JPH03119042A - Rubber composition for tire tread - Google Patents

Rubber composition for tire tread

Info

Publication number
JPH03119042A
JPH03119042A JP1255448A JP25544889A JPH03119042A JP H03119042 A JPH03119042 A JP H03119042A JP 1255448 A JP1255448 A JP 1255448A JP 25544889 A JP25544889 A JP 25544889A JP H03119042 A JPH03119042 A JP H03119042A
Authority
JP
Japan
Prior art keywords
rubber
weight
parts
styrene
pts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1255448A
Other languages
Japanese (ja)
Inventor
Makoto Misawa
三澤 眞
Shinji Kawakami
伸二 河上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP1255448A priority Critical patent/JPH03119042A/en
Priority to DE4030779A priority patent/DE4030779A1/en
Priority to KR1019900015455A priority patent/KR910006393A/en
Publication of JPH03119042A publication Critical patent/JPH03119042A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Abstract

PURPOSE:To obtain a rubber composition suitable for tire tread parts with high responsiveness by blending a raw material rubber composed of specific styrene-butadiene copolymer rubber, natural rubber and high-cis polybutadiene rubber with specific carbon black and a petroleum-based softener. CONSTITUTION:A composition, obtained by blending 100 pts.wt. raw material rubber composed of (A) 30-80 pts.wt. amorphous styrene-butadiene copolymer rubber, containing 3-30wt.% combined styrene and having >=70wt.% 1,2-vinyl content in the butadiene part, (B) 10-50 pts.wt. natural rubber and (C) 10-40 pts.wt. polybutadiene rubber containing >=95wt.% cis-1,4-bonds with (D) 80-130 pts.wt. carbon black having >=100m<2>/g nitrogen specific surface area and a small particle diameter and (E) 20-90 pts.wt. petroleum-based softener with 0.90-0.98 viscosity specific gravity constant and having <=500MPa shearing storage elastic modulus at -30 deg.C and <=15 difference in hardness between 60 deg.C and -10 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、運動性能が幅広い温度範囲に渡って安定であ
り、更に雪氷路面の把握力にも優れたタイヤトレッド用
のゴム組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a rubber composition for a tire tread that has stable maneuverability over a wide temperature range and also has excellent grip on snowy and icy road surfaces.

〔従来の技術〕[Conventional technology]

従来、自動車用タイヤに要求される性能としては、安全
性・経済性、乗り心地性等があり、特に高速道路網の発
達に伴い車両の高速走行時におけるコーナリング特性、
ブレーキ性能等の操縦性・安全性がより向上したタイヤ
が望まれているが、近年、更に、操縦者の意志に対し正
確に追随する、いわば応答性に優れたタイヤが求められ
ている。
Traditionally, the performance requirements for automobile tires include safety, economy, ride comfort, etc. In particular, with the development of expressway networks, cornering characteristics during high-speed driving of vehicles,
There is a desire for tires with improved maneuverability and safety such as braking performance, but in recent years there has also been a demand for tires that have excellent responsiveness, so to speak, that accurately follow the driver's intentions.

タイヤの運動性能、特にグリップ性能を高める方策とし
ては、トレッドゴムの高ヒステリシスロス化を図ること
により路面との摩擦力を高めることが重要である。すな
わち、路面と摩擦しているトレッド表面は、路面の微細
な凹凸によって高速度の変形を受けており、この周期的
変形過程において生じるヒステリシスロスによるエネル
ギー散逸が大きい程、摩擦力が大きくなる。しかも摩擦
面での変形はきわめて高速であるため、ウィリアムス−
ランデルーフエリ−の温度時間換算側によれば、タイヤ
が使用される温度よりも低い温度で測定されたヒステリ
シスロスに依存することが知られている。実際、ヒステ
リシスロスの尺度であるtanδ (tj!失係数)と
、タイヤの摩擦係数とは良い相関を示すが、その際、タ
イヤが使用される温度よりも30〜40℃低い温度で測
定されたtanδが関与している。従来、ゴム組成物の
ヒステリシスロスを大きくするためには、高スチレン含
有スチレン−ブタジエン共重合体ゴム(S B R)の
ようなガラス転移温度(Tg )の高いゴムを配合する
方法に依っていた。これは、ゴムのtanδがTg付近
でピークを持つことから、摩擦性能に関与している温度
域(タイヤの走行温度を30℃とすれば、0℃に相当す
る)にtanδピークを近づけることで高いtanδを
利用しようとするものである。
As a measure to improve tire motion performance, particularly grip performance, it is important to increase the frictional force with the road surface by increasing the hysteresis loss of the tread rubber. That is, the tread surface that is in friction with the road surface is deformed at high speed due to minute irregularities on the road surface, and the greater the energy dissipation due to hysteresis loss that occurs during this periodic deformation process, the greater the frictional force becomes. Moreover, since the deformation on the friction surface is extremely fast, Williams
It is known that the temperature-time conversion side of the Landelferie depends on hysteresis losses measured at temperatures lower than the temperature at which the tire is used. In fact, there is a good correlation between tanδ (tj! lapse coefficient), which is a measure of hysteresis loss, and the coefficient of friction of a tire, but it is measured at a temperature 30 to 40 degrees Celsius lower than the temperature at which the tire is used. tanδ is involved. Conventionally, in order to increase the hysteresis loss of a rubber composition, a method of compounding a rubber with a high glass transition temperature (Tg) such as a high styrene-containing styrene-butadiene copolymer rubber (SBR) has been used. . This is because the tan δ of rubber has a peak near Tg, so by bringing the tan δ peak closer to the temperature range that is involved in friction performance (equivalent to 0°C if the tire running temperature is 30°C). This is intended to utilize a high tan δ.

