JPH0470421B2 - - Google Patents

Info

Publication number
JPH0470421B2
JPH0470421B2 JP2927484A JP2927484A JPH0470421B2 JP H0470421 B2 JPH0470421 B2 JP H0470421B2 JP 2927484 A JP2927484 A JP 2927484A JP 2927484 A JP2927484 A JP 2927484A JP H0470421 B2 JPH0470421 B2 JP H0470421B2
Authority
JP
Japan
Prior art keywords
group
carbon atoms
general formula
phosphazene compound
moles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2927484A
Other languages
Japanese (ja)
Other versions
JPS60173168A (en
Inventor
Itsupei Noda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takemoto Oil and Fat Co Ltd
Original Assignee
Takemoto Oil and Fat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takemoto Oil and Fat Co Ltd filed Critical Takemoto Oil and Fat Co Ltd
Priority to JP2927484A priority Critical patent/JPS60173168A/en
Publication of JPS60173168A publication Critical patent/JPS60173168A/en
Publication of JPH0470421B2 publication Critical patent/JPH0470421B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、新規な繊維処理用油剤(以下単に油
剤と略記する)及び該油剤による繊維糸条の処理
方法に関し、更に詳しくは従来全く提案されるこ
とのなかつたホスフアーゼン化合物を主要成分と
して、繊維糸条に平滑性や静電気防止性を与える
とともに、従来油剤に比べて著るしく優れた抗タ
ール化性及び油膜強度を発揮する新規な油剤及び
該油剤による繊維糸条の処理方法に関する。 ポリエステル、ポリアミド、ポリプロピレン、
ポリアクリロニトリル等の各種の熱可塑性合成繊
維、又はアセテート等のセルロース系繊維は、紡
糸工程、延伸工程、仮撚工程、撚糸工程、糊付工
程等の諸工程を、場合によつては一体化しつつ適
宜に経て、製織、製編工程により布にされるが、
これらの工程において種々の油剤が使用されてい
る。 ところで、かかる油剤に平滑性、静電気防止性
及び抗タール化性等が要求されることは周知の通
りであり、このため従来から、鉱物油や脂肪酸エ
ステルの他にポリオキシアルキレンエーテル類等
(例えば米国特許第3338830号)も提案されてい
る。そして、これらの化合物を使用した油剤のう
ちでは、ポリオキシアルキレンエーテル類が最も
優れた抗タール化性を有しているが、それでも厳
しい熱処理(例えば糸速600m/分を超えるよう
な延伸仮撚)においては充分満足のゆくものでは
ない。 そこで、従来のポリオキシアルキレンエーテル
類に勝る抗タール化性を有する油剤の出現が望ま
れることになるが、製造加工効率の向上のために
加工速度の高速化が図られる一方、製品の差別化
や高級化等のために繊維糸条の細物化が図られる
今日においては、いずれにしても、走行糸の断
糸、毛羽発生、静電気障害等が助長される傾向り
あり、特に高速の延伸仮撚加工(糸速600m/分
以上)や高温(200℃以上)のスピンドロー工程
においては、加熱機へのタール付着に対する改善
要求及び走行糸条の接触する金属材料の摩耗に対
する改善要求は実に強い。したがつて今日、従来
油剤の改良という程度を超えて、特に高水準の抗
タール化性及び前述のような金属材料の摩耗に影
響を与える広義の油膜強度の発揮という要求を充
足しつつ、さらに高水準の静電気防止能を有する
平滑性に優れた新たな油剤の出現が強く要請され
ているのである。要求を、平滑性や静電気防止性
等他の性能を維持しつつ、高度に充足する新たな
油剤の出現が強く要請されているのである。 本発明者等は、このような要請に応える新規な
油剤の開発をするべく鋭意研究した結果、従来全
く提案されることのなかつた系統に属するホスフ
アーゼン化合物を主要成分とする油剤が正しく好
適であり、該油剤を繊維糸条へ適用すると著るし
く優れた所期の効果を奏することを見出し、本発
明を完成した。 すなわち本発明は、次のような新規の油剤及び
該油剤による繊維糸条の処理方法に係る。 次の一般式()で示される環状ホスフアーゼ
ン化合物と一般式()で示される活性水素を1
個有する有機化合物とを後者2モルに対して前者
1〜5モルの割合で反応させることによつて得ら
れるホスフアーゼン化合物を含有することを特徴
とする油剤。 R(―X)―nH () 〔R1〜R6は炭素数1〜18のアルキル基、フエ
ニル基、又はアルキル(炭素数1〜18)フエニル
基であつて、同一のものでも又は異なつていても
よい。Rは炭素数1〜30(但し、mが0の場合は
6〜30)の直鎖又は側鎖を有するアルコキシ基・
アルケノキシ基・チオアルコキシ基・チオアルケ
ノキシ基・アシロキシ基、ベンジルオキシ基、フ
エノキシ基、又はアルキル(炭素数1〜18)フエ
ノキシ基。Xは炭素数2〜4の酸化アルキレン単
位であつて、(―X)―nは単独のものでも又は2種
以上の混合のものでもよい。mは0又は1以上の
整数。〕 繊維の製造工程において、前述のように得られ
るホスフアーゼン化合物を含有する油剤を、繊維
糸条に対し0.1〜3.0重量%の割合となるように適
用して、該繊維糸条を潤滑することを特徴とする
繊維糸条の処理方法。 本発明で使用するホスフアーゼン化合物は、例
えば次のように合成される。すなわち、前記一般
式()で示される環状ホスフアーゼン化合物
と、前記一般式()で示される活性水素を1個
有する有機化合物とを、後者2モルに対して前者
1〜5モルの割合で加え、減圧下、200℃前後に
加熱し、反応せしめて得る。この際、環状ホスフ
アーゼン化合物の使用モル数が5モルを超える
と、得られるホスフアーゼン化合物のタール化の
点で好ましくない。また、前記一般式()で示
される有機化合物において、アルキレンオキサイ
ドXの付加モル数mに特に限定はないが、通常1
〜200モルである。そして、該付加モル数mが0
の場合は、この場合に得られるホスフアーゼン化
合物の揮発性の点で、Rの炭素数6以上のもので
あることを要する。 叙上の如き合成手段で使用する、前記一般式
()で示される有機化合物を例示すると、次の
ものがある。オクチルアルコール、デシルアルコ
ール、ラウリルアルコール、ミリスチルアルコー
ル、セチルアルコール、ステアリルアルコール、
オレイルアルコール、ベヘニルアルコール等の、
天然の脂肪酸より誘導されるアルコール類。2−
エチルヘキサノール、イソセチルアルコール(例
えば、エヌジエコール160B、新日本理化社製)、
イソステアリルアルコール(例えば、ダイヤドー
ル18G、三菱化成社製)等の、アルドール縮合型
合成アルコール類。イソトリデカノール、直鎖体
とイソ体の混合アルコール(例えば、ドバノー
ル、三菱油化社製)等の、オキソ法合成アルコー
ル類。メタノール、エタノール、ブタノール等
の、低級アルコール類。ベンジルアルコール等
の、炭素数1〜30の1価アルコール類。n−ヘキ
シルメルカプタン、n−オクチルメルカプタン、
n−ドデシルメルカプタン、t−ドデシルメルカ
プタン、ベヘニルメルカプタン等の、メルカプタ
ン類、酢酸、デカン酸、ラウリル酸、オレイン酸
等の、脂肪酸類。オクチルフエノール、ノニルフ
エノール等の、フエノール類。以上の化合物に、
エチレンオキサイド、1,2−プロピレンオキサ
イド、1,2−ブチレンオキサイドを単独又は混
合で付加したポリグリコールエーテル類等。これ
らの中で、いずれも炭素数1〜30の1価アルコー
ル、フエノール類又はこれらに炭素数2〜4のア
ルキレンオキサイドを付加して得られるポリグリ
コールエーテル類が本発明の目的に照らして好ま
しい。 かくして合成され、本発明において使用される
ホスフアーゼン化合物の化学構造は、次の一般式
()で示されるものと推定される。 〔R′、R″は一般式()のR1〜R6と同じ。R、
