (2) for storing and taking out products on the front side.
This is a low-temperature showcase whose main body is composed of a heat insulating wall (3) formed with a first wall at an appropriate interval from the inner wall of the heat insulating wall (3). By sequentially arranging the second partition plates (4) and (5), an inner layer (6) for circulating cold air, an outer layer (7) for circulating protective air, and a plurality of shelves (8) are provided. a storage chamber (9), an air outlet (10) (11) of both the inner and outer layers (6) < 7 along the longitudinal direction of the upper edge of the opening (2), and a longitudinal direction of the lower edge of the opening (2); along the direction of the air outlet (10) (
Suction ports (12) and (13) of both the inner and outer Wj (6) and (7) facing the inner and outer Wj (6) and (7) are formed.

前記内層(6)にはプレートフィン形をなし熱交換容量
が共に同じ第1.第2両蒸発器(14)(15)と、こ
の両蒸発器の空気入口側の面となる下面に設けられ、対
応する蒸発器(14><15)の除霜時に通電される第
1.第27!気ヒータ(16)(17)と、第1図実線
矢印の如く内層(6)の冷気流を強制循環する軸流形の
第1送風フアン(18)とが配置され、又前記外層(7
)にはプレートフィン形をなす第3蒸発器(19)と、
第1図1点鎖線矢印の如く外層(7)の保護気流を強制
循環する軸流形の第2送風フアン(20)とが配置され
ている。前記第1.第2両送風ファン(18)(20)
は常時運転され、第2送風フアン(20)よりも第1送
風フアン(18)の送風量を多く、且つ風速を速くする
ために、第1送風フアン(18)の個数を第2送風フア
ン(20)よりも多くしている。
The inner layer (6) has a first layer having a plate-fin shape and having the same heat exchange capacity. Both the second evaporators (14) and (15), and the first evaporator, which is provided on the lower surface of the two evaporators on the air inlet side and is energized when the corresponding evaporator (14><15) is defrosted. 27th! Air heaters (16) (17) and a first axial blower fan (18) for forcibly circulating the cold air flow in the inner layer (6) as shown by the solid line arrows in FIG.
) includes a third evaporator (19) in the form of a plate fin;
A second axial blower fan (20) for forcibly circulating the protective airflow of the outer layer (7) is arranged as indicated by the dashed-dotted line arrow in FIG. Said 1st. 2nd double blower fan (18) (20)
is constantly operated, and in order to increase the amount of air blown by the first fan (18) and to increase the speed of air than the second fan (20), the number of the first fan (18) is changed to the number of the second fan (18). 20).

前記第1仕切板(4)の背部部分には後下がりに傾斜す
る傾斜部(21)が形成きれ、又底壁部分には垂直な立
上部(22)が形成されている関係上、前記内外両J!
t(6)(7)内の背部区域及び底部区域には通路幅が
広くなる拡路(23)(24)(25)(26)が形成
され、前記内層(6)の背部区域の拡路(23)には第
1、第2両蒸発器(14)(15)、前記外1(7)の
背部区域の拡路(24)には第3蒸発器(19)、前記
内層(6)の底部区域の拡路(25)には第1送風フア
ン(18)、前記外層(7)の底部区域の拡路(26)
には第2送風フアン(20)が夫々配置されている。
The back portion of the first partition plate (4) has a sloped portion (21) that slopes downward toward the rear, and the bottom wall portion has a vertical raised portion (22). Both J!
Widened channels (23), (24), (25), and (26) are formed in the back area and the bottom area of the inner layer (6) to widen the passage width, and the widened channels in the back area of the inner layer (6) are formed. (23) both first and second evaporators (14) (15), a third evaporator (19) in the widening channel (24) of the back area of the outer layer (7), and a third evaporator (19) in the inner layer (6). A first blower fan (18) is provided in the expansion passage (25) in the bottom area of the outer layer (7), and an expansion passage (26) in the bottom area of the outer layer (7)
A second blower fan (20) is disposed at each of the two.

(27)は前記内層(6)の拡路(23)内に配置され
、この拡路(23)を内側路(28)と外側路(29)
とに内外2分するステンレス等金属製の分割板で、その
中央には後下がりに傾斜する傾斜部(30)が形成され
、又前記第1電気ヒータ(16)よりも下方に延びる下
部には、前記第1蒸発器(14)の下面と相対するフラ
ンジ(31)を有する延出部(32)が形成されている
。この分割板(27)が傾斜部(30)を形成したこと
により、内側路(28)の下部及び外側路(29)の上
部は前記第1.第2両蒸発器(14)(15)を配置す
るための拡幅路(33)(34)となる一方で、内側路
(28)の上部及び外側路(29)の下部は冷気流を絞
るための狭幅路(35)(36)となる。又前記分割板
(27)により内側路(28)の入口幅は外側路(29
)の入口幅の約2倍となる一方で、外側路(29)の出
口幅は内側路(28)の出口幅の約2倍となっており、
着霜のない状態における両蒸発器(14)(15)の通
風量を一定としている。
(27) is arranged in the widened channel (23) of the inner layer (6), and connects this widened channel (23) to the inner channel (28) and the outer channel (29).
It is a dividing plate made of metal such as stainless steel that is divided into two parts, the inside and outside, and in the center thereof there is formed an inclined part (30) that slopes downward from the rear, and in the lower part that extends downward from the first electric heater (16). , an extension part (32) having a flange (31) facing the lower surface of the first evaporator (14) is formed. Since the dividing plate (27) forms the inclined part (30), the lower part of the inner passage (28) and the upper part of the outer passage (29) are the same as those of the first. The upper part of the inner passage (28) and the lower part of the outer passage (29) serve as widened passages (33) and (34) for arranging the second evaporators (14) and (15), while the upper part of the inner passage (28) and the lower part of the outer passage (29) are used to narrow the cold air flow. It becomes a narrow road (35) (36). Also, the entrance width of the inner passage (28) is changed by the dividing plate (27) to the outer passage (29).
), while the outlet width of the outer passageway (29) is about twice the outlet width of the inner passageway (28);
The ventilation volume of both evaporators (14) and (15) in a non-frosted state is kept constant.

前記第1仕切板(4)及び分割板(27)には共に同じ
方向に傾斜部<21>(30)が形成されている関係上
、第1乃至第3各蒸発器(14)(15)(19)の配
置状態を平面的に見ると、第3蒸発器(19)の前半分
に第2蒸発器(15)の後半分が重なり、第2蒸発器(
15)の前半分に第1蒸発器(14)の後半分が重なる
ことになり、3個の蒸発器(14)(15バ19)が配
置されているにもか〜わらず、実質上2個の蒸発器(1
4)(19)の配置スペースで3個の蒸発器<14>(
15)(19)を配置できる構成となっている。
Since the first partition plate (4) and the dividing plate (27) are both formed with inclined portions <21> (30) in the same direction, each of the first to third evaporators (14) (15) (19) when viewed in plan, the rear half of the second evaporator (15) overlaps the front half of the third evaporator (19), and the second evaporator (19) overlaps the front half of the second evaporator (19).
The rear half of the first evaporator (14) overlaps the front half of the first evaporator (15), and although three evaporators (14) (15 bar 19) are arranged, there are actually two evaporators (1
4) Three evaporators <14>(
15) (19) can be placed.

