JPH0470340B2 - - Google Patents

Info

Publication number
JPH0470340B2
JPH0470340B2 JP63053673A JP5367388A JPH0470340B2 JP H0470340 B2 JPH0470340 B2 JP H0470340B2 JP 63053673 A JP63053673 A JP 63053673A JP 5367388 A JP5367388 A JP 5367388A JP H0470340 B2 JPH0470340 B2 JP H0470340B2
Authority
JP
Japan
Prior art keywords
rubber
weight
parts
performance
tire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63053673A
Other languages
Japanese (ja)
Other versions
JPS63314255A (en
Inventor
Kazuaki Yuto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP63053673A priority Critical patent/JPS63314255A/en
Publication of JPS63314255A publication Critical patent/JPS63314255A/en
Publication of JPH0470340B2 publication Critical patent/JPH0470340B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は全天候性能を有する高運動性能タイヤ
に関するものであり、更に詳しくは晴天時の乾燥
路面、雨天時の湿潤路面、並びに氷および/また
は雪に覆われた(氷雪)路面等を走行できる性能
に加えて、乾燥路面においては路面とトレツドと
の間の摩擦力が十分に大きく、曲りくねつた道路
で容易にまたは高速で走行できる性能と、直線道
路で高速で走行できる性能と、サーキツト等で走
行した場合には短いラツプタイムで走行できる性
能と、更に湿潤路面でも容易にまたは高速で走行
できる性能とを併せ持つ、乗用車用ラジアルタイ
ヤ、乗用車用バイアスタイヤおよび二輪車用タイ
ヤに適用可能なタイヤ、更にはかかる性能に加え
耐摩耗性をも改善されたタイヤに関するものであ
る。 (従来の技術) 従来より高運動性能タイヤは種々知られてお
り、例えば特開昭55−60539号、同55−86827号各
公報には湿潤路面における踏面把握を改善したト
レツドゴム用組成物が開示されている。また、氷
雪路を走行するためのいわゆるスノータイヤ、ス
タツドレスタイヤも知られており、例えば特開昭
59−206209号公報にはトレツドを特定ゴム組成物
で構成することにより氷雪踏面の踏面把握力を高
めた空気入りタイヤが開示されている。 (従来技術の問題点) 従来の高運動性能タイヤトレツドは、高い踏面
把握力を確保するために室温付近におけるトレツ
ドゴムのロスを大きくする必要があり、このため
高いガラス転移温度を有するポリマー、例えばス
チレン含有量の大きいスチレンブタジエンゴムを
使用したり、あるいはカーボンとオイルを多量に
配合して目的を達成してきた。しかし、これらの
トレツドゴムは低温になると硬化し、氷雪路面上
を走行すると路面との間に十分な摩擦力を得るこ
とができず、容易に走行できないという問題点が
あり、また摩耗性も不充分であつた。 一方、氷雪路面上を容易に走行することを目的
としたいわゆるスノータイヤ、スタツドレスタイ
ヤは低温でも柔らかいトレツドゴムを使用するの
が一般的であり、このため氷雪路面では満足すべ
き性能が得られるものの、室温付近ではトレツド
ゴムの硬度が低下し過ぎる傾向があり、十分な高
運動性能が得られないという問題点があり、また
やはり耐摩耗性も不十分であつた。 本発明の目的は、上述した従来技術の問題点を
解消し、氷雪路面上でも容易に走行できる、換言
すれば全天候性能を有する高運動性能タイヤ、更
にはかかる性能に加え優れた耐摩耗性をも有する
タイヤを提供することにある。 (問題点を解決するための手段) 本発明者らは、タイヤトレツド部材の材質につ
き鋭意研究を行つた結果、室温付近で路面との間
に大きな摩擦力を得るために室温付近でのトレツ
ドゴムの粘弾性特性と、例えば−20℃の低温にお
けるトレツドゴムの弾性特性とを各々独立にかつ
自由に制御し得るゴム組成物を選定することによ
り全天候性能を有する高運動性能タイヤが得られ
ることを見出し、先の特許出願(特願昭60−
203181号)を行つた。その後本発明者らは、かか
る性能を更に向上させるべく鋭意研究を行つた結
果、前記ゴム組成物に特定の補強用カーボンブラ
ツクを所定量配合させることにより、これまで以
上に優れた性能を有するタイヤが得られることを
見出し、本発明を完成するに至つた。 すなわち本発明は、ガラス転移温度が−65℃以
下のジエン系ゴムの少なくとも1種10〜90重量部
と、ガラス転移温度が−55℃以上のジエン系ゴム
の少なくとも1種90〜10重量部とから成るゴム成
分100重量部に対し、特性として125〜145m2/g
の窒素吸着量(以下N2SAと略記する)および99
ml/100g以下のジブチルフタレート吸油量(以
下DBPと略記する)でかつ24000psi(1690Kg/
cm2)で4回繰り返し圧縮した後のジブチルフタレ
ート吸油量(以下24M4DBPと略記する)75〜85
ml/100gを有する補強用カーボンブラツク40〜
90重量部と、エステル系低温軟化剤2〜30重量部
とを配合し加硫してなり、−20℃における100%伸
長時での弾性率が40Kg/cm2以下で、30℃における
損失係数tanδが0.3以上の加硫ゴムをトレツドに
用いたことを特徴とする全天候性能を有する改良
された高運動性能タイヤに関するものである。 本発明において前記(A)成分として使用する、ガ
ラス転移温度が−65℃以下のジエン系ゴムの例と
しては、(高シスまたは低ビニル)ポリブタジエ
ンゴム、スチレン含有量の小さいスチレン−ブタ
ジエンゴム、エチレン−ブタジエンゴム、プロピ
レン−ブタジエンゴム、ブタジエン−イソプレン
ゴム、プロピレン−イソプレンゴム等が挙げられ
るが、好ましくはガラス転移温度が−70℃以下の
ジエン系ゴムを使用する。尚、(A)成分にガラス転
移温度が−65℃よりも高いジエン系ゴムを使用す
ると、低温において所望弾性率を得ることが困難
とり好ましくない。 次に、前記(B)成分として使用する、ガラス転移
温度が−55℃以上のジエン系ゴムの例としては、
スチレン含有量の大きいスチレン−ブタジエンゴ
ム、α−メチルスチレン−ブタジエンゴム、ビニ
ル含有量の大きいポリブタジエンゴム、スチレン
含有量は小さいがビニル含有量の大きいスチレン
−ブタジエンゴム等が挙げられる。尚、(B)成分に
ガラス転移温度が−55℃未満のジエン系ゴムを使
用すると、所望の高運動性能を得ることが困難と
なり好ましくない。 トレツドゴムの室温付近の粘弾性特性と低温に
おける弾性特性とを前記本発明の範囲内に維持す
るためには、(A)成分と(B)成分より成る混合ゴム成
分に、特定のカーボン特性を有する補強用カーボ
ンブラツクとエステル系低温軟化剤とを配合する
必要がある。 この特定の特性を有する補強用カーボンブラツ
クとは、前述の如くN2SAが125〜145m2/gでか
つDBPが99ml/100g以下、好ましくは80〜99
ml/100gでかつ24M4DBPが75〜85ml/gの範
囲内にあるカーボンブラツクであるが、かかるカ
ーボンブラツクを選定することとした理由は次の
通りである。すなわち、N2SAが125m2/g未満
では常温付近での貯蔵弾性率E′が小さくて所望の
高運動性能を得ることが困難となり好ましくな
く、一方145m2/gを超えると配合物中でのカー
ボンブラツクの分散不良を来たしやはり好ましく
ないからである。またDBPが100ml/100g以上
では弾性率が高くなり過ぎ、低温においても所望
弾性率を得ることが困難となり好ましくないから
である。更に、24M4DBPが75ml/100g未満で
は耐摩耗性が悪化し、一方85ml/100gを超える
と優れた雪上制動性が得られない。尚、ここで
24M4DBPの測定はASTM D3493によるもので
ある。 本発明においては、前述の特性を有する補強用
カーボンブラツクの配合割合をゴム成分100重量
部に対し40〜90重量部の範囲内とするのが好まし
い。これは、40重量部未満では室温付近の損失係
数tanδおよび貯蔵弾性率E′が小さくなり過ぎ所望
の高温性能を得ることが困難となり好ましくな
く、また90重量部を超えると弾性率が高くなり過