X、mは一般式()の場合と同じ。nは1〜5
の整数。〕 本発明におけるホスフアーゼン化合物は、叙上
の如き特異な化学構造により、これを油剤成分と
して繊維糸条に適用した場合、従来のポリオキシ
アルキレンエーテル類等と比較して、次のような
特長を有する。すなわち、繊維糸条の摩擦係数低
下能はほぼ同等であるが、高荷重下における油膜
強度(四球式耐荷重能で評価、以下同じ)が強
く、走行繊維糸条と接触する各種金属材料の摩耗
が少ない。また、特に合成繊維の走行糸条の帯電
圧が非常に小さく、静電気の漏洩性や、繊維糸条
の熱処理工程におけるヒーターへのタールの付着
が極めて少ないのである。 本発明に係る油剤におけるこのようなホスフア
ーゼン化合物の含有量は、本発明の効果が得られ
る範囲であればよく、特に制限はない。そして、
本発明に係る油剤は、かかるホスフアーゼン化合
物とともに、他の平滑剤、帯電防止剤、非イオン
界面活性剤、乳化調節剤、湿潤剤、防黴剤及び/
又は防錆剤等を適宜含有し得るものである。 このような平滑剤としては、精製鉱物油、脂肪
酸エステル類、脂肪族エーテルエステル類又は、
エチレンオキサイドやプロピレンオキサイドから
誘導されるポリエーテル類等がある。また、前述
の如き帯電防止剤としては、スルホネート塩、ホ
スフエート塩、カルボン酸塩等のアニオン界面活
性剤、第四級アンモニウム塩型のカチオン界面活
性剤、イミダゾリン型、ベタイン型、スルホベタ
イン型の両性界面活性剤等がある。更に、前述の
如き非イオン界面活性剤としては、ポリオキシエ
チレンアルキルエーテル、ポリオキシエチレンア
ルキルフエニルエーテル、ポリオキシエチレンア
ルキルエステル、多価アルコールの部分アルキル
エステル等がある。 以上説明した本発明に係る油剤は、ポリエステ
ル、ポリアミド、ポリプロピレン、ポリアクリロ
ニトリル等の熱可塑性合成繊維、またポリアラミ
ド繊維や炭素繊維、更にはアセテート等のセルロ
ース系繊維、その他各種の天然繊維に適用して、
高度の所期効果を発揮する。すなわち、該油剤の
中核である前述の如きホスフアーゼン化合物によ
つて、これを従来公知の平滑剤等その成分と比較
すると、卓越した抗タール化性、静電防止性及び
油膜強度(結果的には走行糸条が接触する金属材
料の摩耗を軽減する)を得ることができるのであ
る。しかも、このホスフアーゼン化合物には、そ
の合成が容易であつて、また未反応原料の除去も
容易である等、合成時における多くの利点があ
る。 本発明に係る油剤は、紡糸油剤や加工工程油剤
として繊維に適用され、その効果を発揮するもの
であるが、その使用に当たつては、水性エマルジ
ヨンとして、有機溶剤溶液として又は油剤そのま
ま(ストレートオイリング)で繊維に付与するこ
とが可能である。そして、該油剤の繊維糸条への
付着量は、繊維糸条に対し0.1〜3.0重量%の割合
となるように適用するのが良く、特にポリエステ
ル、ポリアミド、ポリプロピレン、ポリアクリロ
ニトリル等の合成繊維を製造する工程で適用する
場合においては、前述の油剤を該合成繊維糸条に
対して0.1〜3.0重量%、好ましくは0.2〜2.0重量
%となるように付着せしめれば、その後の全工程
(加熱される工程も含む)に亘つて、前述した効
果の発現が著るしい。 最後に、本発明の構成及び効果を一層具体的に
するため、本発明に係る油剤におけるホスフアー
ゼン化合物の合成例、その推定化学構造式及び、
比較例に対する実施例をその性能評価も含んで列
記する。尚、PP−A〜PP−Hはいずれも以下の
合成例に付記したものに該当する。 ●合成例 1 (PP−Aの合成) ブタノールにPO(1,2−プロピレンオキサイ
ド、以下同じ)/EO(エチレンオキサイド、以下
同じ)=50/50(重量比、以下同じ)をランダムに
付加重合して得たMW(分子量、以下同じ)=2000
のポリエーテル500g(0.25モル)と、前記一般
式()で示される環状のプロポキシホスフアー
ゼン61g(0.125モル)とを、ガラス製1反応
容器(撹拌器付)に採り、撹拌均一後、撹拌を続
けながら、減圧下(1mmHg)、温度200℃で6時
間反応させ、目的のホスフアーゼン化合物を収率
95%以上で得た。 〔R1=C4H9,R2=iso−C3H7〕 ●合成例 2 (PP−Bの合成) ラウリルアルコールにEOを付加重合して得た
MW=1500のポリエーテル375g(0.25モル)と、
前記一般式()で示される環状のプロポキシホ
スフアーゼン61g(0.125モル)とから、合成例
1と同様にして目的のホスフアーゼン化合物を得
た。 〔R1=C12H25,R2=iso−C3H7〕 ●合成例 3 (PP−Cの合成) ラウリルアルコール186g(1.0モル)と、前記
一般式()で示される環状のプロポキシホスフ
アーゼン488g(1.0モル)とから、合成例1と同
様にして目的のホスフアーゼン化合物を得た。 〔R1=C12H25,R2=iso−C3H7) ●合成例4(PP−Dの合成) ラウリル酸200g(1モル)と、前記一般式
()で示される環状のプロポキシホスフアーゼ
ン244g(0.5モル)とから、合成例1と同様にし
て目的のホスフアーゼン化合物を得た。 〔R1=C11H23,R2=iso−C3H7〕 ●合成例 5 (PP−Eの合成) ブタノールにPO/EO=50/50をランダムに付
加重合して得たMW=2000のポリエーテル500g
(0.25モル)と、前記一般式()で示される環
状のフエノキシホスフアーゼン86.6g(0.125モ
ル)とから、合成例1と同様にして目的のホスフ
アーゼン化合物を得た。 〔R1=C4H9
The present invention relates to a novel oil for treating fibers (hereinafter simply referred to as oil) and a method for treating fiber threads using the oil. The present invention relates to a novel oil agent that imparts smoothness and antistatic properties to threads and exhibits significantly superior anti-tarring properties and oil film strength compared to conventional oil agents, and a method for treating fiber yarns using the oil agent. polyester, polyamide, polypropylene,
Various thermoplastic synthetic fibers such as polyacrylonitrile or cellulose fibers such as acetate are produced by integrating various processes such as spinning, drawing, false twisting, twisting, and sizing. It is made into cloth through appropriate weaving and knitting processes,
Various oils are used in these processes. Incidentally, it is well known that such oils are required to have smoothness, antistatic properties, anti-tarring properties, etc., and for this reason, in addition to mineral oils and fatty acid esters, polyoxyalkylene ethers (e.g. No. 3,338,830) has also been proposed. Of the oils using these compounds, polyoxyalkylene ethers have the best anti-tar properties, but they still require severe heat treatment (e.g., drawing and false twisting at yarn speeds exceeding 600 m/min). ) is not completely satisfactory. Therefore, it is hoped that an oil agent with anti-tarring properties superior to that of conventional polyoxyalkylene