(37)は前記第1蒸発器(14)の前面に配置された
ステンレス等金属製の第3仕切板で、この仕切板の配置
に伴ない、前記第2仕切板(5)の背壁(38)下部と
の間に上部が開口し、下部が閉璽された側路(39)が
形成される。(40)は前記背壁(38)下部に形成さ
れ、前記側路(39)と貯蔵室(9)の下部区域とを連
通させる多数の通孔である。
(37) is a third partition plate made of metal such as stainless steel and placed in front of the first evaporator (14). Along with the arrangement of this partition plate, the back wall ( 38) A side channel (39) is formed between the lower part and the upper part to be open and the lower part to be closed. Numerous holes (40) are formed in the lower part of the back wall (38) and communicate the side passage (39) with the lower area of the storage chamber (9).

第2図は前記低温ショーケース(1)を冷却するための
冷凍装置を示し、この冷凍装置は冷媒圧縮機(41)、
空冷式凝縮器(42)、受液器(43)、乾燥器(44
)、サイトグラス(45)、第1乃至第3各電磁弁(4
6)(47) (48)、減圧装置である第1乃至第3
各膨張弁(49)(50)(51)、前記第1乃至第3
各蒸発器(14)(15)(19)、気液分離器(52
)を高圧ガス管(53)、高圧愉管(54)、この高圧
液管に入口が接続される3本の高圧液枝管(55)(5
6)(57)、3本の低圧液管(58)(59)(60
)、3木の低圧ガス枝管(61)(62) (63)、
この各低圧ガス枝管の出1コが接続される低圧ガス管(
64)を環状に接続することにより、前記第1乃至第3
各蒸発器(14)(15)(19>が対応する第1乃至
第3各電磁弁(46)(47)(48)及び膨張弁(4
9)(50)(51)と直列関係をなし、且つ相互に並
列関係をなす閉回路として構成されている。
FIG. 2 shows a refrigeration system for cooling the low-temperature showcase (1), and this refrigeration system includes a refrigerant compressor (41),
Air-cooled condenser (42), liquid receiver (43), dryer (44)
), sight glass (45), first to third solenoid valves (4
6) (47) (48) The first to third pressure reducing devices
Each expansion valve (49) (50) (51), the first to third
Each evaporator (14) (15) (19), gas-liquid separator (52
) into a high-pressure gas pipe (53), a high-pressure supply pipe (54), and three high-pressure liquid branch pipes (55) (5) whose inlets are connected to this high-pressure liquid pipe.
6) (57), 3 low pressure liquid pipes (58) (59) (60
), 3 low pressure gas branch pipes (61) (62) (63),
The low pressure gas pipe to which one outlet of each low pressure gas branch pipe is connected (
64) in an annular manner, the first to third
The first to third solenoid valves (46) (47) (48) and expansion valves (4) corresponding to each evaporator (14) (15) (19)
9) (50) and (51) are connected in series and are configured as a closed circuit in parallel relationship with each other.

第3図は冷凍装置の他の実施例を示し、上記第2図で示
した第1乃至第3各電磁弁(46)(47)(48)及
び第1乃至第3各膨張弁(49)(50)(51)の代
わりに開閉機能及び減圧機能を備えステッピングモータ
により弁軸を上下方向進退自在となす第1乃至第3各電
子膨張弁(65) (66)(67)を用いてもよい。
FIG. 3 shows another embodiment of the refrigeration system, in which the first to third electromagnetic valves (46), (47), and (48) and the first to third expansion valves (49) shown in FIG. Instead of (50) and (51), it is also possible to use the first to third electronic expansion valves (65), (66), and (67), which have an opening/closing function and a pressure reduction function, and whose valve shafts can be moved up and down by a stepping motor. good.

第4図は前記冷凍装置を作動させるための電気回路で、
3相200v電源のR,S、T各相には後述する圧縮機
用電磁接触器(52C)の接点(szca>を介して圧
縮機モータ(CM)が接続されている。前記S相には運
転スイッチ(SW)が“接続され、又R2S両相間には
デユーティサイクル用(以下り用という)タイマ(T)
が接続されている。このD用タイマ(T)は例えば30
分用のサイクルタイマであって、駆動開始から25分間
その接点(Ta)を閉じ、残りの5分間前記接点(Ta
)を開き、この5分が経過すると初期状態にリセットさ
れる機構となっている。尚、前記接点(1’a)の閉、
間両時間は制御対象となる貯蔵室(9)の設定温度に応
じてその長さを任意に変更できる。(TI)は前記貯蔵
室(9)の温度を制御するサーモスタット等の温度スイ
ッチで、前記接点(Ta)及びリレー(X)と直列回路
を構成する一方、前記り用タイマ(1’)に並列接続き
れている。この温度スイッチ(TI)は例えば−66C
〜+5℃の範囲で±0.5℃のディファレンシャルをも
って開閉される機構となっているが、温度スイッチ(T
H)の特性から冷気温度の変化に即座に追従できない関
係上、設定温度を一3°C(下限設定温度−3,5℃、
上限設定温度−2,5°C)としても実際は一4℃で開
動作、−1℃で閉動作を行ない、貯蔵室(9)を約−3
°Cの平均温度に制御する。 (52C)は圧縮機モー
タ(CM>を駆動させるための電磁接触器で、前記冷凍
装置の高圧、低圧両スイッチ(63H)(63L)と直
列回路を構成する一方、前記り用タイマ(T)に対して
並列接続されている。
FIG. 4 shows an electric circuit for operating the refrigeration device,
A compressor motor (CM) is connected to each of the R, S, and T phases of the three-phase 200V power supply via a contact (szca) of a compressor magnetic contactor (52C), which will be described later. The operation switch (SW) is connected, and a duty cycle timer (T) is connected between both R2S phases.
is connected. This D timer (T) is, for example, 30
The contact (Ta) is closed for 25 minutes from the start of driving, and the contact (Ta) is closed for the remaining 5 minutes.
) is opened, and after 5 minutes have elapsed, the device is reset to its initial state. In addition, the closing of the contact (1'a),
The length of the time period can be arbitrarily changed depending on the set temperature of the storage chamber (9) to be controlled. (TI) is a temperature switch such as a thermostat that controls the temperature of the storage room (9), and constitutes a series circuit with the contact (Ta) and relay (X), and is parallel to the timer (1'). The connection is broken. This temperature switch (TI) is for example -66C
The mechanism opens and closes with a differential of ±0.5°C in the range of ~ +5°C, but the temperature switch (T
Due to the characteristics of H), it is not possible to immediately follow changes in cold air temperature, so the set temperature is set at -3°C (lower limit set temperature -3.5°C,
Even though the upper limit temperature is set at -2.5°C, the opening operation is actually performed at -4°C and the closing action is at -1°C, and the storage chamber (9) is kept at about -3°C.
Control to an average temperature of °C. (52C) is an electromagnetic contactor for driving the compressor motor (CM>), which forms a series circuit with both the high-pressure and low-pressure switches (63H) and (63L) of the refrigeration system. are connected in parallel.