ぎ、低温において所望弾性率を得ることが困難と
なりやはり好ましくないからである。 次にエステル系低温軟化剤としては、フタル酸
誘導体、例えばフタル酸系ジエステル、脂肪酸系
−塩基酸エステル、例えばオレイン酸誘導体、脂
肪酸系二塩基酸エステル、例えばアジピン酸誘導
体、アゼライン酸誘導体、セバシン酸誘導体およ
びリン酸誘導体等のエステル系低温性可塑剤があ
り、最も好ましいのはオレイン酸誘導体であり、
例えばブチルオレエート、オレイン酸オクチル、
オレイン酸デシル、トール油脂肪酸オクチル、オ
レイン酸オレイン、エチレングリコールオレイン
酸ジエステル、1,4−ブタンジオールオレイン
酸ジエステル、1,6−ヘキサンジオールオレイ
ン酸ジエステル、オレイン酸2−エチルヘキシ
ル、オレイン酸ドデジル、ミリストオレイン酸デ
シル、ミリストオレイン酸オレイルがあり、オレ
イン酸オクチルが特に好ましい。 本発明においては、これ等エステル系低温軟化
剤の配合割合をゴム成分100重量部に対して2〜
30重量部の範囲内とするのが好ましい。これは、
2重量部未満では十分な氷雪性能を得ることがで
きず、また30重量部を超えると弾性率が低くなり
過ぎて十分な高運動性能が得られなくなるばかり
でなく、トレツドゴムとして十分な体摩耗性能を
得ることが困難となるからである。また、更に好
ましくはかかる配合割合が3〜15重量部の範囲内
であり、この範囲に設定することにより高運動性
能と氷雪走行性能を極めてバランス良く得ること
ができる。 また本発明においては前述の如く、前記(A)成分
と(B)成分とから成るゴム成分に、N2SAが125〜
145m2/gでかつDBPが99ml/100g以下でかつ
24M4DBPが75〜85ml/100gの特性を有する補
強用カーボンブラツクとエステル系低温軟化剤と
を配合し加硫して得たトレツドゴムの−20℃にお
ける100%伸長時での弾性率が40Kg/cm2以下でか
つ30℃における損失係数tanδが0.3以上であるこ
とが要求される。この理由は、−20℃における100
%伸長時での弾性率が40Kg/cm2を超えると苛酷な
氷雪路上で所望の性能を得ることが困難となるか
らであり、好ましくは35Kg/cm2以下とする。ま
た、30℃におけるtanδは0.3未満になると所望の
高運転性能を得ることが困難となるからであり、
好ましくは0.35以上とする。 更に、30℃における貯蔵弾性率E′は110Kg/cm2
以上、好ましくは130Kg/cm2以上とする。E′が110
Kg/cm2未満となると十分な高運転性能を得ること
が困難となるからである。 本発明においては、ゴム成分として前記(B)成分
に、乳化重合によつて得られるスチレンと共役ジ
エンの共重合体であつて、その平均結合スチレン
含量が20〜40%でかつ結合スチレン含量の分布幅
が30%以上であるスチレン−共役ジエン共重合体
ゴムを使用することにより、高運動性能および氷
雪走行性能を損なうことなく、耐摩耗性を向上さ
せることが可能となる。かかるスチレン−共役ジ
エン共重合体ゴムの詳細は、例えば特開昭61−
252210号公報に開示されている。尚、スチレン含
量の分布幅は、シンヤ・テラマチの方法(J.
Macromol Sci.Chem.A4(8)1785.1970)に従つ
て、シクロヘキサン/イソオクタン混合溶媒およ
びベンゼン/メチルエチルケトンを用いてクロス
分別し測定したものである。 また、本発明においてはゴム成分として(A)成分
と(B)成分の他に、湿潤路面制動性を向上させるた
めに、ブチルゴムまたはハロゲン化ブチルゴム、
例えばクロロブチルゴム、ブロムブチルゴムを組
合せて使用することができる。ブチルゴムまたは
ハロゲン化ブチルゴムの使用量は8〜30重量部、
好ましくは10〜20重量部とする。かかる範囲に限
定することにより、トレツドゴムに要求される他
の特性である耐摩耗性の低下を迎えると共に、湿
潤路面制動性を向上させることができる。 本発明に用いるゴム組成物には加硫剤の硫黄、
加硫促進剤、加硫促進助剤、老化防止剤、軟化剤
あるいは充填剤等が適宜配合される。 (実施例) 次に本発明を実施例および比較例により説明す
る。 実施例 1〜5、比較例 1〜6 第1表に示す配合割合(重量部)から成るゴム
組成物でタイヤ評価に先立ちスペクトロメーター
で30℃tanδおよび30℃E′を、またテンシロンで−
20℃での100%伸長時の弾性率を測定した。その
後かかるゴム組成物をトレツドゴムとして構成し
たタイヤサイズ185/70SR14の11種のタイヤをつ
くり、各タイヤにつき湿潤路面制動性、乾燥路面
操縦安定性、雪上制動性および耐摩耗性を評価し
た。得られた結果を以下の第1表に併記した。 表中、比較例1は従来の高運動性能タイヤに相
当するものである。また、比較例2は従来のスノ
ータイヤに相当するものである。更に比較例5お
よび6は、夫々前記先の特許出願(特願昭60−
203181号)の実施例6および4に相当するもので
ある。比較例1におけるサマータイヤ用高運動性
能トレツドゴムを用いたタイヤをコントロールタ
イヤとし、表中各タイヤの性能をコントロール対
比の指数で示した。 尚、前記物性の測定方法および前記性能の評価
方法は次の通りである。 (イ) ガラス転移温度(Tg) DSC(走差熱量計)を用い、昇温速度20℃/分
でサーモグラムを記録して、第1図に示す接線の
中点の温度をTgとした。 (ロ) −20℃における100%伸長時での弾性率 JIS K 6301引張り試験法に基づき、−20℃の
恒温槽(予冷10分間とした)内て測定した。 尚、試料の加硫条件は、レオメーターにてトル
クが最大値をとる時間の1.2倍の時間で加硫する
こととした。 (ハ) 貯蔵弾性率E′および損失係数tanδ 岩本製作所製粘弾性スペクトロメーターを使用
して周波数50cps、静歪率5%の伸長下にて動歪
率1%の条件で測定した。尚、試料はチヤツク間
長さ20mm、幅5mm、厚さ2mmの短冊状とした。加
硫条件は前記(イ)項と同じにした。 (ニ) 湿潤路面耐制動性 濡れたアスフアルト路面において速度40Km/
時、70Km/時および100Km/時の各速度から急制
動を与え、完全に停止するまでの走行距離を求
め、その平均値を比較例1を100として指数表示
した。数値の大きい程良好である。 (ホ) 乾燥路面操縦安定性 晴れた日に直線路、カーブ、バンク等より成る
周回路走行ラツプタイムを測定し、比較例1のタ
イヤのタイムを100として指数表示した。数値の
大きい程良好である。 (ヘ) 雪上耐制動性 雪上でのブレーキ性能につき、速度20Km/時、
30Km/時および40Km/時で走行中にブレーキをか
け停止距離を測定してその平均値を算出し、比較
例1のタイヤの値を100として指数表示した。数
値の大きい程良好である。 (ト) 耐摩耗性 実車にて一般道路4万Km走行後の残溝より耐摩
耗性として摩耗1mm当りの走行距離を算出し、比
較例1のタイヤの値を100として指数表示した。
数値の大きい程良好である。
(Industrial Application Field) The present invention relates to a high-dynamic performance tire that has all-weather performance, and more specifically, it relates to a tire with all-weather performance. ) In addition to the ability to drive on road surfaces, the frictional force between the road surface and the toledo is sufficiently large on dry roads, the ability to easily drive on winding roads or at high speeds, and the ability to drive on straight roads at high speeds. Radial tires for passenger cars, bias tires for passenger cars, and tires for motorcycles that have the ability to run, the ability to run with a short lap time when running on circuits, and the ability to run easily or at high speeds even on wet roads. The present invention relates to a tire that can be applied to the above, and furthermore, a tire that has not only such performance but also improved wear resistance. (Prior Art) Various high-dynamic performance tires have been known. For example, JP-A-55-60539 and JP-A-55-86827 disclose compositions for treaded rubber that improve tread grip on wet road surfaces. has been done. In addition, so-called snow tires and studless tires for driving on icy and snowy roads are also known.