ethers will emerge. Nowadays, fiber yarns are becoming thinner due to higher quality and high-quality products, but in any case, there is a tendency for running yarn breakage, fuzz generation, static electricity damage, etc., especially when drawing at high speed. In the twisting process (yarn speed of 600 m/min or more) and the high-temperature (200°C or more) spin-draw process, there is a strong demand for improvements in tar adhesion to the heating machine and abrasion of the metal materials in contact with the running yarn. . Therefore, today, we have gone beyond the improvement of conventional oils to meet the requirements of a particularly high level of anti-tarring properties and the above-mentioned oil film strength in a broad sense that affects the wear of metal materials. There is a strong demand for a new oil agent with excellent smoothness and a high level of antistatic ability. There is a strong demand for the emergence of a new oil that highly satisfies the requirements while maintaining other properties such as smoothness and antistatic properties. As a result of intensive research to develop a new oil agent that meets these demands, the present inventors have determined that an oil agent whose main component is a phosphazene compound that belongs to a family that has never been proposed before is correct and suitable. They discovered that when the oil agent was applied to fiber threads, the desired effects were significantly superior, and the present invention was completed. That is, the present invention relates to the following novel oil agent and a method for treating fiber threads using the oil agent. A cyclic phosphazene compound represented by the following general formula () and an active hydrogen represented by the general formula () are combined into 1
1. An oil agent characterized in that it contains a phosphazene compound obtained by reacting a phosphazene compound with an organic compound in a ratio of 1 to 5 moles of the former to 2 moles of the latter. R ( - You can leave it on. R is an alkoxy group having a straight chain or side chain having 1 to 30 carbon atoms (6 to 30 if m is 0).
Alkenoxy group, thioalkoxy group, thioalkenoxy group, acyloxy group, benzyloxy group, phenoxy group, or alkyl (1 to 18 carbon atoms) phenoxy group. X is an alkylene oxide unit having 2 to 4 carbon atoms, and (-X) -n may be a single unit or a mixture of two or more types. m is an integer of 0 or 1 or more. ] In the fiber manufacturing process, the oil agent containing the phosphazene compound obtained as described above is applied to the fiber yarn at a ratio of 0.1 to 3.0% by weight to lubricate the fiber yarn. Characteristic method for processing fiber threads. The phosphazene compound used in the present invention is synthesized, for example, as follows. That is, a cyclic phosphazene compound represented by the general formula () and an organic compound having one active hydrogen represented by the general formula () are added at a ratio of 1 to 5 moles of the former to 2 moles of the latter, It is obtained by heating to around 200°C under reduced pressure to cause a reaction. In this case, if the number of moles of the cyclic phosphazene compound used exceeds 5 moles, it is not preferable in terms of taring of the resulting phosphazene compound. In addition, in the organic compound represented by the general formula (), there is no particular limitation on the number m of added moles of alkylene oxide X, but it is usually 1
~200 moles. Then, the number m of added moles is 0
In this case, from the viewpoint of volatility of the phosphazene compound obtained in this case, it is necessary that R has 6 or more carbon atoms. Examples of the organic compounds represented by the general formula () used in the above-mentioned synthetic methods include the following. Octyl alcohol, decyl alcohol, lauryl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol,