第1図は、スチレン含有量の異なる乳化重合スチレン−
ブタジエン共重合体ゴムのtanδ温度依存性を示した
ものである。スチレン含有量が多くなると、tanδピ
ーク温度が高温側に移動し、tanδピークの裾野にあ
たる0℃付近ではjanδ値が大きくなる。しかし同時
に、0℃付近でのtanδの温度依存性もまた大きくな
り、従ってタイヤのグリップ性能もまた、環境温度に因
って大きく変化してしまう。さらに、tanδピークに
対応して弾性率も急激に変化する。
Figure 1 shows emulsion polymerized styrene with different styrene contents.
This figure shows the tan δ temperature dependence of butadiene copolymer rubber. When the styrene content increases, the tan δ peak temperature moves to the high temperature side, and the jan δ value increases near 0° C., which is the base of the tan δ peak. However, at the same time, the temperature dependence of tan δ also increases around 0° C., and therefore the grip performance of the tire also changes greatly depending on the environmental temperature. Furthermore, the elastic modulus also changes rapidly corresponding to the tan δ peak.

即ち、低温になるに従い、弾性率が急激に大きくなるた
め、ゴムが路面の凹凸に追従できない、あるいは、水路
面等の場合にはゴムが全く変形できなくなってしまい、
操縦性・制動性が低下してしまうという問題があった。
In other words, as the temperature decreases, the elastic modulus increases rapidly, making it impossible for the rubber to follow the unevenness of the road surface, or in the case of waterways, etc., the rubber cannot deform at all.
There was a problem in that maneuverability and braking performance deteriorated.

反対に高シスブタジェンゴム(BR)に代表されるよう
にTgの低いポリマーを用いると、低温でのグリップ性
能は良くなるが、一方、0℃付近のtanδは低下して
しまい、高温ではグリップ能力が不足してしまうという
矛盾を生じる。そこでS B R/B Rという異種ポ
リマー同士をブレンドすることによって、あるいは小粒
径カーボンを多量配合して、上記した二律背反を調和さ
せることが試みられている(Il、p1Moore″T
he Fr1ction of Pneumatic 
Tyres’、 ElasevierScientif
ic Publishing Company 197
5+ U、S。
On the other hand, if a polymer with a low Tg, such as high-cis butadiene rubber (BR), is used, the grip performance at low temperatures will improve, but on the other hand, the tan δ around 0°C will decrease, and the grip performance will improve at high temperatures. This creates a contradiction in terms of lack of ability. Therefore, attempts have been made to harmonize the above-mentioned antinomy by blending different types of polymers called SBR/BR or by incorporating a large amount of small particle size carbon (Il, p1Moore''T
he Fr1ction of Pneumatic
Tyres', Elasevier Scientific
ic Publishing Company 197
5+ U, S.

Patent No、4.748.168.特開昭62
−12932など)。
Patent No. 4.748.168. Unexamined Japanese Patent Publication 1986
-12932 etc.).

さらに、特開昭62−260843号公報、特開昭62
−190238号公報ではこれらブレンドポリマーの相
溶性とTgの微妙な制御を利用して、高温から低温まで
の全天候性を発揮させることに成功している。
Furthermore, JP-A-62-260843, JP-A-62
Publication No. 190238 utilizes the compatibility of these blended polymers and delicate control of Tg to successfully exhibit all-weather resistance from high to low temperatures.

しかしながら、このようなゴムはブレンドしたポリマー
の中間的性質を示すため、構成ポリマーの固有の長所を
生かしきれず、高温でのグリップも低温でのグリップも
完全に満足できるものではないという欠点があり、また
小粒径カーボンの多量配合は加工性に難点があり、発熱
性が大きくなってしまう点が問題であった。
However, since such rubber exhibits properties intermediate to those of the blended polymers, it cannot take full advantage of the inherent strengths of the constituent polymers, and has the disadvantage that neither high-temperature nor low-temperature grips are completely satisfactory. In addition, incorporating a large amount of small particle size carbon has problems in processability and increases heat generation.

このような二律背反にたいする方策として、特開昭61
−66733号公報、特開昭62−62840号公報で
は、これらのブレンドポリマーに低温可塑剤を加える技
術が開示されているが、確かに低温グリップの向上は認
められるものの、高温ではゴム弾性率の低下が著しく、
高温での操縦安定性は必ずしも満足のできるものではな
い。
As a measure to deal with this trade-off,
-66733 and JP-A-62-62840 disclose a technique of adding a low-temperature plasticizer to these blended polymers, but although the low-temperature grip is certainly improved, the rubber elastic modulus decreases at high temperatures. The decline is significant,
The handling stability at high temperatures is not always satisfactory.

これらの技術はタイヤの全天候性能を上げるのが目標で
あり、限界性能を追求する全天候性高性能タイヤ向はト
レッドゴムである。しかるに近年タイヤに要求される性
能としては操縦性能としての高グリップだけではなく、
操縦者の意図に対し正確に応答するタイヤが求められて
いる。すなわち、自動車タイヤの要求は自動車に対する
社会的要求と一致したものでなければならないが、近年
の人間工学あるいはエレクトロニクス工学の進展によっ
て自動車としても単に加速性能、コーナリング性能に優
れているのみでなく、人の感性に不快感をあたえない、
いわば良くできた靴のように、そこにタイヤがあるとい
うことを感じさせない自動車が要求されている。このた
めには自動車の操縦者の意図に位相の遅れなく応答する
タイヤが必要である。
The goal of these technologies is to improve the all-weather performance of tires, and tread rubber is suitable for all-weather, high-performance tires that pursue the ultimate performance. However, in recent years, the performance required of tires is not only high grip for handling performance.
There is a need for tires that accurately respond to the driver's intentions. In other words, the requirements for automobile tires must match social demands for automobiles, but recent advances in ergonomics and electronics engineering have made it possible for automobiles to not only have excellent acceleration and cornering performance, but also to improve human performance. Does not cause discomfort to the sensibilities of
There is a demand for cars that, like well-made shoes, do not make you feel that there are tires on them. This requires tires that respond to the intentions of the driver of the vehicle without any phase delay.