(ST)は霜取用(以下S用という)タイマで、第1乃
至第4各常開接点(STa+)(STa、>(STa、
>(STaa)と、第1.第2両市閉接点(STb l
 ) (STb、 ) トを備えている。このS用タイ
マ(ST)は例えば6時間タイマからなるもので、駆動
開始から2時間45分経過すると、15分間第1常閉接
点(STb 、 )を開、第1、第4各常開接点(ST
a I) <STa s )を閉とする第1出力を出し
、駆動開始から5時間45分経過すると、15分間第2
常閉接点(STb、)を開、第2.第4両市間接点(S
Ta * ) (STa = )を閉とする第2出力を
出し、6時間経過すると初期状態にリセットされ、以降
同様に第1.第2両出力を出す機構となっている。前記
第1電磁弁(46)は前記S用タイマ(ST)の第1常
閉接点(STb、)及び前記リレー(X)の常閉接点(
Xa)と直列回路を構成しており、又前記第2電磁弁(
47)は前記S用タイマ(ST)の第2常閉接点(ST
b、)と直列接続されると共に、前記第1常閉接  ′
点(STb、)及び第1電高弁(46)に対して並列接
続きれている。又前記第3電磁弁(48)は前記リレー
(X)の常閉接点(Xb)と直列接続されている。この
常閉接点(Xb)には前記S用タイマ(ST)の第3.
第4両市間接点(STa、 )(STa、 )が並列接
続されている。又、前記第1電気ヒータ(16)は前記
S用タイ7(ST)の第1常間接点(STa+>及び第
1蒸発器(14)の温度乃至はこの蒸発器(14)を通
過した空気の温度に基づいて開閉される第1高温復帰サ
ーモスイツチ(DTI)と直列接読され、又前記第2電
気ヒータ(17)は前記S用タイマ(ST>の第2常開
接点(S工at)及び第3蒸発器(15)の温度乃至は
この蒸発器を通過した空気の温度に基づいて開閉される
第2高温復帰サーモスイツチ(DTI)と直列接続きれ
ている。前記第1.第2両高温復帰サーモスイッチ<D
TI)(DTI)は5°C以上で開となって第1.第2
両電気ヒータ(16)(17)を遮断状態とし、又5°
C未満で閉となって第1.第2両電気ヒータ(16)(
17)を通電可能状態となすものである。尚、前記第1
、第2両送風ファン(18)(2Q)は運転スイッチ(
SW)の投入に伴ない連続運転されるように接続されて
いる。
(ST) is a timer for defrosting (hereinafter referred to as S use), and the first to fourth normally open contacts (STa+) (STa, > (STa,
>(STaa) and the first. 2nd both side closing contact (STb l
) (STb, ). This S timer (ST) is composed of, for example, a 6-hour timer, and when 2 hours and 45 minutes have passed since the start of driving, the first normally closed contact (STb, ) is opened for 15 minutes, and the first and fourth normally open contacts are opened. (ST
aI) < STa s ) is output, and when 5 hours and 45 minutes have passed from the start of driving, the second
Open the normally closed contact (STb,) and open the second. The 4th intercity point (S
The second output that closes Ta * ) (STa = ) is output, and after 6 hours, it is reset to the initial state, and from then on, the first output is output in the same way. It is a mechanism that outputs the second output. The first solenoid valve (46) has a first normally closed contact (STb, ) of the S timer (ST) and a normally closed contact (STb, ) of the relay (X).
Xa) constitutes a series circuit with the second solenoid valve (
47) is the second normally closed contact (ST) of the S timer (ST).
b, ), and the first normally closed contact ′
(STb,) and the first voltage high valve (46) are connected in parallel. Further, the third solenoid valve (48) is connected in series with the normally closed contact (Xb) of the relay (X). This normally closed contact (Xb) is connected to the third point of the S timer (ST).
The fourth two city points (STa, ) (STa, ) are connected in parallel. Further, the first electric heater (16) controls the temperature of the first regular contact point (STa+> of the S tie 7 (ST) and the first evaporator (14) or the air that has passed through this evaporator (14). The second electric heater (17) is connected in series with a first high temperature return thermoswitch (DTI) that opens and closes based on the temperature of the S timer (ST). ) and a second high temperature return thermoswitch (DTI) which is opened and closed based on the temperature of the third evaporator (15) or the temperature of the air passing through this evaporator. Both high temperature return thermoswitch <D
TI) (DTI) becomes open at 5°C or higher, and the first. Second
Both electric heaters (16) and (17) are cut off, and 5°
C, it becomes closed and the first. Both second electric heaters (16) (
17) It makes it possible to conduct electricity. In addition, the first
, the second blower fan (18) (2Q) is operated by pressing the operation switch (
It is connected to operate continuously as the switch (SW) is turned on.

次に第1図乃至第4図を参照して低温ショーケース(1
)の運転について説明する。
Next, referring to Figures 1 to 4, the low temperature showcase (1
) operation will be explained.