Oleyl alcohol, behenyl alcohol, etc.
Alcohols derived from natural fatty acids. 2-
Ethylhexanol, isocetyl alcohol (e.g., ND-Ecol 160B, manufactured by Shin Nihon Rika Co., Ltd.),
Aldol condensation type synthetic alcohols such as isostearyl alcohol (for example, Diadol 18G, manufactured by Mitsubishi Kasei Corporation). Oxo-synthesized alcohols such as isotridecanol and mixed alcohols of linear and iso-forms (for example, Dovanol, manufactured by Mitsubishi Yuka Co., Ltd.). Lower alcohols such as methanol, ethanol, butanol. Monohydric alcohols having 1 to 30 carbon atoms, such as benzyl alcohol. n-hexyl mercaptan, n-octyl mercaptan,
Mercaptans such as n-dodecylmercaptan, t-dodecylmercaptan, and behenylmercaptan; fatty acids such as acetic acid, decanoic acid, lauric acid, and oleic acid; Phenols such as octylphenol and nonylphenol. For the above compounds,
Polyglycol ethers to which ethylene oxide, 1,2-propylene oxide, and 1,2-butylene oxide are added singly or in combination, etc. Among these, monohydric alcohols having 1 to 30 carbon atoms, phenols, and polyglycol ethers obtained by adding alkylene oxides having 2 to 4 carbon atoms to these are preferred in view of the purpose of the present invention. The chemical structure of the phosphazene compound thus synthesized and used in the present invention is estimated to be represented by the following general formula (). [R′, R″ are the same as R 1 to R 6 in general formula (). R,
X and m are the same as in the general formula (). n is 1 to 5
an integer of ] Due to the unique chemical structure described above, the phosphazene compound of the present invention has the following features compared to conventional polyoxyalkylene ethers when applied to fiber yarn as an oil component. have In other words, although the ability of the fiber threads to reduce the coefficient of friction is almost the same, the oil film strength under high loads (evaluated by four-ball load-bearing capacity, the same applies hereinafter) is stronger, and the wear of various metal materials that come into contact with the running fiber threads is stronger. Less is. In addition, the charging voltage of running threads of synthetic fibers is extremely low, and leakage of static electricity and tar adhesion to heaters during the heat treatment process of fiber threads are extremely low. The content of such a phosphazene compound in the oil agent according to the present invention is not particularly limited as long as the effect of the present invention can be obtained. and,
In addition to the phosphazene compound, the oil agent according to the present invention also contains other smoothing agents, antistatic agents, nonionic surfactants, emulsification regulators, wetting agents, antifungal agents, and/or antifungal agents.
Alternatively, it may contain a rust preventive agent or the like as appropriate. Such smoothing agents include refined mineral oil, fatty acid esters, aliphatic ether esters, or
There are polyethers derived from ethylene oxide and propylene oxide. In addition, the antistatic agents mentioned above include anionic surfactants such as sulfonate salts, phosphate salts, and carboxylates, cationic surfactants of quaternary ammonium salt type, and amphoteric surfactants of imidazoline type, betaine type, and sulfobetaine type. There are surfactants, etc. Furthermore, examples of the above-mentioned nonionic surfactants include polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, polyoxyethylene alkyl esters, and partial alkyl esters of polyhydric alcohols. The oil agent according to the present invention described above can be applied to thermoplastic synthetic fibers such as polyester, polyamide, polypropylene, and polyacrylonitrile, as well as polyaramid fibers, carbon fibers, cellulose fibers such as acetate, and various other natural fibers. ,
