JPH0470314B2 - - Google Patents

Info

Publication number
JPH0470314B2
JPH0470314B2 JP57015539A JP1553982A JPH0470314B2 JP H0470314 B2 JPH0470314 B2 JP H0470314B2 JP 57015539 A JP57015539 A JP 57015539A JP 1553982 A JP1553982 A JP 1553982A JP H0470314 B2 JPH0470314 B2 JP H0470314B2
Authority
JP
Japan
Prior art keywords
reaction
hfp
phase
hfpo
hypochlorite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57015539A
Other languages
Japanese (ja)
Other versions
JPS58134086A (en
Inventor
Masanori Ikeda
Atsushi Aoshima
Morikazu Miura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP57015539A priority Critical patent/JPS58134086A/en
Priority to EP82103810A priority patent/EP0064293B1/en
Priority to DE8282103810T priority patent/DE3274643D1/en
Priority to CA000402298A priority patent/CA1220216A/en
Publication of JPS58134086A publication Critical patent/JPS58134086A/en
Priority to US07/072,189 priority patent/US4902810A/en
Priority to US07/346,667 priority patent/US4925961A/en
Publication of JPH0470314B2 publication Critical patent/JPH0470314B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Epoxy Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳现な説明】 本発明は、ヘキサフルオロプロピレンオキシド
以䞋、HFPOず略蚘するを補造する方法に関
するものである。曎に詳しく蚀えば、次亜塩玠酞
塩を酞化剀ずしお䜿甚し、ヘキサフルオロプロピ
レン以䞋、HFPず略蚘するよりHFPOを補
造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing hexafluoropropylene oxide (hereinafter abbreviated as HFPO). More specifically, the present invention relates to a method for producing HFPO from hexafluoropropylene (hereinafter abbreviated as HFP) using hypochlorite as an oxidizing agent.

HFPOは、ヘキサフルオロアセトン、パヌフル
オロビニル゚ヌテル等の有甚な含フツ玠化合物を
補造するための䞭間䜓であり、又、HFPOのポリ
マヌは、熱媒、最滑油等の広範な甚途がある。
HFPO is an intermediate for producing useful fluorine-containing compounds such as hexafluoroacetone and perfluorovinyl ether, and HFPO polymers have a wide range of uses such as heat transfer agents and lubricating oils.

HFPOはHFPの゚ポキシ化反応により補造さ
れ埗るが、HFPはプロピレンのような炭化氎玠
系オレフむンや塩化アリルのような塩玠化炭化氎
玠系オレフむンずは非垞に異な぀た化孊的性質を
有するため、HFPをプロピレンや塩化アリルず
同様の方法で゚ポキシ化するこずは困難である。
HFPO can be produced by the epoxidation reaction of HFP, but HFP has very different chemical properties from hydrocarbon olefins such as propylene and chlorinated hydrocarbon olefins such as allyl chloride. It is difficult to epoxidize in the same way as propylene and allyl chloride.