これらのタイヤを仮に高応答性タイヤと名づければ、高
応答性タイヤは自動車の操縦者がハンドルを切った時に
、時間の遅れなく横力を発生する、すなわち微舵応答性
に優れていることが必要である。
If we were to call these tires high-responsive tires, they would generate lateral force without any time delay when the driver of the vehicle turns the steering wheel, that is, they would have excellent responsiveness to slight steering. is necessary.

すなわち、高応答性タイヤは従来の全天候性能に加えて
微少舵角時の応答性に優れたものである必要がある。こ
のような観点から微少舵角時の応答性を遅らす要因を検
討したところ、タイヤ構造に加えてトレッドゴム及びト
レッドブロック部の位相遅れが影響することがわかった
That is, in addition to the conventional all-weather performance, the high-responsive tire needs to have excellent responsiveness even when the steering angle is small. From this perspective, we investigated the factors that delay the response at small steering angles, and found that in addition to the tire structure, the phase lag of the tread rubber and tread blocks also has an effect.

位相遅れの指標としては、60℃における硬度と一10
℃における硬度の差で表現することができる。すなわち
硬度差の大きいゴム程、応力緩和が早(、その結果トレ
ッド部分の微小変形に対し、容易に応力の減衰が起こっ
てしまって所定の応力を維持できないために、微舵応答
性が劣るという結論が得られたのである。
As an index of phase lag, hardness at 60°C and -10
It can be expressed as the difference in hardness in °C. In other words, the greater the difference in hardness of the rubber, the faster the stress relaxation (as a result, stress attenuation occurs easily in response to minute deformations in the tread, making it impossible to maintain a predetermined stress, resulting in poorer slight steering response. A conclusion has been reached.

60℃における硬度と一10℃における硬度の差(以下
、係数Mという)は、第1図に示したように、Tgがよ
り高い、高スチレン含有量の乳化重合スチレン−ブタジ
エン共重合体ゴム程大きい。すなわちグリップ性能を向
上させるために高Tgのスチレン−ブタジエン共重合体
ゴムを使用すると、係数Mも上昇してしまい応答性が悪
くなる。
As shown in Figure 1, the difference between the hardness at 60°C and the hardness at -10°C (hereinafter referred to as coefficient M) is greater for emulsion-polymerized styrene-butadiene copolymer rubber with a higher Tg and high styrene content. big. That is, if a styrene-butadiene copolymer rubber with a high Tg is used to improve grip performance, the coefficient M also increases, resulting in poor responsiveness.

このような矛盾を解決するために鋭意検討したところ、
本発明のトレッドゴム組成物に到達した。このように、
タイヤの応答性という面からトレッドゴム組成物を検討
した公知例は存在せず、従って本発明による技術は全く
新規なものである。
After careful consideration to resolve these contradictions, we found that
The tread rubber composition of the present invention has been achieved. in this way,
There is no known example in which a tread rubber composition has been studied from the viewpoint of tire responsiveness, and therefore the technology of the present invention is completely new.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、運動性能が幅広い温度範囲に渡って安定であ
り、更に雪氷路面の把握力にも優れたオールシーズンタ
イプの高応答性(係数Mが小さい)のタイヤトレンド用
ゴム組成物を提供することを目的とする。
The present invention provides an all-season type high-responsive (small coefficient M) rubber composition for trend tires that has stable maneuverability over a wide temperature range and also has excellent grip on snowy and icy road surfaces. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、スチレン−ブタジエン共重合体ゴムにお
いて、摩擦に関与する温度域でのtanδの絶対値を高
め、かつ係数Mを低めるゴム組成物について鋭意検討し
た結果、特定範囲に限定されたスチレン含有量およびブ
タジェン部分のビニル含有量を有する本質的に無定形の
スチレン−ブタジエン共重合体ゴムに対し、特定範囲の
天然ゴム量、ポリブタジェンゴム量を配合した系におい
て、上記目的を達成し得ることを見出し本発明に到達し
た。
The present inventors have conducted intensive studies on rubber compositions that increase the absolute value of tan δ and lower the coefficient M in the temperature range involved in friction in styrene-butadiene copolymer rubber, and as a result, the results have been determined to be limited to a specific range. The above objectives were achieved in a system in which an essentially amorphous styrene-butadiene copolymer rubber having a styrene content and a vinyl content in the butadiene portion was blended with specific ranges of natural rubber and polybutadiene rubber. The inventors have discovered that it is possible to do so and have arrived at the present invention.