Demonstrates a high degree of desired effect. In other words, the aforementioned phosphazene compound, which is the core of the oil agent, has excellent anti-tarring properties, antistatic properties, and oil film strength (as a result) when compared with its components such as conventionally known smoothing agents. This can reduce wear on the metal materials that the running yarn comes into contact with. Moreover, this phosphazene compound has many advantages during synthesis, such as easy synthesis and easy removal of unreacted raw materials. The oil agent according to the present invention is applied to fibers as a spinning oil agent or a processing oil agent to exhibit its effects, but it can be used as an aqueous emulsion, as an organic solvent solution, or as an oil agent (straight). It is possible to apply it to fibers by oiling). The amount of the oil applied to the fiber threads is preferably 0.1 to 3.0% by weight based on the fiber threads, especially for synthetic fibers such as polyester, polyamide, polypropylene, and polyacrylonitrile. When applied in the manufacturing process, if the above-mentioned oil agent is applied to the synthetic fiber yarn in an amount of 0.1 to 3.0% by weight, preferably 0.2 to 2.0% by weight, all subsequent processes (heating (including the steps in which it is carried out), the above-mentioned effects are remarkable. Finally, in order to make the structure and effects of the present invention more specific, we will explain a synthesis example of a phosphazene compound in an oil agent according to the present invention, its estimated chemical structural formula, and
Examples for comparative examples will be listed, including their performance evaluations. In addition, all of PP-A to PP-H correspond to those added to the following synthesis examples. ●Synthesis example 1 (Synthesis of PP-A) Random addition polymerization of PO (1,2-propylene oxide, the same below)/EO (ethylene oxide, the same below) = 50/50 (weight ratio, the same below) to butanol MW (molecular weight, same below) = 2000
500 g (0.25 mol) of polyether and 61 g (0.125 mol) of the cyclic propoxyphosphazene represented by the general formula () were placed in a glass reaction vessel (equipped with a stirrer), and after uniform stirring, the mixture was stirred. While continuing to react under reduced pressure (1 mmHg) at a temperature of 200°C for 6 hours, the desired phosphazene compound was obtained in high yield.
Obtained over 95%. [R 1 = C 4 H 9 , R 2 = iso-C 3 H 7 ] ●Synthesis example 2 (synthesis of PP-B) Obtained by addition polymerization of EO to lauryl alcohol
375 g (0.25 mol) of polyether with MW = 1500,
The desired phosphazene compound was obtained in the same manner as in Synthesis Example 1 from 61 g (0.125 mol) of the cyclic propoxyphosphazene represented by the general formula (). [R 1 = C 12 H 25 , R 2 = iso-C 3 H 7 ] ●Synthesis Example 3 (Synthesis of PP-C) 186 g (1.0 mol) of lauryl alcohol and cyclic propoxy expressed by the above general formula () The desired phosphazene compound was obtained from 488 g (1.0 mol) of phosphazene in the same manner as in Synthesis Example 1. [R 1 = C 12 H 25 , R 2 = iso-C 3 H 7 ) Synthesis Example 4 (Synthesis of PP-D) 200 g (1 mol) of lauric acid and a cyclic propoxy group represented by the above general formula () The desired phosphazene compound was obtained from 244 g (0.5 mol) of phosphazene in the same manner as in Synthesis Example 1. [R 1 = C 11 H 23 , R 2 = iso-C 3 H 7 ] ● Synthesis example 5 (Synthesis of PP-E) MW obtained by random addition polymerization of PO/EO = 50/50 to butanol = 2000 polyether 500g
(0.25 mol) and 86.6 g (0.125 mol) of the cyclic phenoxyphosphazene represented by the above general formula () in the same manner as in Synthesis Example 1 to obtain the desired phosphazene compound. [R 1 = C 4 H 9 ,