運転スイッチ(SW)を閉じると、D用タイマ(T)及
びS用タイマ(ST)が駆動されることに併わせ、電磁
接触器(52C)が励磁され、更に第1.第2両送風フ
ァン(1B)(20)が運転される。前記電磁接触器(
52C)の励磁に伴ない接点(52Ca)が閉じて圧縮
機モータ(CM)が駆動されて圧縮機(41)が運転さ
れ、冷媒循環が開始される。又、前記Dタイマ(T)へ
の通電と同時に接点(Ta)が閉じ、この接点(Ta)
及び温度スイッチ(TH)を通してリレー(X)が励磁
されて常開接点(Xa)が閉じると共に、常閉接点(X
b)が開き、第1.第2両電磁弁(46)(47)は第
1゜第2両電磁弁点(Sより、)(STbl)及び常開
接点(Xa)を通して通電開放されると共に、第3電磁
弁(48)は非通電となって閉鎖される。前記第1.第
2両電磁弁(46)(47)の開放に伴ない第1.第2
両蒸発器(14)(15)の冷却運転即ち第1モードが
開始され、第1.第2両膨張弁(49)(50)を夫々
通して第1゜第2両蒸発器(14)(15)に減圧液冷
媒が供給されて内層(6)を強制循環されている冷気流
と熱交換される。この熱交換を繰り返すことにより冷気
流の温度は徐々に下がり、この冷気流により第1図に示
す如く開口(2)に形成されるエアーカーテン(CA)
も冷たくなる。尚、第3蒸発器(19)には減圧液冷媒
が供給されていないので、外層(7)を強制循環されて
いる保護気流は、前記エアーカーテン(CA)の外側に
ガードエアーカーテン(GA)として形成きれたときに
前記冷気流の影響により若干温度を引き下げられること
になる。前記第1.第2両蒸発器(14)(15)の冷
却運転中、冷気温度が温度スイッチ(TI)の下限設定
値に達して温度スイッチ(TI)が開となるサーモオフ
時間のとき、又はD用タイマ(T)のデユーティオフ時
間となって接点(Ta)が開となった第2モードのとき
には、リレー(X)が非励磁となって常開接点(Xa)
が開、常閉接点(Xb)が閉となり、この開閉動作に伴
ない第1.第2両電磁弁(46)(47)が非通電とな
って共に閉鎖される一方、第3電磁弁(48)は常閉接
点(Xb)を通して通電開放される。前記第1.第2両
電磁弁(46)(47)の閉鎖に伴ない第1.第2両蒸
発器(14)(15)への減圧液冷媒の供給が中断され
、代わりに第3蒸発器(19)に減圧液冷媒が供給され
て外M3(7)を強制循環されている保護気流と熱交換
される。この熱交換をサーモオフ時間又はデユーティオ
フ時間の間、繰り返すことにより保護気流の温度は徐々
に下がり、この保護気流でもって形成されるガードエア
ーカーテン(GA)も冷たくなり、冷気流によるエアー
カーテン(CA)の温度に近づくことになる。
When the operation switch (SW) is closed, the D timer (T) and the S timer (ST) are driven, and the electromagnetic contactor (52C) is energized. Both second blower fans (1B) (20) are operated. The electromagnetic contactor (
52C), the contact (52Ca) closes, the compressor motor (CM) is driven, the compressor (41) is operated, and refrigerant circulation is started. Also, the contact (Ta) closes at the same time as the D timer (T) is energized, and this contact (Ta)
The relay (X) is energized through the temperature switch (TH) and the normally open contact (Xa) closes, and the normally closed contact (X
b) opens and the first. The second solenoid valves (46, 47) are energized and opened through the first and second solenoid valve points (from S) (STbl) and normally open contacts (Xa), and the third solenoid valve (48) is de-energized and closed. Said 1st. As both the second solenoid valves (46) and (47) open, the first solenoid valve (46) and (47) open. Second
The cooling operation of both evaporators (14) and (15), that is, the first mode is started, and the first mode. A cold air flow in which decompressed liquid refrigerant is supplied to the first and second evaporators (14, 15) through the second expansion valves (49, 50), respectively, and is forcedly circulated through the inner layer (6). Heat exchanged. By repeating this heat exchange, the temperature of the cold air stream gradually decreases, and this cold air stream forms an air curtain (CA) in the opening (2) as shown in Figure 1.
It also gets cold. Incidentally, since the reduced pressure liquid refrigerant is not supplied to the third evaporator (19), the protective airflow being forcedly circulated through the outer layer (7) is transferred to the guard air curtain (GA) outside the air curtain (CA). When it is completely formed, the temperature will be lowered slightly due to the effect of the cold air flow. Said 1st. During the cooling operation of both second evaporators (14) and (15), when the cold air temperature reaches the lower limit set value of the temperature switch (TI) and the temperature switch (TI) is opened during the thermo-off time, or when the D timer ( In the second mode, when the duty-off time of T) has reached and the contact (Ta) is open, the relay (X) is de-energized and the normally open contact (Xa) is open.
is opened, the normally closed contact (Xb) is closed, and along with this opening/closing operation, the first. Both the second solenoid valves (46, 47) are de-energized and closed, while the third solenoid valve (48) is energized and opened through the normally closed contact (Xb). Said 1st. As both the second solenoid valves (46) and (47) close, the first solenoid valve (46) and (47) close. The supply of reduced pressure liquid refrigerant to both second evaporators (14) and (15) is interrupted, and reduced pressure liquid refrigerant is instead supplied to the third evaporator (19) and forcedly circulated through outside M3 (7). Heat exchanged with the protective air stream. By repeating this heat exchange during the thermo-off time or duty-off time, the temperature of the protective air stream gradually decreases, and the guard air curtain (GA) formed by this protective air stream also becomes cold, resulting in an air curtain (CA) formed by the cold air stream. The temperature will approach .

この間、第1.第2両蒸発器(14)(15)は第1送
風フアン(18)によって強制循環される冷気流でもっ
てオフサイクル除霜される。尚、第3蒸発器(19)に
付着した霜はサーモオン時間及びデユーティオン時間に
保護気流によってオフサイクル除霜される。
During this time, the 1st. Both second evaporators (14, 15) are off-cycle defrosted with a forced circulation of cold air by the first blower fan (18). Note that the frost adhering to the third evaporator (19) is defrosted in the off-cycle by the protective air flow during the thermo-on time and the duty-on time.

そして冷気温度が温度スイッチ(TH)の上限設定値に
達して温度スイッチ(TI)が閉となり、且つデユーテ
ィオン時間となって接点(Ta)が閉となったときには
、リレー(X)が励磁され常開接点(Xa)が閉、常閉
接点(Xb)が開となって第1.第2両電磁弁(46)
(47)が通電開放される一方、第3電磁弁(48)が
非通電閉鎖きれ、上述した第1.第2両蒸発器(14)
(15)による冷却運転即ち第1モードに復帰する。尚
、この冷却運転中にも上述した第2モード即ちサーモオ
フ時間又はデユーティオフ時間が数回とられる。
When the cold air temperature reaches the upper limit set value of the temperature switch (TH), the temperature switch (TI) is closed, and the duty-on time has come and the contact (Ta) is closed, the relay (X) is energized and remains in the normal state. The open contact (Xa) is closed, the normally closed contact (Xb) is open, and the first. 2nd double solenoid valve (46)
(47) is energized and opened, while the third solenoid valve (48) is de-energized and closed. Second double evaporator (14)
(15) returns to the cooling operation, that is, the first mode. It should be noted that during this cooling operation, the above-mentioned second mode, that is, the thermo-off time or duty-off time is taken several times.