したがって、本発明のタイヤトレッド用ゴム組成物は、
結合スチレンを3〜30重量%含み、ブタジェン部分の
1,2−ビニル含有量が70重量%以上で本質的に無定
形のスチレン−ブタジエン共重合体ゴムを30〜80M
M部、天然ゴムを10〜50重量部、およびシス1,4
−結合を95重量%以上含有するポリブタジェンゴムを
10〜40重量部から合計ゴム量が100ii1部の原
料ゴムを構成し、この原料ゴム100重量部に対し、窒
素比表面積100rrf/g以上であるカーボンブラッ
クを80〜130重量部、および粘度比重恒数0.90
〜0゜98である石油系軟化剤を20〜90重量部配合
してなり、−30℃における剪断貯蔵弾性率が500M
Pa以下であってかつ60℃における硬度と一10℃に
おける硬度の差が15以下であることを特徴とする。
Therefore, the rubber composition for tire tread of the present invention is
30 to 80M essentially amorphous styrene-butadiene copolymer rubber containing 3 to 30% by weight of bound styrene and having a 1,2-vinyl content of the butadiene moiety of 70% by weight or more
M parts, 10 to 50 parts by weight of natural rubber, and cis 1,4
- 10 to 40 parts by weight of polybutadiene rubber containing 95% by weight or more of bonds constitutes a raw material rubber with a total rubber amount of 100ii1 part, and the nitrogen specific surface area is 100rrf/g or more with respect to 100 parts by weight of this raw material rubber. 80 to 130 parts by weight of certain carbon black and viscosity specific gravity constant 0.90
It is made by blending 20 to 90 parts by weight of a petroleum-based softener with a temperature of ~0°98, and has a shear storage modulus of 500M at -30°C.
Pa or less, and the difference between the hardness at 60°C and the hardness at -10°C is 15 or less.

以下、この手段につき詳しく説明する。This means will be explained in detail below.

(11原料ゴム。(11 raw rubber.

スチレン−ブタジエン共重合体ゴムの30〜80重量部
と、天然ゴムの10〜50重量部と、ポリブタジェンゴ
ムの10〜40重量部とからなり、合計ゴム量が100
重量部のものである。
Consisting of 30 to 80 parts by weight of styrene-butadiene copolymer rubber, 10 to 50 parts by weight of natural rubber, and 10 to 40 parts by weight of polybutadiene rubber, with a total rubber amount of 100 parts by weight.
Parts by weight.

(al  スチレン−ブタジエン共重合体ゴム。(al Styrene-butadiene copolymer rubber.

結合スチレンを3〜30重量%含み、ブタジェン部分の
1,2−ビニル含有量が70重量%以上の高ビニルSB
Rであって、本質的に無定形のものである。
High vinyl SB containing 3 to 30% by weight of bound styrene and having a 1,2-vinyl content in the butadiene moiety of 70% by weight or more
R, which is essentially amorphous.

結合スチレン量は3〜30重量%である必要がある。と
いうのは、結合スチレン量が3重量%以下では、ポリマ
ーの強度が十分ではなり、30重量%を越えると係数M
が大きくなってタイヤの応答性に悪影響を与えるからで
ある。更に、ブタジェン部分の1,2−ビニル含有量は
70重量%以上が必要である。70重量%未満であると
スチレン−ブタジエン共重合体ゴムのTgが低すぎて0
℃のtanδが下がってしまい、グリップ性能が不良と
なるからである。1.2−ビニル含有量は高い方が望ま
しいが、製造上の理由から95重量%ぐらいが上限であ
る。このスチレン−ブタジエン共重合体ゴムの配合量は
、30〜80重量部が適当である。30重量部未満では
スチレン−ブタジエン共重合体ゴムの性質が発揮されず
、80重量部超ではゴム強度が十分でなく、タイヤトレ
ッド用ゴムとして使用するには不適当だからである。
The amount of bound styrene must be 3-30% by weight. This is because when the amount of bound styrene is less than 3% by weight, the strength of the polymer is insufficient, and when it exceeds 30% by weight, the coefficient M
This is because the tire becomes large, which adversely affects the responsiveness of the tire. Furthermore, the 1,2-vinyl content of the butadiene moiety must be 70% by weight or more. If it is less than 70% by weight, the Tg of the styrene-butadiene copolymer rubber is too low and 0.
This is because the tan δ at °C decreases, resulting in poor grip performance. Although a higher 1,2-vinyl content is desirable, the upper limit is about 95% by weight for manufacturing reasons. The appropriate amount of the styrene-butadiene copolymer rubber is 30 to 80 parts by weight. If it is less than 30 parts by weight, the properties of the styrene-butadiene copolymer rubber will not be exhibited, and if it exceeds 80 parts by weight, the rubber strength will not be sufficient and it will be unsuitable for use as a tire tread rubber.

このようなブロック共重合体を製造する方法としては、
例えばスチレン量と1.3ブタジエン量とを所定の率に
あわせて、炭化水素溶媒中でエーテル等の極性化合物を
分散剤として用い、リチウム系重合開始剤の存在下でス
チレンおよびブタジェンを重合温度、比率、仕込み量、
重合開始剤等を制御しつつ共重合させればよい。
As a method for producing such a block copolymer,
For example, by adjusting the amount of styrene and the amount of 1.3-butadiene to a predetermined ratio, using a polar compound such as ether as a dispersant in a hydrocarbon solvent, and polymerizing styrene and butadiene in the presence of a lithium-based polymerization initiator, Ratio, amount of preparation,
Copolymerization may be carried out while controlling the polymerization initiator and the like.

この方法は回分式であっても連続重合式でもかまわない
。さらに、末端変性又はカップリング等共重合体の改質
技術として公知の技術を応用することも、本発明の目標
である係数Mと粘弾性の温度依存性改良に悪影響を与え
ない範囲で望ましいことである。
This method may be a batch method or a continuous polymerization method. Furthermore, it is also desirable to apply known techniques for modifying copolymers, such as terminal modification or coupling, as long as it does not adversely affect the temperature dependence improvement of coefficient M and viscoelasticity, which is the goal of the present invention. It is.