【式】〕 ●合成例 6 (PP−Fの合成) フエノール94g(1モル)と、前記一般式
()で示される環状のプロポキシホスフアーゼ
ン244g(0.5モル)とから、合成例1と同様にし
て目的のホスフアーゼン化合物を得た。 〔R2=iso−C3H7〕 ●合成例 7 (PP−Gの合成〕 n−ラウリルメルカプタン202g(1モル)と、
前記一般式()で示される環状のプロポキシホ
スフアーゼン244g(0.5モル)とから、合成例1
と同様にして目的のホスフアーゼン化合物を得
た。 〔R1=C12H25,R2=iso−C3H7〕 ●合成例8(PP−Hの合成) ラウリルアルコール186g(1モル)と、前記
一般式()で示される環状のプロポキシホスフ
アーゼン976g(2モル)とから、合成例1と同
様にして目的のホスフアーゼン化合物を得た。 〔R1=C12H25、R2=iso−C3H7〕 ●実施例1〜6、比較例1〜4 第1表に示した実施例1〜6の油剤と比較例1
〜4の油剤をそれぞれ配合調整した。これらの各
油剤の10重量%エマルジヨンを、シクロヘキサン
で脱脂して乾燥した市販のナイロンフイラメント
(セミダル70デニール・24フイラメント)にオイ
リングローラより給油し、油剤を0.8〜1.0重量%
付着させた。そして、該ナイロンフイラメントに
ついて走行糸摩擦係数を、また油剤について四球
式耐荷重能及びタール化率を、更に以下の方法で
摩擦発生電気及び電気抵抗を、それぞれ測定して
評価した。結果を第1表に示す。 ●●走行糸摩擦係数の測定 油剤処理したナイロン試料糸を用い、次の条件
でμメーター(エイコー測器社製)により測定し
た。 摩擦体=表面クロムメツキ梨地処理した直径25
mmの円筒、糸−摩擦体接触角=90度、初張力
(T1)=20g、走行速度=300m/分、雰囲気=25
℃×65%RH。 摩擦体通過直後の糸条張力(T2)を測定し、
次式により摩擦係数を算出した。 摩擦係数=1.466log T2/T1 走行糸摩擦係数は小さい程、平滑性が良い。 ●●四球式耐荷重能の測定 JISのK2519に定められた石油製品四球式耐荷
重試験方法にしたがい、試験鋼球の焼付が起こる
に至つたときの油圧計の数値(Kg/cm2)を測定し
た。 ●●タール化率の測定 ステンレス製シヤーレ(直径3cm、深さ8mm)
に油剤3gを精秤し、加熱オーブン中で230℃×
48時間処理して、乾燥デシケータ中で放冷後、再
度精秤し、元の油剤の有効成分に対する残査率を
求めて、タール化率(重量%)を測定した。 ●●摩擦発生電気の測定 ナイロンフイラメント(セミダル75デニール・
36フイラメント)のマルチフイラメント糸に油剤
を同様に0.4±0.1重量%付与し、20℃×40%RH
の雰囲気下で調整して試料糸とした。この試料糸
を用い、初張力20g、700m/分の速度で供給し
た糸を、200℃×90cmのヒーターに接触させた後、
クロムメツキ梨地ピンと接触角90度で接触摩擦さ
せ、その直後に集電式電位測定器を置いて、糸条
上の発生静電気(ボルト)を測定した。 ●●電気抵抗の測定 摩擦発生電気の測定の場合と同様に試料糸を調
整した。この試料糸10gを、電気抵抗測定用ボツ
クス(40ml容量)に入れ、東亜電波工業社製の
SM−5E型絶縁計を用いて電気抵抗(logΩ)を
測定した。 ●●評価基準 次の付表1及び付表2の基準で評価した。
[Formula]] ● Synthesis Example 6 (Synthesis of PP-F) From 94 g (1 mol) of phenol and 244 g (0.5 mol) of the cyclic propoxyphosphazene represented by the general formula (), the same as in Synthesis Example 1 was used. The desired phosphazene compound was obtained. [R 2 = iso-C 3 H 7 ] ●Synthesis example 7 (Synthesis of PP-G) 202 g (1 mol) of n-lauryl mercaptan,
Synthesis Example 1 from 244 g (0.5 mol) of cyclic propoxyphosphazene represented by the general formula ()
The desired phosphazene compound was obtained in the same manner as above. [R 1 = C 12 H 25 , R 2 = iso-C 3 H 7 ] ●Synthesis Example 8 (Synthesis of PP-H) 186 g (1 mol) of lauryl alcohol and cyclic propoxy expressed by the above general formula () The desired phosphazene compound was obtained from 976 g (2 moles) of phosphazene in the same manner as in Synthesis Example 1. [R 1 = C 12 H 25 , R 2 = iso-C 3 H 7 ] ●Examples 1 to 6, Comparative Examples 1 to 4 The oils of Examples 1 to 6 shown in Table 1 and Comparative Example 1
-4 oil agents were mixed and adjusted. A 10% by weight emulsion of each of these oils was applied to a commercially available nylon filament (semi-dull 70 denier, 24 filament), which had been degreased with cyclohexane and dried, using an oiling roller, and 0.8 to 1.0% by weight of the oil was applied.
Attached. The running thread friction coefficient of the nylon filament, the four-ball load carrying capacity and taring rate of the oil agent, and the friction generated electricity and electrical resistance were measured and evaluated using the following methods. The results are shown in Table 1. ●●Measurement of running yarn friction coefficient Using a nylon sample yarn treated with an oil agent, it was measured with a μ meter (manufactured by Eiko Sokki Co., Ltd.) under the following conditions. Friction body = diameter 25 with chromed surface treated with matte finish
mm cylinder, thread-friction body contact angle = 90 degrees, initial tension (T 1 ) = 20 g, running speed = 300 m/min, atmosphere = 25
℃×65%RH. Measure the yarn tension (T 2 ) immediately after passing through the friction body,
The friction coefficient was calculated using the following formula. Friction coefficient = 1.466log T 2 /T 1 The smaller the running thread friction coefficient, the better the smoothness. ●●Measurement of four-ball load-bearing capacity According to the four-ball load-bearing test method for petroleum products stipulated in JIS K2519, the value (Kg/cm 2 ) on the oil pressure gauge at the time when seizure of the test steel ball occurred was measured. It was measured. ●●Measurement of tar rate Stainless steel shear (diameter 3cm, depth 8mm)
Precisely weigh 3g of oil and heat in a heated oven at 230℃
The mixture was treated for 48 hours, left to cool in a drying desiccator, and then accurately weighed again to determine the residual ratio relative to the active ingredients of the original oil solution, and the taring ratio (weight %) was measured. ●●Measurement of friction generated electricity Nylon filament (semi-dull 75 denier)
Similarly, 0.4±0.1% by weight of oil was applied to the multifilament yarn (36 filaments), and the temperature was 20℃ x 40%RH.
The sample yarn was prepared under an atmosphere of Using this sample yarn, the yarn was fed at an initial tension of 20 g and at a speed of 700 m/min, and was brought into contact with a heater at 200°C x 90 cm.
Immediately after contact friction was made with a chrome matte satin pin at a contact angle of 90 degrees, a current collecting potential measuring device was placed to measure the static electricity (volts) generated on the yarn. ●●Measurement of electrical resistance The sample yarn was adjusted in the same way as for the measurement of friction-generated electricity. Place 10g of this sample yarn in a box for electrical resistance measurement (40ml capacity), and
Electrical resistance (logΩ) was measured using an SM-5E insulation meter. ●●Evaluation Criteria Evaluation was made based on the criteria in Appendix Table 1 and Appendix 2 below.