これたでに、HFPよりHFPOを補造する方法
ずしおは、いく぀かの方法が提案されおいるが、
いずれも工業的に有利な補造方法ずは蚀えない。
䟋えば、米囜特蚱第3358003号明现曞に蚘茉され
おいる、アルカリ性過酞化氎玠の媒質䞭におい
お、HFPをHFPOを酞化する方法、或いは特公
昭45−11683号公報に蚘茉されおいる䞍掻性溶媒
の存圚䞋においお、HFPを酞玠でHFPOに酞化
する方法等が代衚的なHFPO補造方法ずしお知ら
れおいる。しかしながら、これらの䜕れの方法で
も反応の制埡が難しく、生成HFPOの分解制埡が
困難であ぀たり、或いは、倚量の副生成物が生成
するなどしお、高収率でHFPOを埗るこずは出来
ない。曎に、これらの方法ではHFP転化率を高
くするず、HFPO遞択率が䜎䞋しおしたうので、
HFPを有効に甚いる為には、䜎HFP転化率で反
応を止め、未反応のHFPをHFPOより分離回収
しお再䜿甚する必芁がある。ずころが、HFPの
沞点−29.4℃ずHFPOの沞点−27.4℃は
非垞に近接しおおり、䞡者を蒞溜分離する事は困
難であるので、その分離のためには特殊な分離操
䜜が必芁ずされる。その䟋ずしおは、䟋えば、
HFPず臭玠を反応させお高沞点のゞブロム䜓に
しおHFPOず分離する方法、あるいは米囜特蚱第
3326780号、米囜特蚱第4134796号等の明现曞等に
蚘茉されおいる抜出蒞溜分離法等が提案されおい
るが、䜕れも煩雑な分離方法であり、HFPOの補
造コストを倧幅に増加させるものである。
To date, several methods have been proposed for producing HFPO from HFP.
None of these methods can be said to be industrially advantageous.
For example, the method of oxidizing HFP with HFPO in an alkaline hydrogen peroxide medium as described in US Pat. No. 3,358,003, or the presence of an inert solvent as described in Japanese Patent Publication No. 11683/1983 The method described below in which HFP is oxidized to HFPO with oxygen is known as a typical method for producing HFPO. However, with any of these methods, it is difficult to control the reaction, it is difficult to control the decomposition of the produced HFPO, or a large amount of by-products are produced, making it impossible to obtain HFPO in a high yield. . Furthermore, in these methods, when increasing the HFP conversion rate, the HFPO selectivity decreases.
In order to use HFP effectively, it is necessary to stop the reaction at a low HFP conversion rate, separate and recover unreacted HFP from HFPO, and reuse it. However, the boiling point of HFP (-29.4℃) and the boiling point of HFPO (-27.4℃) are very close to each other, and it is difficult to separate them by distillation, so special separation operations are required to separate them. Needed. For example,
A method of reacting HFP and bromine to form a high-boiling dibromine compound and separating it from HFPO, or a method described in the U.S. Patent No.
Extractive distillation separation methods described in specifications such as No. 3326780 and U.S. Patent No. 4134796 have been proposed, but all of them are complicated separation methods and significantly increase the production cost of HFPO. be.

本発明者らは、このような埓来方法の欠点を克
服し、HFPより簡単にか぀高収率でHFPOを補
造する方法を芋いだすべく鋭意怜蚎した結果、特
開昭57−183773号公報、特開昭58−105978号公
報、特開昭58−113187号公報に蚘茉されおいるよ
うに、次亜塩玠酞塩を酞化剀ずしお甚い、特定の
觊媒の存圚䞋で、氎盞ず有機盞の二盞系で反応を
行う新芏な方法を芋いだした。
The present inventors have conducted intensive studies to overcome the drawbacks of the conventional methods and to find a method for producing HFPO more easily and with higher yield than HFP. As described in 1981-105978 and 1981-113187, hypochlorite is used as an oxidizing agent, and in the presence of a specific catalyst, a two-phase aqueous phase and an organic phase is formed. We have discovered a new method for performing reactions in this system.

しかしながら、䞊蚘反応方法を各皮垂販次亜塩
玠酞塩氎溶液及び本発明者らが調補した次亜塩玠
酞塩氎溶液を甚いお実斜するず、たずえ有効塩玠
濃床が同じであ぀おも、䜿甚する次亜塩玠酞塩氎
溶液の皮類により反応成瞟が倧きく異なり、有効
塩玠濃床以倖に、反応成瞟に倧きく圱響する芁因
があるものず掚定された。又、䞊蚘反応方法にお
いお、HFP転化率を高くしたり、次亜塩玠酞塩
ずHFPの比を䜎くしお反応させたりするず、
HFPO遞択率が䜎䞋するこずが認められた。
However, when the above reaction method is carried out using various commercially available hypochlorite aqueous solutions and hypochlorite aqueous solutions prepared by the present inventors, even if the available chlorine concentration is the same, the hypochlorite used The reaction results varied greatly depending on the type of acid salt aqueous solution, and it was assumed that there were factors other than the available chlorine concentration that greatly influenced the reaction results. In addition, in the above reaction method, if the HFP conversion rate is increased or the ratio of hypochlorite to HFP is lowered,
It was observed that the HFPO selectivity decreased.

本発明者らは、以䞊の問題点を解決すべく鋭意
怜蚎した結果、特定量以䞊の無機塩基の存圚䞋で
圓該反応を行うず、安定な反応成瞟が埗られ、か
぀、反応成瞟が飛躍的に向䞊するこずを芋いだ
し、曎に、管理リアクタヌ䞭で反応を行うず、バ
ツチ反応ず同等の高い収率で連続的にHFPOが補
造できるこずを芋いだし、本発明を完成するに至
぀た。
As a result of intensive studies to solve the above problems, the present inventors found that when the reaction is carried out in the presence of a specific amount or more of an inorganic base, stable reaction results can be obtained, and the reaction results can be dramatically improved. Furthermore, they discovered that HFPO can be produced continuously at a high yield equivalent to batch reaction by conducting the reaction in a controlled reactor, leading to the completion of the present invention.