Japanese Patent No. 59-206209 discloses a pneumatic tire whose tread is made of a specific rubber composition to increase its ability to grip icy and snowy treads. (Problems with the prior art) Conventional high-performance tire treads require a large loss of tread rubber near room temperature in order to ensure high tread grip. This goal has been achieved by using large amounts of styrene-butadiene rubber, or by blending large amounts of carbon and oil. However, these treaded rubbers harden at low temperatures, and when running on icy and snowy roads, there is a problem that they cannot obtain sufficient frictional force with the road surface, making it difficult to run easily, and they also have insufficient abrasion resistance. It was hot. On the other hand, so-called snow tires or studless tires, which are intended to easily run on icy and snowy roads, generally use treaded rubber that is soft even at low temperatures, and although they can provide satisfactory performance on icy and snowy roads. However, the hardness of the tread rubber tends to decrease too much near room temperature, resulting in the problem that sufficiently high exercise performance cannot be obtained, and the wear resistance is also insufficient. The purpose of the present invention is to solve the above-mentioned problems of the prior art, and to provide a tire with high maneuverability that can be easily run even on icy and snowy roads, in other words, has all-weather performance. The objective is to provide a tire that has the following characteristics. (Means for Solving the Problems) As a result of intensive research into the materials of tire tread members, the inventors of the present invention have devised a method to increase the viscosity of tread rubber near room temperature in order to obtain a large frictional force with the road surface near room temperature. We have discovered that by selecting a rubber composition in which the elastic properties and the elastic properties of the tread rubber at low temperatures of, for example, -20°C can be independently and freely controlled, a high performance tire with all-weather performance can be obtained. Patent application (1988-)
203181). Subsequently, the present inventors conducted intensive research to further improve such performance, and found that by blending a predetermined amount of a specific reinforcing carbon black into the rubber composition, a tire with better performance than ever before was found. The present inventors have discovered that the following can be obtained, and have completed the present invention. That is, the present invention comprises 10 to 90 parts by weight of at least one diene rubber having a glass transition temperature of -65°C or lower, and 90 to 10 parts by weight of at least one diene rubber having a glass transition temperature of -55°C or higher. Characteristically, 125 to 145 m 2 /g per 100 parts by weight of the rubber component consisting of
Nitrogen adsorption amount (hereinafter abbreviated as N 2 SA) and 99
ml/100g or less dibutyl phthalate oil absorption (hereinafter abbreviated as DBP) and 24000psi (1690Kg/
Dibutyl phthalate oil absorption (hereinafter abbreviated as 24M4DBP) after 4 repeated compressions (cm 2 ) 75 to 85
Reinforcement carbon black 40~ with ml/100g