冷却運転が進行して第1.第2両蒸発器(14)(15
)の冷却運転の開始、即ち前記S用タイマ(Sff)の
駆動から2時間45分経過すると、S用タイマ(5丁)
から15分間第1.第3両市間接点(STa r ) 
(STa、)を閉、第1常閉接点(STb 、)を開と
する第1出力が出され、第1電気ヒータ(16)が通電
されると共に、第3常開接点(STa s )を通して
第3電磁弁(48)が通電開放きれる反面、第1電磁弁
(46)が非通電閉鎖となって第1蒸発器(14)への
減圧液冷媒の供給が中断され、第1蒸発器(14)の除
霜運転即ち第3モードとなる。この除霜運転の間、D用
タイマ(T)の動作に関係なく第3電磁弁(48)が開
放されて第3蒸発器(19)が冷却運転されると共に、
引き続き第2蒸発器(15)も冷却運転され、外層(7
)を強制循環されている保護気流と、内層(6)の外側
路(29)を通過中の冷気流とが冷却され、又、第1蒸
発器(14)の配置された内層(6)の内側路り28)
を通過中の冷気流は第1電気ヒータ(16)の加熱によ
って徐々に昇温する。即ち第1蒸発器(14)の除M運
転に伴ない、第2.第3両蒸発器(15)(19)が冷
却運転されることになり、この間、D用タイマ(T)の
開動作は有効に作用しない。
As the cooling operation progresses, the first Both second evaporators (14) (15
), that is, after 2 hours and 45 minutes have elapsed since the S timer (Sff) was activated, the S timer (5 units)
15 minutes from the 1st. Point between the third city and city (STa r)
(STa,) is closed and the first normally closed contact (STb,) is opened, a first output is output, which energizes the first electric heater (16), and also through the third normally open contact (STa s). While the third solenoid valve (48) is fully energized, the first solenoid valve (46) is de-energized and closed, and the supply of reduced pressure liquid refrigerant to the first evaporator (14) is interrupted. 14) defrosting operation, that is, the third mode. During this defrosting operation, the third solenoid valve (48) is opened regardless of the operation of the D timer (T), and the third evaporator (19) is operated for cooling.
Subsequently, the second evaporator (15) is also operated for cooling, and the outer layer (7
) and the cold air flow passing through the outer channel (29) of the inner layer (6) are cooled, and the air flow of the inner layer (6) where the first evaporator (14) is arranged is cooled. Inner road 28)
The temperature of the cold air flowing through the first electric heater (16) gradually rises. That is, along with the M removal operation of the first evaporator (14), the second. Both the third evaporators (15) and (19) are operated for cooling, and during this period, the opening operation of the D timer (T) does not work effectively.

この第1蒸発器(14)の除霜運転が進行して第1蒸発
器(14)を通過した冷気流の温度が5°Cに達すると
、第1高温復帰サーモスイツチ(DT+)が開となって
第1電気ヒータ(16)が非通電となり、この後の除霜
終了時刻迄はドレンを排出するための水切り時間となる
。設定された除霜時間が過ぎると、第1蒸発器(14)
に減圧液冷媒が供給され、第1、第2両蒸発器(14)
(is>双方の冷却運転即ち第1モードとなる一方で、
第3蒸発器(19)は減圧液冷媒の供給を中断されるこ
とになり、第3蒸発器(19)に付着した霜はサーモオ
ン及びデユーティオン時間中に保護気流によってオフサ
イクル除霜されることになる。尚、この冷却運転中にも
上述した第2モード即ちサーモオフ又はデユーティオフ
時間が数回とられることになる。
When the defrosting operation of the first evaporator (14) progresses and the temperature of the cold air flow passing through the first evaporator (14) reaches 5°C, the first high temperature return thermoswitch (DT+) opens. As a result, the first electric heater (16) is de-energized, and the time until the end of defrosting is a draining time for draining the condensate. After the set defrosting time has passed, the first evaporator (14)
A reduced pressure liquid refrigerant is supplied to both the first and second evaporators (14).
(is>Both cooling operation, that is, the first mode, while
The supply of vacuum liquid refrigerant to the third evaporator (19) will be interrupted, and the frost adhering to the third evaporator (19) will be defrosted in the off-cycle by the protective air flow during the thermo-on and duty-on periods. Become. It should be noted that during this cooling operation, the above-mentioned second mode, that is, thermo-off or duty-off time will be taken several times.

更に冷却運転が進行して第1.第2両蒸発器(14)(
15)の冷却運転の開始、即ち前記S用タイマ(ST)
の駆動から5時間45分経過すると、S用タイ?(ST
)から15分間第2.第4両市間接点(Sraa)(S
Taa)を閉、第2常閉接点(srb、)を開とする第
2出力が出され、第2電気ヒータ(17)が通電される
と共に、第4常開接点(SIa、)を通して第3電磁弁
(48)が通電開放される反面、第2電磁弁(47)が
非通電閉鎖となって第2蒸発器(15)への減圧液冷媒
の供給が中断され、第2蒸発器(15)の除霜運転即ち
第4モードとなる。この除霜運転の間、D用タイマ(T
)の動作に関係なく第3電磁弁(48)が開放されて第
3蒸発器(19)が冷却運転されると共に、引き続き第
1蒸発器(14)も冷却運転され、外層(7)を強制循
環されている保護気流と、内層(6)の内側路(28)
を通過中の冷気流とが冷却され、又、第2蒸発器(15
)の配置された内層(6)の外側路(29)を通過中の
冷気流は第2電気ヒータ(17)の加熱によって徐々に
昇温する。即ち第2蒸発器(15)の除霜運転に伴ない
、第1.第3両蒸発器(14)(19)が冷却運転され
ることになり、この間、D用タイマ(T)の開動作は有
効に作用しない。
The cooling operation further progresses to the first stage. Both second evaporators (14) (
15) Start of the cooling operation, that is, the S timer (ST)
After 5 hours and 45 minutes have passed since the drive of the S tie? (ST
) for 15 minutes. The 4th intercity point (Sraa) (S
Taa) is closed and the second normally closed contact (srb,) is opened.The second output is energized to the second electric heater (17), and the third normally open contact (SIa,) is energized. While the solenoid valve (48) is energized and opened, the second solenoid valve (47) is de-energized and closed, and the supply of reduced pressure liquid refrigerant to the second evaporator (15) is interrupted. ) defrosting operation, that is, the fourth mode. During this defrosting operation, the D timer (T
), the third solenoid valve (48) is opened and the third evaporator (19) is operated for cooling, and the first evaporator (14) is also operated for cooling, forcing the outer layer (7) Protective airflow being circulated and the inner channel (28) of the inner layer (6)
The cold air flow passing through the second evaporator (15
) The cold air flow passing through the outer channel (29) of the inner layer (6) in which the inner layer (6) is arranged is gradually heated by the heating of the second electric heater (17). That is, with the defrosting operation of the second evaporator (15), the first. Both the third evaporators (14) and (19) are operated for cooling, and during this period, the opening operation of the D timer (T) does not work effectively.

この第2蒸発器(15)の除霜運転が進行して第2蒸発
器(15)を通過した冷気流の温度が5°Cに達すると
、第2高温復帰サーモスイツチ(DIりが開となって第
2電気ヒータ(17〉が非通電となり、この後の除霜終
了時刻迄はドレンを排出するための水切り時間となる。
When the defrosting operation of the second evaporator (15) progresses and the temperature of the cold air flow passing through the second evaporator (15) reaches 5°C, the second high temperature return thermoswitch (DI switch) is opened. As a result, the second electric heater (17>) is de-energized, and the time until the end of defrosting is a draining time for draining the condensate.