(bl  天然ゴム。(bl natural rubber.

スチレン−ブタジエン共重合体ゴムに対し、天然ゴムを
ブレンドすることは、実用的見地から重要である。とい
うのは、自動車タイヤは舗装路のみならず、悪路、不整
路を走行する機会がすくなからずあり、そのような時に
は、天然ゴムをブレンドすることによってチッピング、
カットなどの急激な外力によるトレンド損傷を軽減する
ことができるからである。このためには、10重量部以
上の配合量を必要とする。反対に天然ゴムの配合量が多
すぎては、スチレン−ブタジエン共重合体ゴムの本質的
な性質が薄められてしまい、グリップ性能が低下してし
まうため、50重量部以下の配合量に抑える必要がある
Blending natural rubber with styrene-butadiene copolymer rubber is important from a practical standpoint. This is because automobile tires are often used not only on paved roads but also on rough and uneven roads, and in such cases, blending natural rubber can prevent chipping and
This is because trend damage caused by sudden external force such as cutting can be reduced. For this purpose, a blending amount of 10 parts by weight or more is required. On the other hand, if the amount of natural rubber blended is too large, the essential properties of the styrene-butadiene copolymer rubber will be diluted and the grip performance will deteriorate, so it is necessary to keep the amount blended to 50 parts by weight or less. There is.

(C)  ポリブタジェンゴム。(C) Polybutadiene rubber.

シス1,4−結合を95重量%以上に含有する高シスB
Rである。低温性能と耐摩耗性の向上のために配合する
。配合量としては、10〜40重量部が必要で、10重
量部未満では低温性能と摩耗性の向上が見込めず、40
重量部超ではグリップ性能が劣る。
High cis B containing 95% by weight or more of cis 1,4-bonds
It is R. Formulated to improve low temperature performance and wear resistance. The amount required is 10 to 40 parts by weight; if it is less than 10 parts by weight, no improvement in low temperature performance and wear resistance can be expected;
Grip performance is poor when the weight exceeds the weight range.

(2)  カーボンブラック。(2) Carbon black.

さらに自動車タイヤ用トレッドとして実用化されるため
には耐摩耗性、操縦安定性などにも充分な性能を有して
いなければならない。操縦安定性を高性能タイヤにふさ
れしい程度に高めるためには、窒素比表面積が100r
rr/g以上の小粒径カーボンブランクを上記原料ゴム
100重量部に対し80重量部以上配合する必要がある
。しかしながら、130重量部超であっては、耐摩耗性
と発熱性が著しく劣るため、130重量部以下にしなけ
ればならない。
Furthermore, in order to be put to practical use as a tread for automobile tires, it must have sufficient performance in terms of wear resistance and handling stability. In order to improve steering stability to a level suitable for high-performance tires, the nitrogen specific surface area must be 100r.
It is necessary to mix 80 parts by weight or more of small particle diameter carbon blanks of rr/g or more with respect to 100 parts by weight of the raw material rubber. However, if it exceeds 130 parts by weight, the abrasion resistance and heat generation properties will be extremely poor, so the content must be 130 parts by weight or less.

(3)石油系軟化剤(伸展油)。(3) Petroleum-based softener (extension oil).

タイヤの他の特性としては、乗心地、騒音、制動性能な
どがあるが、これらの性能を向上するために、さらには
タイヤ製造時の加工性のためにも伸展油を配合する必要
がある。伸展油の粘度比重恒数は0.90未満では制動
性能の向上が認められず、0.98を超えると軟化作用
が働かず加工性が改良されない。このため、0.90〜
0.98の範囲とする。なお、0.98程度の芳香族系
伸展油を用いるのが望ましい。伸展油の配合量はカーボ
ンブラックの配合量に応じて適宜増減して、トレッドゴ
ム弾性率を調節することが必要である。但し、上記原料
ゴム100重量部に対し20重量部未満では配合ゴムの
伸びが出ないためチッピング、カット性に劣り、また、
加工性も困難であるため好ましくない。反対に90重量
部を越えては強度が低下してしまい、さらに耐摩耗性が
著しく不良となるため実用することは、困難である。
Other characteristics of tires include ride comfort, noise, and braking performance, and in order to improve these performances, it is also necessary to add extender oil to improve processability during tire manufacturing. If the viscosity specific gravity constant of the extender oil is less than 0.90, no improvement in braking performance will be observed, and if it exceeds 0.98, the softening effect will not work and workability will not be improved. For this reason, 0.90~
The range is 0.98. Note that it is desirable to use an aromatic extender oil of about 0.98. It is necessary to adjust the tread rubber modulus by appropriately increasing or decreasing the blending amount of extender oil depending on the blending amount of carbon black. However, if it is less than 20 parts by weight per 100 parts by weight of the raw material rubber, the compounded rubber will not elongate, resulting in poor chipping and cutting properties.
It is also difficult to process, so it is not preferred. On the other hand, if the amount exceeds 90 parts by weight, the strength decreases and the wear resistance becomes extremely poor, making it difficult to put it into practical use.