90 parts by weight and 2 to 30 parts by weight of an ester-based low-temperature softener and vulcanization.The elastic modulus at 100% elongation at -20℃ is 40Kg/ cm2 or less, and the loss coefficient at 30℃. The present invention relates to an improved high-dynamic performance tire having all-weather performance, characterized in that a vulcanized rubber having a tan δ of 0.3 or more is used for the tread. Examples of diene rubbers with a glass transition temperature of -65°C or lower that are used as component (A) in the present invention include (high cis or low vinyl) polybutadiene rubber, styrene-butadiene rubber with a low styrene content, and ethylene rubber. Examples include -butadiene rubber, propylene-butadiene rubber, butadiene-isoprene rubber, propylene-isoprene rubber, etc., but diene rubber having a glass transition temperature of -70°C or lower is preferably used. It should be noted that if a diene rubber having a glass transition temperature higher than -65°C is used as component (A), it will be difficult to obtain the desired elastic modulus at low temperatures, which is not preferable. Next, examples of diene rubbers with a glass transition temperature of -55°C or higher to be used as component (B) include:
Examples include styrene-butadiene rubber with a large styrene content, α-methylstyrene-butadiene rubber, polybutadiene rubber with a large vinyl content, and styrene-butadiene rubber with a small styrene content but a large vinyl content. It should be noted that if a diene rubber having a glass transition temperature of less than -55°C is used as component (B), it will be difficult to obtain the desired high maneuverability, which is not preferable. In order to maintain the viscoelastic properties near room temperature and the elastic properties at low temperatures of the tread rubber within the scope of the present invention, the mixed rubber component consisting of components (A) and (B) must have specific carbon properties. It is necessary to mix reinforcing carbon black and an ester-based low-temperature softener. As mentioned above, the reinforcing carbon black having these specific characteristics has an N 2 SA of 125 to 145 m 2 /g and a DBP of 99 ml/100 g or less, preferably 80 to 99
ml/100g and 24M4DBP within the range of 75 to 85 ml/g. The reason for selecting such carbon black is as follows. In other words, if N 2 SA is less than 125 m 2 /g, the storage elastic modulus E' at room temperature is small and it is difficult to obtain the desired high exercise performance, which is undesirable. On the other hand, if it exceeds 145 m 2 /g, This is because it causes poor dispersion of carbon black, which is also undesirable. Moreover, if the DBP is 100 ml/100 g or more, the elastic modulus becomes too high, making it difficult to obtain the desired elastic modulus even at low temperatures, which is not preferable. Furthermore, if the 24M4DBP is less than 75ml/100g, the wear resistance will deteriorate, while if it exceeds 85ml/100g, excellent braking performance on snow will not be obtained. Furthermore, here
Measurement of 24M4DBP is according to ASTM D3493. In the present invention, it is preferable that the proportion of the reinforcing carbon black having the above-mentioned characteristics is within the range of 40 to 90 parts by weight per 100 parts by weight of the rubber component. This is undesirable because if it is less than 40 parts by weight, the loss coefficient tan δ near room temperature and the storage modulus E′ will become too small, making it difficult to obtain the desired high temperature performance, and if it exceeds 90 parts by weight, the elastic modulus will become too high. This is because it becomes difficult to obtain a desired elastic modulus at low temperatures, which is also undesirable. Examples of ester-based low-temperature softeners include phthalic acid derivatives, such as phthalic acid diesters, fatty acid-based basic acid esters, such as oleic acid derivatives, fatty acid dibasic acid esters, such as adipic acid derivatives, azelaic acid derivatives, and sebacic acid. There are ester-based low-temperature plasticizers such as derivatives and phosphoric acid derivatives, and the most preferred are oleic acid derivatives,