設定された除霜時間が過ぎると、第2蒸発器(15)に
減圧液冷媒が供給され、第1、第2両蒸発器(14)(
15)双方の冷却運転即ち第1モードとなる一方で、第
3蒸発器(19)は減圧液冷媒の供給を中断されること
になり、第3蒸発器(19)に付着した霜はサーモオン
及びデユーティオン時間中に保護気流によってオフサイ
クル除霜キれることになる。尚、この冷却運転中にも上
述した第2モード即ちサーモオフ又はデユーティオフ時
間が数回とられることになる。
When the set defrosting time has passed, the reduced pressure liquid refrigerant is supplied to the second evaporator (15), and both the first and second evaporators (14) (
15) While both cooling operations are in the first mode, the supply of reduced pressure liquid refrigerant to the third evaporator (19) is interrupted, and the frost attached to the third evaporator (19) is removed from the thermo-on and During the duty-on period, the off-cycle defrost will be terminated by the protective airflow. It should be noted that during this cooling operation, the above-mentioned second mode, that is, thermo-off or duty-off time will be taken several times.

第2蒸発器(15)の除霜時間が終了すると、S用タイ
マ(ST)が初期状態にリセットされ、上述した第1モ
ード、第3モード、第1モード、第4モードの繰り返し
が行なわれ、第1モードの中で第2モードが行なわれ、
第5図に示すタイムチャートとなる。
When the defrosting time of the second evaporator (15) ends, the S timer (ST) is reset to the initial state, and the above-mentioned first mode, third mode, first mode, and fourth mode are repeated. , the second mode is performed within the first mode,
The time chart is shown in FIG.

前記低温ショーケース(1)の周囲温度27℃、周囲湿
度70%の条件下で、第1.第2両蒸発器(14)(1
5)の冷媒蒸発温度を一13°C1第3蒸発器(19)
の冷媒蒸発温度を一8°C1貯蔵室(9〉の設定温度を
一3°C(上限設定温度−2,5°C1下限設定温度−
3,5°C)として運転すると、第1モードでは各蒸発
器(14)(15)(19)の蒸発温度は第6図に示す
特性となる。即ち、第1.第2両蒸発器(14)(15
)は減圧液冷媒が供給されているサーモオン及びデユー
ティオン時間には一13℃迄引き下げられる反面、減圧
液冷媒の供給が中断されるサーモオフ又はデユーティオ
ン時間には一2℃迄上昇する。一方、第3蒸発器(19
)は減圧液冷媒が供給されているサーモオフ及びデユー
ティオフ時間には一8℃迄引き下げられる反面、減圧液
冷媒の供給が中断されるサーモオン及びデユーティオン
時間には+1.5℃迄上昇する。
Under the conditions of the ambient temperature of the low temperature showcase (1) of 27° C. and the ambient humidity of 70%, the first. Second double evaporator (14) (1
5) Refrigerant evaporation temperature of -13°C1 third evaporator (19)
Set the refrigerant evaporation temperature in the storage room (9) to -2,5°C (upper limit set temperature -2,5 °C1 lower limit set temperature -
3.5° C.), the evaporation temperatures of each evaporator (14), (15), and (19) have the characteristics shown in FIG. 6 in the first mode. That is, 1st. Both second evaporators (14) (15
) is lowered to -113°C during thermo-on and duty-on times when reduced-pressure liquid refrigerant is supplied, but rises to -12°C during thermo-off and duty-on times when the supply of reduced-pressure liquid refrigerant is interrupted. On the other hand, the third evaporator (19
) is lowered to -18°C during thermo-off and duty-off times when vacuum liquid refrigerant is supplied, but rises to +1.5°C during thermo-on and duty-on times when supply of vacuum liquid refrigerant is interrupted.

前記第3蒸発器(19)は第1.第2両蒸発器(14)
(15)に比べ蒸発温度を高く設定されることに併わせ
、第3蒸発器(19)への減圧液冷媒の供給時間が第1
.第2両蒸発器(14)(15)への減圧液冷媒の供給
時間よりも短かくなっている関係上、第1.第2両蒸発
器(14)(15)の蒸発温度よりも第3蒸発器(19
)の蒸発温度が低くなることはないが、仮に第3蒸発器
(19)の蒸発温度が第1.第2両蒸発器(14)(1
5)の蒸発温度よりも低くなったとしても第3蒸発器(
19)が外層(7)に配置されており、外層(7)を通
過する保護気流の温度を引き下げる点から見れば好まし
い状態となる。
The third evaporator (19) is the first evaporator (19). Second double evaporator (14)
In addition to setting the evaporation temperature higher than in (15), the supply time of reduced pressure liquid refrigerant to the third evaporator (19) is
.. Since the supply time of the reduced pressure liquid refrigerant to both the second evaporators (14) and (15) is shorter than the supply time of the reduced pressure liquid refrigerant to the second evaporators (14) and (15), the first. The evaporation temperature of the third evaporator (19) is higher than that of the second evaporators (14) and (15).
) will not become lower, but if the evaporation temperature of the third evaporator (19) is lower than that of the first evaporator (19). Second double evaporator (14) (1
5) Even if it becomes lower than the evaporation temperature of the third evaporator (
19) is arranged in the outer layer (7), which is a favorable situation from the point of view of lowering the temperature of the protective air flow passing through the outer layer (7).

第7図は前述した周囲温度27°C5周囲湿度70%の
条件下における第3モード、即ち第1蒸発器(14)の
除霜時の空気温度特性を示し、(A)は貯蔵室(9)の
空気温度、(B)は第1蒸発器(14)を通過直後の空
気温度、(C)は第2蒸発器(15)を通過直後の空気
温度、(D)は第3蒸発器(19)を通過して開口(2
)に吹き出された空気温度である。図によれば空気温度
(A)及び(B)は第3モードの開始前には第1.第2
両蒸発器(14)(15)が冷却作用をなす第1モード
であるため一5°Cであるが、第3モードの開始に伴な
い第1電気ヒータ(16)の加熱によって空気温度(A
)のみが急激に上昇するが、内側路(28)を通過する
ことにより第1電気ヒータ(16)で加熱され温度上昇
した空気と、外側路(29)を通過することにより第2
蒸発器(15)で冷却され温度低下した空気とが内層(
6)内で合流する関係上、エアーカーテン(CA)とし
て開口(2)に吹き出される冷気流の温度は第3モード
の初期から中期にかけて0°C以下に抑制されるので空
気温度(A)も0°C以下に抑制される。又、第3モー
ドの中期から後期にかけて第3蒸発器(19)を通過し
た空気が0°C以下の冷気流として開口(2)に吹き出
されてエアーカーテン(CA)の温度を引き下げるガー
ドエアーカーテン(GA)として作用する関係上、空気
温度(A)の上昇をO″Cを跨がる温度−1°C〜1°
Cに抑制できる。
Figure 7 shows the air temperature characteristics during defrosting of the first evaporator (14) in the third mode under the above-mentioned conditions of ambient temperature 27°C and ambient humidity 70%, and (A) shows the air temperature characteristics during defrosting of the first evaporator (14). ), (B) is the air temperature immediately after passing through the first evaporator (14), (C) is the air temperature immediately after passing through the second evaporator (15), (D) is the air temperature in the third evaporator ( 19) through the opening (2
) is the temperature of the air blown out. According to the figure, the air temperatures (A) and (B) are the same as the first mode before starting the third mode. Second
Since both evaporators (14) and (15) are in the first mode with a cooling effect, the temperature is -5°C, but with the start of the third mode, the air temperature (A
) only rises rapidly, but the air whose temperature has increased by being heated by the first electric heater (16) by passing through the inner path (28), and the second air which has increased in temperature by passing through the outer path (29).
The air whose temperature has been lowered by being cooled by the evaporator (15) forms the inner layer (
6), the temperature of the cold air flow blown out to the opening (2) as an air curtain (CA) is suppressed to below 0°C from the beginning to the middle of the third mode, so the air temperature (A) temperature is also suppressed to below 0°C. Also, from the middle to the late stage of the third mode, the air that has passed through the third evaporator (19) is blown out to the opening (2) as a cold air flow of 0°C or less, thereby lowering the temperature of the air curtain (CA). (GA), the increase in air temperature (A) is -1°C to 1° above O'C.
It can be suppressed to C.