【表】【table】

【表】【table】

【表】【table】

【表】 ●実施例7〜11、比較例5、6 第2表に示した実施例7〜11の油剤と比較例
5,6の油剤をそれぞれ配合調整し、以下第1表
の場合と同様にして評価した。尚、この第2表で
は、第1表のタール化率に替えて、以下の方法
で、編針摩耗度を測定して評価した。 ●●編針摩耗度の測定 摩擦発生電気の測定の場合と同様に試料糸を調
整し、この試料糸を下記条件でトリコツト用編針
に接触走行させた後、その編針の摩擦面を顕微鏡
観察し、摩耗痕の有無を調べた。 試料糸走行速度=400m/分、張力=40g、編
針と走行糸の接触角=150度、雰囲気=25℃×75
%RH。 ●●評価基準 次の付表3の基準で評価した。
[Table] ●Examples 7 to 11, Comparative Examples 5 and 6 The oils of Examples 7 to 11 shown in Table 2 and the oils of Comparative Examples 5 and 6 were mixed and adjusted, and the following is the same as in Table 1. It was evaluated as follows. In addition, in this Table 2, the knitting needle wear degree was measured and evaluated by the following method instead of the tar conversion rate in Table 1. ●●Measurement of knitting needle wear degree Prepare the sample yarn in the same way as in the case of measuring friction-generated electricity, run this sample yarn in contact with a knitting needle for tricot under the following conditions, and then observe the friction surface of the knitting needle with a microscope. The presence or absence of wear marks was examined. Sample yarn running speed = 400 m/min, tension = 40 g, contact angle between knitting needle and running yarn = 150 degrees, atmosphere = 25°C x 75
%RH. ●●Evaluation criteria Evaluation was made using the criteria in Appendix 3 below.

【表】【table】

【表】 ●実施例12、比較例7 第3表に示した実施例12の油剤と比較例7の油
剤をそれぞれ配合調整した。これらの各油剤の10
重量%エマルジヨンを用い、ローラータツチ法で
油剤として0.4〜0.5重量%付与したPOYを対象
に、いずれも次の方法で延伸仮撚を行なつた。工
程通過性は、実施例12及び比較例7ともに問題な
かつたが、10日間運転の後、ヒーターに付着した
タールの量は、実施例12の方が比較例7よりも良
好であつた。 ●●延伸仮撚 次の条件で延伸仮撚した。 施撚方法=3軸摩擦方式(硬質ウレタンゴムデ
イスク)、糸条走行速度=600m/分、延伸倍率=
1.518、加撚側ヒーター=長さ2mで表面温度220
℃、解撚側ヒーター=なし、目標撚数=3200T/
m。
[Table] ●Example 12, Comparative Example 7 The oil agent of Example 12 and the oil agent of Comparative Example 7 shown in Table 3 were blended and adjusted. 10 of each of these oils
Stretching and false twisting of POY to which 0.4 to 0.5% by weight of an oil agent was applied by the roller touch method using a weight% emulsion was performed in the following manner. Both Example 12 and Comparative Example 7 had no problems in process passability, but the amount of tar adhering to the heater in Example 12 was better than in Comparative Example 7 after 10 days of operation. ●●Stretching false twisting Stretching false twisting was carried out under the following conditions. Twisting method = 3-axis friction method (hard urethane rubber disk), yarn running speed = 600 m/min, stretching ratio =
1.518, twisting side heater = length 2m, surface temperature 220
°C, untwisting side heater = none, target number of twists = 3200T/
m.

【表】 比較例1〜7に対する実施例1〜12の結果から
も明らかなように、本発明に係る油剤は、従来の
油剤に比べて、全ての項目を全体として充足して
いることが判る。
[Table] As is clear from the results of Examples 1 to 12 with respect to Comparative Examples 1 to 7, it can be seen that the oil agent according to the present invention satisfies all the items as a whole compared to the conventional oil agent. .

Claims (1)