For example, butyl oleate, octyl oleate,
Decyl oleate, octyl tall oil fatty acid, oleic acid, ethylene glycol oleate diester, 1,4-butanediol oleate diester, 1,6-hexanediol oleate diester, 2-ethylhexyl oleate, dodecyl oleate, Examples include decyl myristoleate and oleyl myristoleate, with octyl oleate being particularly preferred. In the present invention, the blending ratio of these ester-based low-temperature softeners is 2 to 2 to 100 parts by weight of the rubber component.
It is preferably within the range of 30 parts by weight. this is,
If it is less than 2 parts by weight, it will not be possible to obtain sufficient ice and snow performance, and if it exceeds 30 parts by weight, the elastic modulus will be too low and it will not be possible to obtain sufficient high exercise performance, but it will also not have sufficient body abrasion performance as a tread rubber. This is because it becomes difficult to obtain. More preferably, the blending ratio is within the range of 3 to 15 parts by weight, and by setting it within this range, high exercise performance and ice and snow running performance can be achieved in an extremely well-balanced manner. Further, in the present invention, as described above, the rubber component consisting of the component (A) and the component (B) has an N 2 SA of 125 to 125.
145m 2 /g and DBP less than 99ml/100g
The modulus of elasticity at 100% elongation at -20°C of the treaded rubber obtained by vulcanizing a reinforcing carbon black with a 24M4DBP of 75 to 85ml/100g and an ester low-temperature softener is 40Kg/cm 2 and the loss coefficient tan δ at 30°C is required to be 0.3 or more. The reason for this is that 100
This is because if the elastic modulus at % elongation exceeds 40 Kg/cm 2 , it will be difficult to obtain the desired performance on harsh ice and snow roads, so it is preferably 35 Kg/cm 2 or less. In addition, if tanδ at 30°C is less than 0.3, it will be difficult to obtain the desired high operating performance.
Preferably it is 0.35 or more. Furthermore, the storage modulus E′ at 30℃ is 110Kg/cm 2
Above, preferably 130Kg/cm 2 or above. E′ is 110
This is because if it is less than Kg/cm 2 , it will be difficult to obtain sufficiently high operating performance. In the present invention, as the rubber component, component (B) is a copolymer of styrene and conjugated diene obtained by emulsion polymerization, the average bound styrene content of which is 20 to 40%, and the bound styrene content is lower than the bound styrene content. By using a styrene-conjugated diene copolymer rubber with a distribution width of 30% or more, it is possible to improve wear resistance without impairing high exercise performance and ice and snow running performance. Details of such styrene-conjugated diene copolymer rubber can be found, for example, in JP-A-61-
It is disclosed in Publication No. 252210. The distribution width of the styrene content was calculated using the method of Shinya Teramachi (J.
Macromol Sci. Chem. A4 (8) 1785.1970) was cross-fractionated and measured using a cyclohexane/isooctane mixed solvent and benzene/methyl ethyl ketone. In addition to component (A) and component (B) as rubber components in the present invention, butyl rubber or halogenated butyl rubber,
For example, chlorobutyl rubber and bromobutyl rubber can be used in combination. The amount of butyl rubber or halogenated butyl rubber used is 8 to 30 parts by weight,
Preferably it is 10 to 20 parts by weight. By limiting the amount to such a range, the wear resistance, which is another property required of treaded rubber, will be reduced, and the damp road braking performance can be improved. The rubber composition used in the present invention includes sulfur as a vulcanizing agent,