即ち、本発明は、次亜塩玠酞塩を酞化剀ずしお
䜿甚し、特定の觊媒の存圚䞋で、氎玠ず有機盞の
二盞系で反応を行い、ヘキサフルオロプロピレン
よりヘキサフルオロプロピレンオキシドを補造す
るにあたり、ヘキサフルオロプロピレンモルに
察し、0.1グラム圓量以䞊の無機塩基の存圚䞋で、
か぀、管型リアクタヌ䞭で流通反応を行うこずを
特城ずするヘキサフルオロプロピレンオキシドの
連続的補造法を提䟛するものである。
That is, the present invention uses hypochlorite as an oxidizing agent, performs a reaction in a two-phase system of hydrogen and an organic phase in the presence of a specific catalyst, and produces hexafluoropropylene oxide from hexafluoropropylene. In the presence of 0.1 gram equivalent or more of an inorganic base per mol of hexafluoropropylene,
The present invention also provides a method for continuously producing hexafluoropropylene oxide, which is characterized by carrying out a flow reaction in a tubular reactor.

本発明の方法における無機塩基の第の効果
は、HFPの転化率を䞊げおも、高いHFPO遞択
率が埗られるようになるこずである。埓぀お、
HFPO遞択率を倧きく損なうこずなく、HFP転
化率を䞊げお残存HFP量を少なくするこずがで
きるので、煩雑なHFPずHFPOの分離工皋なし
で高玔床のHFPOが高収率で埗られるようにな
る。本発明の方法における無機塩基の第の効果
は、次亜塩玠酞塩ずHFPの比を䜎くしおも、奜
成瞟が埗られるようになるこずである。無機塩基
の䞍存圚䞋、或いは極く少量の無機塩基の存圚䞋
では、次亜塩玠酞塩ずHFPの比を䜎くするず、
HFPO遞択率が䜎䞋し、又、反応途䞭で残存有効
塩玠濃床が䜎䞋するためHFP転化率が頭打ちに
な぀たりするので、奜成瞟を埗るためには、倧過
剰の次亜塩玠酞塩の存圚䞋で反応を行う必芁があ
぀た。しかしながら、本発明の方法によれば、次
亜塩玠酞塩の䜿甚量は少なくお良いので、次亜塩
玠酞塩のコストの軜枛、反応装眮のコンパクト化
及び排氎凊理コストの軜枛が可胜になる。
The first effect of the inorganic base in the method of the present invention is that a high HFPO selectivity can be obtained even when the conversion of HFP is increased. Therefore,
It is possible to increase the HFP conversion rate and reduce the amount of residual HFP without significantly impairing the HFPO selectivity, making it possible to obtain high-purity HFPO at a high yield without the need for a complicated separation process between HFP and HFPO. . A second effect of the inorganic base in the process of the present invention is that it allows good results to be obtained even at low ratios of hypochlorite to HFP. In the absence of inorganic base or in the presence of very small amounts of inorganic base, lowering the ratio of hypochlorite to HFP
Since the HFPO selectivity decreases and the residual available chlorine concentration decreases during the reaction, the HFP conversion rate may reach a plateau. Therefore, in order to obtain good results, it is necessary to react in the presence of a large excess of hypochlorite. It was necessary to carry out a reaction. However, according to the method of the present invention, the amount of hypochlorite used may be small, so it is possible to reduce the cost of hypochlorite, downsize the reaction apparatus, and reduce wastewater treatment cost.

以䞋、本発明を曎に詳现に説明する。 The present invention will be explained in more detail below.