(4)  このように原料ゴムにカーボンブランクおよ
び石油系軟化剤を配合してなるゴム組成物は、−30℃
における剪断貯蔵弾性率が500MPa以下であること
を必要とする。一般にゴム状物質は7g以下の温度では
ガラス状態であり、弾性率は常温下の100倍以上にも
なり、もろく、わずかの歪みで破壊するようになる。こ
のときの温度を低温脆化温度といい、ゴム材料の低温性
能の指標として知られている。しかし、本発明によるゴ
ム組成物のように、弾性率の温度変化が緩やかな場合に
は、単純にTgから脆化温度を推定することはできない
。第2図は、種々のゴム組成物について、低温脆化温度
と、その温度における剪断貯蔵弾性率(G”)をプロッ
トしたものである。これより、どの試料も脆化温度にお
けるG′値が500MPaを越えていることが判る。
(4) The rubber composition obtained by blending carbon blank and petroleum softener with the raw rubber in this way can be heated to -30°C.
The shear storage modulus at 500 MPa or less is required. Generally, a rubber-like substance is in a glass state at a temperature of 7 g or less, and its elastic modulus is more than 100 times that at room temperature, making it brittle and breaking at the slightest strain. The temperature at this time is called the low-temperature embrittlement temperature, and is known as an indicator of the low-temperature performance of rubber materials. However, when the elastic modulus changes slowly with temperature as in the rubber composition according to the present invention, the embrittlement temperature cannot be simply estimated from Tg. Figure 2 plots the low-temperature embrittlement temperature and shear storage modulus (G'') at that temperature for various rubber compositions.From this, it can be seen that the G' value at the embrittlement temperature for all samples is It can be seen that the pressure exceeds 500 MPa.

したがって、500MPa以下であれば脆化温度を越え
ていないといえる。また、−30℃での剪断貯蔵弾性率
としたのは、−30℃よりも低温でタイヤが使用される
ことは、通常無いからである。
Therefore, if it is 500 MPa or less, it can be said that the embrittlement temperature is not exceeded. Furthermore, the reason why the shear storage modulus is set at -30°C is that tires are not normally used at temperatures lower than -30°C.

なお、この剪断弾性率は、動的ねじり試験機を用いて、
歪0.5%、周波数20Hzで測定されるものである。
In addition, this shear modulus was determined using a dynamic torsion tester.
It is measured at a distortion of 0.5% and a frequency of 20 Hz.

更に、微少舵角時の応答性の向上のためには、60℃に
おける硬度と一10℃における硬度の差(係数M)が小
さい方が良い。この差が16以上であると、たとえグリ
ップ性能が良いトレッドゴムを持ったタイヤであっても
、応答性に関する評価は悪くなり、結果としてタイヤ全
体の操縦安定性評価は良くないものとなってしまう。1
5以下であれば高応答性タイヤとて十分な性能を有する
が、更に13以下であると、より好ましい。
Furthermore, in order to improve the responsiveness at the time of a small steering angle, it is better that the difference (coefficient M) between the hardness at 60° C. and the hardness at -10° C. is small. If this difference is 16 or more, even if the tire has tread rubber with good grip performance, the evaluation of responsiveness will be poor, and as a result, the overall steering stability evaluation of the tire will be poor. . 1
If it is 5 or less, it has sufficient performance as a highly responsive tire, but it is more preferably 13 or less.

このときの硬度は、JIS K 6301により測定す
る。
The hardness at this time is measured according to JIS K 6301.

なお、参考までに、このような高ビニル含有量のスチレ
ン−ブタジエン共重合体ゴムに天然ゴム、ポリブタジェ
ンゴムなどのジエン系ゴムをブレンドしたゴム組成物と
しては、特開昭56−110753号公報で公知である
が、この技術は低乾がり抵抗とウェットグリップ性の両
立に重点がおかれているため硬度の温度による変化は考
慮されておらず、また、カーボンブラック配合量も少な
いので高応答性高性能タイヤとしては適していない。
For reference, a rubber composition in which such a high vinyl content styrene-butadiene copolymer rubber is blended with a diene rubber such as natural rubber or polybutadiene rubber is disclosed in JP-A-56-110753. Although this technology is well-known in the official gazette, the emphasis is on achieving both low drying resistance and wet grip, so changes in hardness due to temperature are not taken into consideration.Also, since the amount of carbon black blended is small, Not suitable as a responsive high-performance tire.

以下、実施例により本発明の詳細な説明するが、本発明
はその要旨を越えない限り、これらの実施例に制限され
るものではない。
Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited to these Examples unless the gist thereof is exceeded.

実施例1 第1表に示す成分を持つスチレン−ブタジエン共重合体
ゴムを作製した。更にこれらの共重合体ゴムと対比用乳
化重合SBRとを第2表に示す配合で加硫した。表中の
数字は、断らない限り重量部である。加硫の条件は16
0 X 20分であり、2m厚のゴムシートを得た。こ
のシートの物性を測定した。なお、実施例中の測定は下
記の方法で行なった。
Example 1 A styrene-butadiene copolymer rubber having the components shown in Table 1 was produced. Furthermore, these copolymer rubbers and emulsion polymerized SBR for comparison were vulcanized in the formulations shown in Table 2. Numbers in the table are parts by weight unless otherwise specified. The conditions for vulcanization are 16
0 x 20 minutes, and a 2 m thick rubber sheet was obtained. The physical properties of this sheet were measured. In addition, the measurements in the examples were performed by the following method.

ブタジェン部分のビニル結合量はモレロ法により求めた
。スチレン含量は赤外分光計を用い、ハンプトン法によ
り求めた。
The amount of vinyl bonds in the butadiene moiety was determined by the Morello method. The styrene content was determined by the Hampton method using an infrared spectrometer.