即ち、第1電気ヒータ(16)の潜熱は第3モードの初
期から中期にかけて第1蒸発器(14)の霜を解かすた
めに多く費やされる反面、内側路(28)を通過する空
気を加熱するための量は僅かであることに加え、霜が流
路抵抗となるために内側路(28)を通過する空気の量
は外側路(29)を通過する空気の量に比べて少ない関
係上、内側路(28)を通過した空気と、外側路(29
)を通過した空気とを内層(6)で合流させることによ
り、0℃以下の冷気流とできるので、空気温度(A)を
0℃以下に抑制できる。又、第1電気ヒータ(16)の
潜熱は第3モードの中期から後期にかけて第1蒸発器(
14)の霜を解かす量よりも第1蒸発器(14)を通過
する空気を暖める量の方が徐々に多くなることに併わせ
、霜が徐々に解けることに伴ない内側路(28)を通過
する空気の量が徐々に増す関係上、外側路(29〉を通
過した空気を合流させることにより、内層(6)を通過
する冷気流の温度の上昇を初期から中期程に抑制できな
いが、外層(7)から開口(2)に吹き出されガードエ
アーカーテン(GA”)を形成する保護気流がO″CC
以下るために開口(2)においてエアーカーテン(CA
)を冷却できるためにエアーカーテン(CA)で冷却さ
れる貯蔵室(9)の空気温度(A)の上昇を抑制するこ
とができる。
That is, while the latent heat of the first electric heater (16) is mostly used to defrost the first evaporator (14) from the beginning to the middle of the third mode, it also heats the air passing through the inner path (28). In addition, the amount of air passing through the inner passage (28) is small compared to the amount of air passing through the outer passage (29) because frost acts as a flow path resistance. , the air passing through the inner passage (28) and the outer passage (29).
) by merging with the air that has passed through the inner layer (6), a cold air flow of 0° C. or lower can be created, so the air temperature (A) can be suppressed to 0° C. or lower. Also, the latent heat of the first electric heater (16) is transferred to the first evaporator (16) from the middle to the late stage of the third mode.
In addition to the fact that the amount of warming the air passing through the first evaporator (14) gradually becomes larger than the amount of defrosting (14), the inner path (28) Since the amount of air passing through the inner layer (6) gradually increases, it is not possible to suppress the temperature rise of the cold air flow passing through the inner layer (6) from the initial to middle stages by merging the air that has passed through the outer layer (29). , the protective air flow blown out from the outer layer (7) to the opening (2) and forming a guard air curtain (GA") is O"CC.
An air curtain (CA) is installed at the opening (2) to
), it is possible to suppress the rise in air temperature (A) in the storage room (9) cooled by the air curtain (CA).

又、内層(6)内に内側路(28)と外側路(29〉と
が夫々独立して形成され、この内側路、外側路を通過し
た空気の合流区域の上流側に第1.第2両高温復帰サー
モスイッチ(DT、)(DT、)が設けられている関係
上、第3モードの後期において第1高温復帰サーモスイ
ツチ(DT、)が5℃に達して開となり第1電気ヒータ
(16)の通電を遮断した時には、内層(6)から吹き
出される冷気流の温度は第1高温復帰サーモスイツチ(
DTI>の温度より低く、従って第1モードに復帰した
場合には、貯蔵室(9)の温度を設定温度に引き下げる
迄の時間が早くなる。
Further, an inner passage (28) and an outer passage (29>) are formed independently in the inner layer (6), and first and second passages are formed on the upstream side of the confluence area of the air that has passed through the inner passage and the outer passage. Because both high-temperature return thermoswitches (DT,) (DT,) are provided, the first high-temperature return thermoswitch (DT,) opens when the temperature reaches 5°C in the latter half of the third mode, and the first electric heater (DT,) opens. 16), the temperature of the cold air flow blown out from the inner layer (6) is controlled by the first high temperature return thermoswitch (
DTI>, and therefore, when the first mode is restored, it takes less time to lower the temperature of the storage chamber (9) to the set temperature.

尚、第2蒸発器(15)が除霜される第4モードの際も
第7図で示す温度特性と同様の特性が得られる。
Note that the same temperature characteristics as shown in FIG. 7 can be obtained also in the fourth mode in which the second evaporator (15) is defrosted.

(ト)発明の効果 上述した本発明によれば、次に列挙する効果が生じる。(g) Effects of the invention According to the present invention described above, the following effects are produced.

■第1.第2両蒸発器に減圧液冷媒を供給して2個の蒸
発器が冷却作用しているときと、第1蒸発器が除霜作用
、第2.第3両蒸発器が冷却作用をしているとき、及び
第2蒸発器が除霜作用、第1.第3両蒸発器が冷却作用
をしているときとは、共に2個の蒸発器に常に減圧液冷
媒が供給されている関係上、冷凍装置における減圧液冷
媒の供給量が略一定となり、その結果、1個の蒸発器が
除霜作用、2個の蒸発器が冷却作用しているときにおい
ても冷却作用中の蒸発器に極端な冷媒蒸発温度の低下及
びこの冷媒蒸発温度の低下が起因する着霜の大幅な増加
を未然に回避できることに併わせ、1個の蒸発器の除霜
時における貯蔵室の温度上昇を抑制することができる。
■First. When both the second evaporators are supplied with reduced pressure liquid refrigerant and the two evaporators are performing a cooling action, the first evaporator is performing a defrosting action, and the second evaporator is performing a defrosting action. When both the third evaporators are performing a cooling action, the second evaporator is performing a defrosting action, and the first evaporator is performing a defrosting action. When both the third evaporators are performing a cooling action, since the reduced pressure liquid refrigerant is always supplied to both evaporators, the supply amount of the reduced pressure liquid refrigerant to the refrigeration system is approximately constant. As a result, even when one evaporator is performing a defrosting function and two evaporators are performing a cooling function, an extreme decrease in the refrigerant evaporation temperature occurs in the evaporator that is performing the cooling function, and this decrease in refrigerant evaporation temperature is caused. In addition to being able to avoid a significant increase in frost formation, it is also possible to suppress the temperature rise in the storage room during defrosting of one evaporator.