本発明に甚いられる次亜塩玠酞塩ずしおは、各
皮の次亜塩玠酞塩が挙げられるが、䟋えば、次亜
塩玠酞ナトリりム、次亜塩玠酞カリりム等のアル
カリ金属塩、或いは、次亜塩玠酞カルシりム、次
亜塩玠酞バリりム等のアルカリ土類金属塩等が挙
げられる。その䞭でも特に次亜塩玠酞ナトリりム
ず次亜塩玠酞カルシりムは、挂癜剀、殺菌剀等の
甚途向けに工業的に倧量生産されおおり、安䟡に
入手できるので、本発明の方法に甚いる次亜塩玠
酞塩ずしお適しおいる。
The hypochlorite used in the present invention includes various hypochlorites, such as alkali metal salts such as sodium hypochlorite and potassium hypochlorite, or hypochlorite. Examples include alkaline earth metal salts such as calcium and barium hypochlorite. Among them, sodium hypochlorite and calcium hypochlorite in particular are industrially mass-produced for use as bleaches, disinfectants, etc., and can be obtained at low cost. Suitable as an acid salt.

無機塩基䞍存圚䞋或いは極く少量の無機塩基存
圚䞋では、高HFP転化率で高HFPO遞択率を埗
るためには、HFPに察しお倧過剰の次亜塩玠酞
塩を必芁ずするが、十分な量の無機塩基存䞋で
は、HFP1モルに察しお1.1グラム圓量からグラ
ム圓量皋床の次亜塩玠酞塩䜿甚量でも良奜な反応
成瞟が埗られる。䜆し、次亜塩玠酞塩䜿甚量は、
目的に応じお任意に遞択できるものであ぀お䞊蚘
範囲に限定されるものではない。
In the absence of an inorganic base or in the presence of a very small amount of inorganic base, a large excess of hypochlorite relative to HFP is required to obtain high HFP conversion and high HFPO selectivity, but In the presence of a suitable amount of inorganic base, good reaction results can be obtained even when the amount of hypochlorite used is about 1.1 to 7 gram equivalents per mole of HFP. However, the amount of hypochlorite used is
It can be arbitrarily selected depending on the purpose and is not limited to the above range.

本発明の方法に甚いられる觊媒ずしおは、有機
盞䞭のHFPず氎盞䞭の次亜塩玠酞塩ずの反応を
媒介するものであれば良い。その䟋ずしおは、䟋
えば、第玚アンモニりム塩、第玚ホスホニり
ム塩、第玚アル゜ニりム塩等のオニりム塩、或
いは、次亜塩玠塩䞭のアルカリ金属むオンやアル
カリ土類金属むオン等に察する芪油性錯化剀等が
挙げられるが、これらに限定されるものではな
い。
The catalyst used in the method of the present invention may be any catalyst as long as it mediates the reaction between HFP in the organic phase and hypochlorite in the aqueous phase. Examples include onium salts such as quaternary ammonium salts, quaternary phosphonium salts, and quaternary arsonium salts, or lipophilicity toward alkali metal ions and alkaline earth metal ions in hypochlorite salts. Examples include, but are not limited to, complexing agents.

本発明の方法に䜿甚される具䜓的な觊媒ずしお
は、特開昭57−183773号公報、特開昭58−105978
号公報或いは特開昭58−113187号公報に䟋瀺され
おいるものず同じ觊媒が挙げられる。䟋えば、第
玚アンモニりム塩の䟋ずしおは、トリオクチル
メチルアンモニりムクロラむド或いはテトラ−
−ブチルアンモニりムクロラむドが、第玚ホス
ホニりム塩の䟋ずしおは、テトラ−−ブチルホ
スホニりムブロマむド或いは−アミルトリプ
ニルホスホスルホニりムブロマむドが、第玚ア
ル゜ニりム塩の䟋ずしおは、テトラプニルアル
゜ニりムクロラむド或いはトリプニルメチルア
ル゜ニりムクロラむドが、芪油性錯化剀の䟋ずし
おは、倧環状ポリ゚ヌテル、倧環状アミノ゚ヌテ
ル、或いはポリ゚チレングリコヌル誘導䜓等が挙
げられる。
Specific catalysts used in the method of the present invention include JP-A-57-183773 and JP-A-58-105978.
The same catalysts as those exemplified in JP-A-58-113187 and JP-A-58-113187 can be mentioned. For example, examples of quaternary ammonium salts include trioctylmethylammonium chloride or tetra-n
Examples of the quaternary phosphonium salt include butylammonium chloride, such as tetra-n-butylphosphonium bromide or n-amyltriphenylphosphosulfonium bromide, and examples of the quaternary arsonium salt include tetraphenyl arsonium chloride. Alternatively, triphenylmethylarsonium chloride may be used, but examples of lipophilic complexing agents include macrocyclic polyethers, macrocyclic aminoethers, and polyethylene glycol derivatives.