A vulcanization accelerator, a vulcanization accelerator, an anti-aging agent, a softener, a filler, etc. are appropriately added. (Examples) Next, the present invention will be explained by examples and comparative examples. Examples 1 to 5, Comparative Examples 1 to 6 Prior to tire evaluation, rubber compositions having the compounding ratios (parts by weight) shown in Table 1 were tested with a spectrometer at 30°C tan δ and 30°C E', and with a Tensilon test.
The elastic modulus at 100% elongation at 20°C was measured. Thereafter, 11 types of tires with tire sizes of 185/70SR14 were made using the rubber composition as tread rubber, and each tire was evaluated for wet road braking performance, dry road handling stability, snow braking performance, and abrasion resistance. The obtained results are also listed in Table 1 below. In the table, Comparative Example 1 corresponds to a conventional high motion performance tire. Moreover, Comparative Example 2 corresponds to a conventional snow tire. Furthermore, Comparative Examples 5 and 6 were obtained from the earlier patent application (Japanese Patent Application 1986-
This corresponds to Examples 6 and 4 of No. 203181). The tire using the high performance tread rubber for summer tires in Comparative Example 1 was used as a control tire, and the performance of each tire is shown in the table as an index relative to the control. The method for measuring the physical properties and the method for evaluating the performance are as follows. (b) Glass transition temperature (T g ) Using a DSC (differential running calorimeter), record a thermogram at a heating rate of 20°C/min, and calculate the temperature at the midpoint of the tangent line shown in Figure 1 as T g . did. (b) Elastic modulus at 100% elongation at -20°C Measured in a -20°C constant temperature bath (precooled for 10 minutes) based on JIS K 6301 tensile test method. The vulcanization conditions for the sample were such that the vulcanization time was 1.2 times the time at which the torque reached its maximum value using a rheometer. (c) Storage modulus E' and loss coefficient tanδ Measured using a viscoelastic spectrometer manufactured by Iwamoto Seisakusho under conditions of a frequency of 50 cps, static strain rate of 5% elongation, and dynamic strain rate of 1%. The sample was in the form of a strip with a length between chucks of 20 mm, a width of 5 mm, and a thickness of 2 mm. The vulcanization conditions were the same as in item (a) above. (d) Wet road braking resistance At a speed of 40km/h on a wet asphalt road
Sudden braking was applied from each speed of 100 km/h, 70 km/h, and 100 km/h, and the distance traveled until it came to a complete stop was determined, and the average value was expressed as an index with Comparative Example 1 set as 100. The larger the value, the better. (e) Dry road handling stability The lap time of the tires on a circuit consisting of straight roads, curves, banks, etc. was measured on a sunny day and expressed as an index with the time of the tire of Comparative Example 1 set as 100. The larger the value, the better. (f) Braking resistance on snow Regarding braking performance on snow, the speed is 20km/hour,
The brakes were applied while driving at 30 km/hour and 40 km/hour, the stopping distance was measured, the average value was calculated, and the value of the tire of Comparative Example 1 was set as 100 and expressed as an index. The larger the value, the better. (g) Wear resistance The distance traveled per 1 mm of abrasion was calculated as wear resistance from the remaining groove after driving an actual vehicle for 40,000 km on a general road, and the value of the tire of Comparative Example 1 was set as 100 and expressed as an index.
The larger the value, the better.