■第1乃至第3各蒸発器の配置状態を平面的に見ると、
第3蒸発器の前半分に第2蒸発器の後半分が重なり、第
2蒸発器の前半分に第1蒸発器の後半分が重なることに
なり、3個の蒸発器が配置されているにもか〜わらず、
実質上2個の蒸発器の配置スペースで3個の蒸発器を配
置できる構成となっている関係上、低温ショーケース全
体の奥行幅を蒸発器1個分丈狭くすることができる。
■If you look at the arrangement of the first to third evaporators in a plan view,
The rear half of the second evaporator overlaps the front half of the third evaporator, and the rear half of the first evaporator overlaps the front half of the second evaporator, so that three evaporators are arranged. Regardless,
Since three evaporators can be arranged in the space for actually two evaporators, the depth of the entire low-temperature showcase can be reduced by the length of one evaporator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第7図は本発明低温ショーケースにか〜る実
施例を示し、第1図は縦断側面図、第2図は冷媒回路図
、第3図は他の実施例を示す冷媒回路図、第4図は電気
回路図、第5図は運転タイムチャート、第6図は冷媒蒸
発温度を示す特性図、第7図は1個の蒸発器を除霜、2
個の蒸発器を冷却としたときにおける低温ショーケース
の空気温度を示す特性図、第8図は第6図に対応する従
来技術の特性図である。 (6)・・・内層、 (7)・・・外層、(14)・・
・第1蒸発器、(15)・・・第2蒸発器、 (18)
・・・送風ファン、 (19)・・・第3蒸発器、 (
20)・・・送風ファン、 (27)・・・分割板、 
(28)・・・内側路、 (29)・・・外側路。
1 to 7 show an embodiment of the low temperature showcase of the present invention, FIG. 1 is a longitudinal sectional side view, FIG. 2 is a refrigerant circuit diagram, and FIG. 3 is a refrigerant circuit showing another embodiment. Figure 4 is an electric circuit diagram, Figure 5 is an operation time chart, Figure 6 is a characteristic diagram showing the refrigerant evaporation temperature, Figure 7 is for defrosting one evaporator, two
FIG. 8 is a characteristic diagram showing the air temperature in the low-temperature showcase when each evaporator is used for cooling. (6)...inner layer, (7)...outer layer, (14)...
・First evaporator, (15)...Second evaporator, (18)
...Blower fan, (19)...Third evaporator, (
20)...Blower fan, (27)...Dividing plate,
(28)...medial tract, (29)...lateral tract.

Claims (1)

【特許請求の範囲】[Claims] 1、相互に並列接続された第1乃至第3蒸発器を備え、
第1蒸発器が除霜されているときには、第2、第3両蒸
発器が冷却作用をなし、第2蒸発器が除霜されていると
きには第1、第3両蒸発器が冷却作用をなす冷凍装置と
、送風ファンを備え、その1部が分割板にて内外に分け
られ、前記第1蒸発器が配置される内側路、前記第2蒸
発器が配置される外側路を有する内層と、送風ファン及
び前記第3蒸発器を備えた外層とを具備してなり、前記
第2蒸発器は第1蒸発器と、第3蒸発器との間に位置し
、且つ内側半分が第1蒸発器の外側半分に重なり、外側
半分が第3蒸発器の内側半分に重なるように配置されて
いる低温ショーケース。
1. Equipped with first to third evaporators connected in parallel to each other,
When the first evaporator is defrosted, both the second and third evaporators perform a cooling action, and when the second evaporator is defrosted, both the first and third evaporators perform a cooling action. an inner layer comprising a refrigeration device and a blower fan, a part of which is divided into an inner and outer part by a dividing plate, and has an inner path in which the first evaporator is disposed, and an outer channel in which the second evaporator is disposed; an outer layer including a blower fan and the third evaporator, the second evaporator being located between the first evaporator and the third evaporator, and an inner half of the second evaporator having an inner half of the first evaporator. a low temperature showcase arranged so as to overlap the outer half of the third evaporator, and the outer half overlap the inner half of the third evaporator.
JP28970887A 1987-11-17 1987-11-17 Low-temperature showcase Granted JPH01131874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28970887A JPH01131874A (en) 1987-11-17 1987-11-17 Low-temperature showcase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28970887A JPH01131874A (en) 1987-11-17 1987-11-17 Low-temperature showcase

Publications (2)

Publication Number Publication Date
JPH01131874A true JPH01131874A (en) 1989-05-24
JPH0470546B2 JPH0470546B2 (en) 1992-11-11

Family

ID=17746723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28970887A Granted JPH01131874A (en) 1987-11-17 1987-11-17 Low-temperature showcase

Country Status (1)

Country Link
JP (1) JPH01131874A (en)

Also Published As

Publication number Publication date
JPH0470546B2 (en) 1992-11-11

Similar Documents

Publication Publication Date Title
JPH09505879A (en) Cooling exchanger, control method thereof, and refrigerating apparatus incorporating the same
JP4624223B2 (en) Refrigeration system
CN114867977A (en) Refrigerator with a door
TW200528675A (en) Refrigerator
JPH08254385A (en) Defrosting system for freezing/refrigerating showcase
JP2000161835A (en) Cooling devices
JP4599207B2 (en) Showcase
JP3649875B2 (en) Low temperature showcase
JP7522963B2 (en) refrigerator
JPH01131880A (en) Method of operating low-temperature showcase
JPH11148759A (en) Refrigerator equipped with two sets of evaporators
JPH01131874A (en) Low-temperature showcase
JPS6327629B2 (en)
JP2573005B2 (en) How to operate a low-temperature showcase
JPH01131879A (en) Refrigerator
JPH01131875A (en) Method of operating low-temperature showcase
JPH01131877A (en) Method of cooling low-temperature showcase
JPH01131876A (en) Low-temperature showcase
JPH01131881A (en) Method of operating low-temperature showcase
JP2007085720A (en) Refrigeration system
JPH01131878A (en) Method of operating low-temperature showcase
JP2005076961A (en) Refrigeration system
CN213713605U (en) Refrigeration defrosting system and refrigeration equipment
CN220582832U (en) Refrigerating apparatus
JP3274800B2 (en) Freezer refrigerator