【特許請求の範囲】 1 次の一般式()で示される環状ホスフアー
ゼン化合物と一般式()で示される活性水素を
1個有する有機化合物とを後者2モルに対して前
者1〜5モルの割合で反応させることによつて得
られるホスフアーゼン化合物を含有することを特
徴とする繊維処理用油剤。 R(―X)―nH () 〔R1〜R6は炭素数1〜18のアルキル基、フエ
ニル基、又はアルキル(炭素数1〜18)フエニル
基であつて、同一のものでも又は異なつていても
よい。Rは炭素数1〜30(但し、mが0の場合は
6〜30)の直鎖又は側鎖を有するアルコキシ基・
アルケノキシ基・チオアルコキシ基・チオアルケ
ノキシ基・アシロキシ基、ベンジルオキシ基、フ
エノキシ基、又はアルキル(炭素数1〜18)フエ
ノキシ基。Xは炭素数2〜4の酸化アルキレン単
位であつて、(―X)―nは単独のものでも又は2種
以上の混合のものでもよい。mは0又は1以上の
整数。〕 2 繊維の製造工程において、次の一般式()
で示される環状ホスフアーゼン化合物と一般式
()で示される活性水素を1個有する有機化合
物とを後者2モルに対して前者1〜5モルの割合
で反応させることによつて得られるホスフアーゼ
ン化合物を含有する繊維処理用油剤を、繊維糸条
に対し0.1〜3.0重量%の割合となるように適用し
て、該繊維糸条を潤滑することを特徴とする繊維
糸条の処理方法。 R(―X)―nH () 〔R1〜R6は炭素数1〜18のアルキル基、フエ
ニル基、又はアルキル(炭素数1〜18)フエニル
基であつて、同一のものでも又は異なつていても
よい。Rは炭素数1〜30(但し、mが0の場合は
6〜30)の直鎖又は側鎖を有するアルコキシ基・
アルケノキシ基・チオアルコキシ基・チオアルケ
ノキシ基・アシロキシ基、ベンジルオキシ基、フ
エノキシ基、又はアルキル(炭素数1〜18)フエ
ノキシ基。Xは炭素数2〜4の酸化アルキレン単
位であつて、(―X)―nは単独のものでも又は2種
以上の混合のものでもよい。mは0又は1以上の
整数。〕
[Scope of Claims] 1. A cyclic phosphazene compound represented by the following general formula () and an organic compound having one active hydrogen represented by the general formula () in a ratio of 1 to 5 moles of the former to 2 moles of the latter. An oil agent for textile treatment, characterized by containing a phosphazene compound obtained by reacting with. R ( - You can leave it on. R is an alkoxy group having a straight chain or side chain having 1 to 30 carbon atoms (6 to 30 if m is 0).
Alkenoxy group, thioalkoxy group, thioalkenoxy group, acyloxy group, benzyloxy group, phenoxy group, or alkyl (1 to 18 carbon atoms) phenoxy group. X is an alkylene oxide unit having 2 to 4 carbon atoms, and (-X) -n may be a single unit or a mixture of two or more types. m is an integer of 0 or 1 or more. ] 2 In the fiber manufacturing process, the following general formula ()
Contains a phosphazene compound obtained by reacting a cyclic phosphazene compound represented by the formula () with an organic compound having one active hydrogen represented by the general formula () in a ratio of 1 to 5 moles of the former to 2 moles of the latter. 1. A method for treating fiber yarns, which comprises applying a fiber treatment oil agent in a proportion of 0.1 to 3.0% by weight to the fiber yarns to lubricate the fiber yarns. R ( - You can leave it on. R is an alkoxy group having a straight chain or side chain having 1 to 30 carbon atoms (6 to 30 if m is 0).
Alkenoxy group, thioalkoxy group, thioalkenoxy group, acyloxy group, benzyloxy group, phenoxy group, or alkyl (1 to 18 carbon atoms) phenoxy group. X is an alkylene oxide unit having 2 to 4 carbon atoms, and (-X) -n may be a single unit or a mixture of two or more types. m is an integer of 0 or 1 or more. ]
JP2927484A 1984-02-18 1984-02-18 Fiber treating oil agent and treatment of fiber yarn thereby Granted JPS60173168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2927484A JPS60173168A (en) 1984-02-18 1984-02-18 Fiber treating oil agent and treatment of fiber yarn thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2927484A JPS60173168A (en) 1984-02-18 1984-02-18 Fiber treating oil agent and treatment of fiber yarn thereby

Publications (2)

Publication Number Publication Date
JPS60173168A JPS60173168A (en) 1985-09-06
JPH0470421B2 true JPH0470421B2 (en) 1992-11-10

Family

ID=12271699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2927484A Granted JPS60173168A (en) 1984-02-18 1984-02-18 Fiber treating oil agent and treatment of fiber yarn thereby

Country Status (1)

Country Link
JP (1) JPS60173168A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5174923A (en) * 1989-02-03 1992-12-29 Eastman Kodak Company Cyclic phosphazene and salt antistatic composition
US4971897A (en) * 1989-02-03 1990-11-20 Eastman Kodak Company Photographic silver halide element containing cyclic phosphazene and salt antistatic composition
US5010128A (en) * 1989-03-27 1991-04-23 Eastman Kodak Company Composites of etheric phosphazene and metal oxides and the method of their formation
CN106928280A (en) * 2015-12-29 2017-07-07 广东广山新材料股份有限公司 A kind of phosphazene compound, the composition comprising it, pre-impregnated sheet and wiring board

Also Published As

Publication number Publication date
JPS60173168A (en) 1985-09-06

Similar Documents

Publication Publication Date Title
US4502968A (en) Lubricating agents for processing fibers and method of processing thermoplastic synthetic fiber filaments therewith
JP4970187B2 (en) Fiber treatment agent and method for producing synthetic fiber using the same
US4552671A (en) Spin finish compositions for polyester and polyamide yarns
US4561987A (en) Lubricating agents for processing synthetic yarns and method of processing synthetic yarns therewith
JPH0370031B2 (en)
JPH0470421B2 (en)
CN111684124B (en) Treating agent for polyester synthetic fiber and polyester synthetic fiber
US6123990A (en) Anti-static lubricant composition and method of making same
EP0189804A2 (en) Low residue fiber spin finishes
JPH0524270B2 (en)
JPS58220874A (en) Lubricant for thermoplastic synthetic fiber bulky processed yarn
JPH0156189B2 (en)
JPH06346368A (en) Treating agent for synthetic fiber
JPS5920023B2 (en) New textile processing oil
KR790001152B1 (en) Polyester multifilament yarn treating method for fabrics
JP2874331B2 (en) Synthetic fiber treatment agent
KR920006474B1 (en) A composition of fiber lubricant for un-drawn of polyester filament
JP3909265B2 (en) Method for drawing false twist of synthetic fiber
JPS60194177A (en) Treating agent for synthetic fiber
JP3899270B2 (en) Method for drawing false twist of synthetic fiber
JPS5852397A (en) Lubricant for treating synthetic fiber
JP2021152238A (en) Treating agent for synthetic fibers, diluent for treating agent for synthetic fibers, synthetic fibers and method for producing synthetic fibers
CN117721554A (en) Spinning oil special for regenerated polyester POY fibers and preparation method thereof
JPH10168669A (en) Drawing and false twisting of synthetic fiber
JPH0444031B2 (en)