【表】【table】

【表】【table】

【表】 第1表中のタイヤ性能において、115以下の雪
上制動性および110以下の耐摩耗性能では実用性
に乏しいが、本発明のタイヤでは総て115を超え
る雪上制動性と110を超える耐摩耗性を有してい
た。すなわち、本発明のタイヤでは、比較例2の
如く湿潤路面制動性と乾燥路面操縦安定性を悪化
させることなく、雪上制動性および耐摩耗性能を
著しく改善することができた。 (発明の効果) 以上説明してきたように、本発明のタイヤは、
室温付近でのトレツドゴムの粘弾性特性と、例え
ば−20℃の低温におけるトレツドゴムの弾性特性
とを各々独立にかつ自由に制御し得る所定のゴム
組成物を選定し、該ゴム組成物に特定の補強用カ
ーボンブラツクを所定量配合させることにより、
雪上制動性の一層向上した全天候性能を有する高
運動性能タイヤを得ることができるという効果が
得られる。また、該ゴム組成物の特定ゴム成分と
して、平均結合スチレン含量が20〜40%で、かつ
結合スチレン含量の分布幅が30%以上であるスチ
レン−共役ジエン共重合体ゴムを使用することに
より、高運動性能および氷雪走行性能を損なうこ
となく耐摩耗性を向上させることができるという
効果が得られる。
[Table] In terms of tire performance in Table 1, snow braking performance of 115 or less and wear resistance of 110 or less are not practical, but the tires of the present invention have snow braking performance of 115 or less and wear resistance of 110 or less. It had abrasive properties. That is, the tire of the present invention was able to significantly improve the braking performance on snow and the wear resistance performance without deteriorating the damp road surface braking performance and the dry road surface handling stability as in Comparative Example 2. (Effects of the Invention) As explained above, the tire of the present invention has
A predetermined rubber composition is selected in which the viscoelastic properties of the treaded rubber near room temperature and the elastic properties of the treaded rubber at a low temperature of -20°C, for example, can be independently and freely controlled, and a specific reinforcement is added to the rubber composition. By blending a predetermined amount of carbon black,
The effect is that it is possible to obtain a high motion performance tire having all-weather performance and further improved braking performance on snow. Furthermore, by using a styrene-conjugated diene copolymer rubber having an average bound styrene content of 20 to 40% and a bound styrene content distribution width of 30% or more as the specific rubber component of the rubber composition, The effect is that wear resistance can be improved without impairing high exercise performance and ice and snow running performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、ガラス転移温度(Tg)を得るため
に用いた温度と比熱との関係を示す線図である。
FIG. 1 is a diagram showing the relationship between the temperature used to obtain the glass transition temperature (T g ) and the specific heat.

Claims (1)

【特許請求の範囲】 1 ガラス転移温度が−65℃以下のジエン系ゴム
の少なくとも1種10〜90重量部と、ガラス転移温
度が−55℃以上のジエン系ゴムの少なくとも1種
90〜10重量部とから成るゴム成分100重量部に対
し、特性として125〜145m2/gの窒素吸着量およ
び99ml/100g以下のジブチルフタレート吸油量
でかつ24000psi(1690Kg/cm2)で4回繰り返し圧
縮した後のジブチルフタレート吸油量75〜85ml/
100gを有する補強用カーボンブラツク40〜90重
量部と、エステル系低温軟化剤2〜30重量部とを
配合し加硫してなり、−20℃における100%伸長時
での弾性率が40Kg/cm2以下で、30℃における損失
係数tanδが0.3以上の加硫ゴムをトレツドに用い
たことを特徴とする全天候性能を有する改良され
た高運動性能タイヤ。 2 ガラス転移温度が−55℃以上のジエン系ゴム
として、乳化重合によつて得られるスチレンと共
役ジエンの共重合体であつて、その平均結合スチ
レン含量が20〜40%でかつ結合スチレン含量の分
布幅が30%以上であるスチレン−共役ジエン共重
合体ゴムを使用した特許請求の範囲第1項記載の
全天候性能を有する改良された高運動性能タイ
ヤ。
[Scope of Claims] 1. 10 to 90 parts by weight of at least one diene rubber having a glass transition temperature of -65°C or lower, and at least one diene rubber having a glass transition temperature of -55°C or higher.
4 times at 24000psi (1690Kg/ cm2 ) with a nitrogen adsorption amount of 125-145m2 / g and a dibutyl phthalate oil absorption amount of 99ml/100g or less for 100 parts by weight of a rubber component consisting of 90-10 parts by weight. Dibutyl phthalate oil absorption after repeated compression 75-85ml/
40 to 90 parts by weight of reinforcing carbon black having a weight of 100g and 2 to 30 parts by weight of an ester low-temperature softener are blended and vulcanized, and the elastic modulus at 100% elongation at -20℃ is 40Kg/cm. 2 or less and a loss coefficient tan δ of 0.3 or more at 30°C is used for the tread. 2 A copolymer of styrene and conjugated diene obtained by emulsion polymerization as a diene rubber with a glass transition temperature of -55°C or higher, with an average bound styrene content of 20 to 40% and a An improved high-performance tire having all-weather performance according to claim 1, which uses a styrene-conjugated diene copolymer rubber having a distribution width of 30% or more.
JP63053673A 1987-03-10 1988-03-09 Improved all-weather tire having high running performance Granted JPS63314255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63053673A JPS63314255A (en) 1987-03-10 1988-03-09 Improved all-weather tire having high running performance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5315287 1987-03-10
JP62-53152 1987-03-10
JP63053673A JPS63314255A (en) 1987-03-10 1988-03-09 Improved all-weather tire having high running performance