一30℃における剪断弾性率G’(−30℃)および0
℃におけるtanδは、それぞれRHEOMETRIC
S社製動的粘弾性測定装置を用い、周波数20Hz、剪
断歪0.5%で測定した。)IsはJIS K 630
1による硬度である。
- Shear modulus G' at 30°C (-30°C) and 0
tan δ at °C is RHEOMETRIC
The measurement was performed using a dynamic viscoelasticity measuring device manufactured by S Company at a frequency of 20 Hz and a shear strain of 0.5%. )Is is JIS K 630
The hardness is based on 1.

(本頁以下余白) 第2表から判るように、比較例4.5は乳化重合SBR
の例である。比較例5の配合物では低温性能は良好であ
るが、tanδ (0℃)が低く、グリップ性能は劣る
。逆に比較例4ではtanδ (0℃)は高いが低温性
能は不可である。比較例1は1.2−ビニル含有量が本
発明の範囲からはずれるスチレン−ブタジエン共重合体
ゴムを使用し、天然ゴム、ポリブタジェンゴムをブレン
ドした例であるが、係数Mは小さくて良好なものの、0
℃のtanδが低く、グリップ性能に劣る。比較例2は
、結合スチレン量が35重量%の乳化重合SBRのブレ
ンド例であるが、0℃のtanδが低く、また、係数M
も大きいので、応答性に劣ることが予想される。比較例
6は、シス1,4−結合含有量98重量%のポリブタジ
ェンゴムを50重量部配合した例であるが、0℃のta
nδが低く、グリップ性能が不良である。これらに比べ
、本発明の範囲を満足する実施例1〜3は、各性能のバ
ランスの取れたものとなっている。
(Margins below this page) As can be seen from Table 2, Comparative Example 4.5 is emulsion polymerized SBR.
This is an example. The formulation of Comparative Example 5 has good low temperature performance, but low tan δ (0°C) and poor grip performance. On the contrary, in Comparative Example 4, the tan δ (0° C.) is high, but the low temperature performance is poor. Comparative Example 1 is an example in which a styrene-butadiene copolymer rubber whose 1,2-vinyl content is out of the range of the present invention is blended with natural rubber and polybutadiene rubber, but the coefficient M is small and good. Of things, 0
The tan δ at °C is low and the grip performance is poor. Comparative Example 2 is a blend of emulsion polymerized SBR with a bound styrene content of 35% by weight, but has a low tan δ at 0°C and a low coefficient M.
is also large, so it is expected that the responsiveness will be poor. Comparative Example 6 is an example in which 50 parts by weight of polybutadiene rubber having a cis-1,4-bond content of 98% by weight was blended.
nδ is low and grip performance is poor. Compared to these, Examples 1 to 3, which satisfy the scope of the present invention, have well-balanced performance.

実施例2 第2表の実施例1および比較例2.4の配合でトレンド
ゴムを作り、タイヤを作製して操縦安定性試験を行った
。評価は漱舵応答性と限界性能に分けて、各々について
テスターがフィーリング評価した。結果を第3表に示す
。第3表から判るように、実施例1のゴム組成物をトレ
ッドに持つタイヤは、限界性能は比較例4に劣るものの
微舵応答性は優れており、総合評価も優秀であることが
証明された。
Example 2 Trend rubber was prepared using the formulations of Example 1 and Comparative Example 2.4 in Table 2, tires were prepared, and a handling stability test was conducted. The evaluation was divided into steering response and limit performance, and testers evaluated the feeling of each. The results are shown in Table 3. As can be seen from Table 3, although the tire with the rubber composition of Example 1 in its tread was inferior to Comparative Example 4 in marginal performance, it was proven to have excellent fine steering response and excellent overall evaluation. Ta.

注) (国産5座セダン、タイヤサイズ195/65R15)
評価点は10点満点で高い程良い。
Note) (Domestic 5-seater sedan, tire size 195/65R15)
The evaluation score is out of 10, the higher the better.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明のゴム組成物は、従来技術
に比べ、グリップ性能と微舵応答性が幅広い温度範囲に
渡って安定であり、更に雪氷路面の把握力にも優れてい
ることから、空気入りタイヤトレッド部、特にオールシ
ーズンタイプの高応答性タイヤトレンド部に好適に使用
することができる。
As explained above, the rubber composition of the present invention has more stable grip performance and fine steering response over a wide temperature range than conventional technologies, and also has excellent grip on snowy and icy road surfaces. The present invention can be suitably used in a pneumatic tire tread section, particularly in an all-season type tire trend section with high responsiveness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はスチレン含量のみ異なる乳化重合SBRのta
nδ−温度曲線であって、スチレン含量の高いものがピ
ーク温度は高温であることを示す説明図、第2図はゴム
配合物の低温脆化温度と剪断弾性率の関係を示す説明図
である。
Figure 1 shows the ta of emulsion polymerized SBR that differs only in styrene content.
An explanatory diagram showing that the nδ-temperature curve shows that the peak temperature is higher when the styrene content is high. Figure 2 is an explanatory diagram showing the relationship between the low-temperature embrittlement temperature and shear modulus of a rubber compound. .