本発明の方法に甚いられる無機塩基の䟋ずしお
は、䟋えば、氎酞化リチりム、氎酞化ナトリり
ム、氎酞化カリりム、氎酞化ルビゞりム、氎酞化
セシりム等のアルカリ金属氎酞化物或いは氎酞化
カルシりム、氎酞化ストロンチりム、氎酞化バリ
りム等のアルカリ土類金属氎酞化物が挙げられ
る。これらの無機塩基は、完党に氎盞に溶解しお
いおも良いし、又、䞀郚が氎盞に溶解せず固盞で
存圚しおいおもかたわない。各皮無機塩基の䞭で
特に氎酞化ナトリりムが、䟡栌、氎ぞの溶解床、
取り扱い易さ等の点で本発明の方法に適しおい
る。
Examples of inorganic bases used in the method of the present invention include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide, calcium hydroxide, and strontium hydroxide. and alkaline earth metal hydroxides such as barium hydroxide. These inorganic bases may be completely dissolved in the aqueous phase, or a portion may not be dissolved in the aqueous phase and may exist in the solid phase. Among various inorganic bases, sodium hydroxide is particularly popular due to its price, solubility in water,
It is suitable for the method of the present invention in terms of ease of handling and the like.

本発明の方法に䜿甚される無機塩基の量は任意
に蚭定できるが、実質的な効果を埗るためには、
反応に䜿甚されるHFP1モルあたり0.1グラム圓量
以䞊が䜿甚される。無機塩基の量の䞊限は特にな
く、埓来は塩基性雰囲気䞋では分解し易いず考え
られおいたHFPO反応ずしおは、予想倖な事に、
極めお高い塩基濃床にしおも高いHFPO遞択率が
埗られる。しかしながら、粘床が䜙り高くなりす
ぎず、又、塩基のコストが高くなりすぎないず蚀
぀た実甚的な芳点から決められる無機塩基の添加
量ずしおは、通垞はHFP1モルに察しお100グラ
ム圓量以内が、望たしくは30グラム圓量以内が、
特に望たしくは15グラム圓量以内が䜿甚される。
無機塩基は、党量を反応の初期から反応系䞭に存
圚させおおいおもよい、又、堎合によ぀おは、反
応の途䞭で適宜添加しおい぀おも良い。
Although the amount of inorganic base used in the method of the present invention can be set arbitrarily, in order to obtain a substantial effect,
0.1 gram equivalent or more is used per mole of HFP used in the reaction. There is no particular upper limit for the amount of inorganic base, which is unexpected for the HFPO reaction, which was previously thought to be easily decomposed in a basic atmosphere.
High HFPO selectivity can be obtained even at extremely high base concentrations. However, the amount of inorganic base added is usually within 100 g equivalent per mole of HFP, which is determined from practical viewpoints such as not making the viscosity too high or making the cost of the base too high. , preferably within 30 gram equivalents,
Particularly preferably, an amount of 15 gram equivalent or less is used.
The entire amount of the inorganic base may be present in the reaction system from the beginning of the reaction, or in some cases, it may be added as appropriate during the reaction.

本発明の方法に甚いられる有機盞甚の有機溶媒
ずしおは、氎盞に察しお実質的に䞍混和性或いは
難混和性の䞍掻性溶剀が䜿甚される。その䟋ずし
おは、䟋えば、−ヘキサン等の脂肪族炭化氎玠
類、シクロヘキサン等の脂環匏炭化氎玠類、トル
゚ン等の芳銙族炭化氎玠類、ゞむ゜プロピル゚ヌ
テル等の゚ヌテル類、塩化メチレン等の塩玠化炭
化氎玠類、−トリクロロ−
−トリフルオロ゚タン等のクロロフルオロカヌボ
ン類、パヌフルオロゞメチルシクロブタン等のペ
ルフルオロカヌボン類等が挙げられるが、これら
に限定されるものではない。有機溶媒を遞択する
際には、反応に䜿甚される觊媒に察する溶解床、
HFPやHFPOに察する溶解床、反応圧力や反応
枩床等の反応条件等を考慮しお適圓な有機溶媒が
遞ばれる。
As the organic solvent for the organic phase used in the method of the present invention, an inert solvent that is substantially immiscible or sparingly miscible with the aqueous phase is used. Examples include aliphatic hydrocarbons such as n-hexane, alicyclic hydrocarbons such as cyclohexane, aromatic hydrocarbons such as toluene, ethers such as diisopropyl ether, and chlorinated methylene chloride. Hydrocarbons, 1,1,2-trichloro-1,2,2
Examples include, but are not limited to, chlorofluorocarbons such as -trifluoroethane and perfluorocarbons such as perfluorodimethylcyclobutane. When selecting an organic solvent, consider its solubility for the catalyst used in the reaction,
An appropriate organic solvent is selected in consideration of solubility in HFP and HFPO, reaction conditions such as reaction pressure and reaction temperature, etc.