Publications (2)

Publication Number Publication Date
JPS63314255A JPS63314255A (en) 1988-12-22
JPH0470340B2 true JPH0470340B2 (en) 1992-11-10

Family

ID=26393858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63053673A Granted JPS63314255A (en) 1987-03-10 1988-03-09 Improved all-weather tire having high running performance

Country Status (1)

Country Link
JP (1) JPS63314255A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017006194T5 (en) 2016-12-08 2019-10-02 Toyo Tire Corporation Rubber composition for tire tread and pneumatic tire

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3549926B2 (en) * 1994-09-29 2004-08-04 株式会社ブリヂストン Pneumatic tire
JP2008150426A (en) * 2006-12-14 2008-07-03 Yokohama Rubber Co Ltd:The Rubber composition for tire
FR2968006B1 (en) 2010-11-26 2012-12-21 Michelin Soc Tech TIRE TREAD TIRE
FR2974808B1 (en) * 2011-05-06 2013-05-03 Michelin Soc Tech PNEUMATIC TIRE COMPRISING SBR EMULSION AT HIGH TRANS RATE.
FR2974809B1 (en) * 2011-05-06 2013-05-03 Michelin Soc Tech PNEUMATIC TIRE COMPRISING SBR EMULSION AT HIGH TRANS RATE.
US9731561B2 (en) 2013-10-22 2017-08-15 Bridgestone Americas Tire Operations, Llc Tire having grooves comprising sipes and/or other cross-groove negative geometry
JP7402812B2 (en) * 2018-10-10 2023-12-21 株式会社ブリヂストン tire
JPWO2020075831A1 (en) * 2018-10-10 2021-09-02 株式会社ブリヂストン tire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017006194T5 (en) 2016-12-08 2019-10-02 Toyo Tire Corporation Rubber composition for tire tread and pneumatic tire
DE112017006194B4 (en) 2016-12-08 2023-07-20 Toyo Tire Corporation Rubber composition for tire tread, vulcanized product and pneumatic tire

Also Published As

Publication number Publication date
JPS63314255A (en) 1988-12-22

Similar Documents

Publication Publication Date Title
EP0161793B1 (en) Low fuel consumption tire with all weather performances
JPS59206208A (en) Pneumatic tire suitable for ice-snow road
JPH01313545A (en) Pneumatic tire
JP3350291B2 (en) Rubber composition for tire tread
JPS6262840A (en) High-movement performance tire having all-weather performance
JPH0470340B2 (en)
EP0161792A1 (en) Pneumatic tire having all weather running performances
JPH03119041A (en) Rubber composition for tire tread
JPH0598078A (en) Rubber composition for tire tread
JPS58199203A (en) Pneumatic tyre
JPH0520464B2 (en)
JP3184249B2 (en) Rubber composition for tire tread
JPH08225684A (en) Rubber composition, tire tread produced using the same, and tire with the tread
JPH03119042A (en) Rubber composition for tire tread
JPH0745599B2 (en) Rubber composition for tire tread
JPH0559141B2 (en)
JPS5846257B2 (en) Rubber composition for tire tread
JPH0517257B2 (en)
JP2898868B2 (en) Pneumatic tire
JP3096091B2 (en) Pneumatic tire
JPS60248405A (en) Pneumatic tire suitably improved for ice snow road
JPH0471938B2 (en)
JPH0610280B2 (en) Improved pneumatic tire suitable for snow and ice roads
JPH0625283B2 (en) All-season type fuel-efficient tire
JP3040876B2 (en) Pneumatic tire