Claims (1)

【特許請求の範囲】[Claims] 結合スチレンを3〜30重量%含み、ブタジエン部分の
1,2−ビニル含有量が70重量%以上で本質的に無定
形のスチレン−ブタジエン共重合体ゴムを30〜80重
量部、天然ゴムを10〜50重量部、およびシス1,4
−結合を95重量%以上含有するポリブタジエンゴムを
10〜40重量部から合計ゴム量が100重量部の原料
ゴムを構成し、この原料ゴム100重量部に対し、窒素
比表面積100m^2/g以上であるカーボンブラック
を80〜130重量部、および粘度比重恒数0.90〜
0.98である石油系軟化剤を20〜90重量部配合し
てなり、−30℃における剪断貯蔵弾性率が500MP
a以下であってかつ60℃における硬度と−10℃にお
ける硬度の差が15以下であることを特徴とするタイヤ
トレッド用ゴム組成物。
30 to 80 parts by weight of an essentially amorphous styrene-butadiene copolymer rubber containing 3 to 30% by weight of bound styrene and having a 1,2-vinyl content of the butadiene moiety of 70% by weight or more, and 10 parts by weight of natural rubber. ~50 parts by weight, and cis 1,4
- A raw material rubber with a total rubber amount of 100 parts by weight is composed of 10 to 40 parts by weight of polybutadiene rubber containing 95% by weight or more of bonds, and a nitrogen specific surface area of 100 m^2/g or more with respect to 100 parts by weight of this raw material rubber. 80 to 130 parts by weight of carbon black, and a viscosity specific gravity constant of 0.90 to 130 parts by weight.
Contains 20 to 90 parts by weight of a petroleum softener with a shear storage modulus of 500 MP at -30°C.
A rubber composition for a tire tread, characterized in that the difference between the hardness at 60°C and the hardness at -10°C is 15 or less.
JP1255448A 1989-09-30 1989-09-30 Rubber composition for tire tread Pending JPH03119042A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1255448A JPH03119042A (en) 1989-09-30 1989-09-30 Rubber composition for tire tread
DE4030779A DE4030779A1 (en) 1989-09-30 1990-09-28 Rubber compsn. for fast-reacting motor tyre treads - contains mixt. of specified SBR, natural rubber and specified butadiene] rubber, with carbon black and mineral oil plasticiser
KR1019900015455A KR910006393A (en) 1989-09-30 1990-09-28 Rubber composition for tire tread

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1255448A JPH03119042A (en) 1989-09-30 1989-09-30 Rubber composition for tire tread

Publications (1)

Publication Number Publication Date
JPH03119042A true JPH03119042A (en) 1991-05-21

Family

ID=17278912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1255448A Pending JPH03119042A (en) 1989-09-30 1989-09-30 Rubber composition for tire tread

Country Status (3)

Country Link
JP (1) JPH03119042A (en)
KR (1) KR910006393A (en)
DE (1) DE4030779A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001261891A (en) * 1999-05-17 2001-09-26 Yokohama Rubber Co Ltd:The Rubber composition
US6483796B1 (en) 1995-07-19 2002-11-19 Sony Corporation Recording medium, information reproducing apparatus, information recording apparatus, and information recording and reproducing apparatus
KR100387297B1 (en) * 2000-11-15 2003-06-12 한국타이어 주식회사 Tire tread composition
JP2005212524A (en) * 2004-01-27 2005-08-11 Sumitomo Rubber Ind Ltd Assembly of pneumatic tire with rim

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10195273A (en) * 1996-11-18 1998-07-28 Daicel Chem Ind Ltd High-impact styrene-based resin composition and its molding
EP1308319B1 (en) * 2001-11-05 2009-07-22 Continental Aktiengesellschaft Pneumatic tire
WO2020241695A1 (en) * 2019-05-31 2020-12-03 横浜ゴム株式会社 Pneumatic tire

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110753A (en) * 1980-02-08 1981-09-02 Bridgestone Corp Rubber composition for tire
JPS61203145A (en) * 1985-03-05 1986-09-09 Bridgestone Corp Rubber composition for tire tread
GB8724437D0 (en) * 1987-10-19 1987-11-25 Shell Int Research Elastomeric compositions

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6483796B1 (en) 1995-07-19 2002-11-19 Sony Corporation Recording medium, information reproducing apparatus, information recording apparatus, and information recording and reproducing apparatus
JP2001261891A (en) * 1999-05-17 2001-09-26 Yokohama Rubber Co Ltd:The Rubber composition
KR100387297B1 (en) * 2000-11-15 2003-06-12 한국타이어 주식회사 Tire tread composition
JP2005212524A (en) * 2004-01-27 2005-08-11 Sumitomo Rubber Ind Ltd Assembly of pneumatic tire with rim

Also Published As

Publication number Publication date
DE4030779A1 (en) 1991-04-11
KR910006393A (en) 1991-04-29

Similar Documents

Publication Publication Date Title
EP0087736B2 (en) Elastomer composition
CA1168794A (en) Rubber composition for tire
US5300577A (en) Rubber blend and tire with tread thereof
US4487892A (en) Rubber compositions for use in tires
CA1252591A (en) Diene rubber composition and tire using it in tread
US4748168A (en) Rubber compositions for tire treads
US4396743A (en) Rubber composition for tires containing block copolymer having vinyl bonds
JPH0355503B2 (en)
JPS6320861B2 (en)
US5204407A (en) Pneumatic tires
JPH03119041A (en) Rubber composition for tire tread
JP3184986B2 (en) Rubber composition for tire tread
JPH03119042A (en) Rubber composition for tire tread
US5227424A (en) Rubber composition for use as a tire tread
JPH0520464B2 (en)
JPS62143945A (en) Rubber composition for tire tread
JP3220507B2 (en) Rubber-like polymer composition
US5194485A (en) Rubber composition for tire tread
JPH0470340B2 (en)
JP2694547B2 (en) Rubber composition for tire tread
JP2694549B2 (en) Rubber composition for tire tread
JPH07233286A (en) Tire tread rubber composition
JPS61120839A (en) Vulcanized rubber composition for tire tread
JPH0456841B2 (en)
JP2714971B2 (en) Rubber composition for tire tread