本発明の二盞系反応を連続的に実斜する方法ず
しおは、管型リアクタヌ䞭での流通法が望たし
い。
As a method for continuously carrying out the two-phase reaction of the present invention, a flow method in a tubular reactor is preferable.

本発明の方法を、連続的にか぀工業的に有利に
実斜するためには、たず、本発明の管型リアクタ
ヌ䞭での二盞系反応方法によりHFPからHFPO
を合成した埌、有機盞ず氎盞を盞分離し、盞分離
した有機盞からHFPOを単離し、觊媒を含む残存
有機盞にHFPを添加しお管型リアクタヌ䞭での
二盞系反応に再䜿甚する方法が望たしい。管理リ
アクタヌ䞭で二盞系反応を行わせる堎合には、反
応噚䞭で二盞を良奜に混合させる必芁があり、そ
のための混合方法ずしおは、撹拌矜根や静止型混
合噚による通垞甚いられる方法が䜿甚される。即
ち、管型反応の堎合には、管型反応噚内の二盞が
埮分散した状態で通過しおいく必芁があるので、
管型反応噚の前に二盞混合噚を蚭眮するか、又
は、管理反応噚の内郚に二盞混合噚を内臓した構
造にしおおく必芁がある。又、管型リアクタヌか
らは有機盞ず氎盞が混合された状態の反応液が出
おくるので、デカンタヌ等で有機盞ず氎盞を分離
する必芁がある。二盞系反応埌の氎盞には、未反
応次亜塩玠酞塩、次亜塩玠酞塩の反応により生成
した塩化物、無機塩基、觊媒の䞀郚及び各皮の反
応副生成物等が含たれおいるが、この氎盞はその
たた廃棄凊分されるか、或いは未反応の次亜塩玠
酞塩や觊媒が倧量に存圚するような堎合には、氎
盞から次亜塩玠酞塩や觊媒を回収しお再䜿甚する
こずも可胜である。又、二盞系反応埌の有機盞に
は、生成HFPO、未反応HFPや觊媒等が含たれ
おいる。この有機盞より、HFPO及びHFPは蒞
溜等の分離操䜜により容易に単離される。HFPO
及びHFPが陀去された有機盞には觊媒が含たれ
おいるので、この有機盞にHFPを添加しお二盞
系反応に埪環再䜿甚するこずができる。䜆し、觊
媒によ぀おは、二盞系反応の際に䞀郚が氎盞に移
行しお有機盞䞭の觊媒含量が枛少するので、その
堎合には、適宜觊媒を有機盞䞭に補絊する必芁が
ある。
In order to carry out the method of the present invention continuously and industrially advantageously, first, HFP is converted to HFPO by the two-phase reaction method in a tubular reactor of the present invention.
After synthesis, the organic phase and aqueous phase are separated, HFPO is isolated from the phase-separated organic phase, HFP is added to the remaining organic phase containing the catalyst, and the reaction is carried out in a two-phase system in a tubular reactor. The preferred method is to use When conducting a two-phase reaction in a controlled reactor, it is necessary to mix the two phases well in the reactor, and the mixing method that is commonly used for this purpose is to use a stirring blade or a static mixer. used. In other words, in the case of a tubular reaction, the two phases inside the tubular reactor must pass through in a finely dispersed state.
It is necessary to install a two-phase mixer in front of the tubular reactor, or to have a structure in which the two-phase mixer is built inside the control reactor. Furthermore, since a reaction solution in which an organic phase and an aqueous phase are mixed comes out of the tubular reactor, it is necessary to separate the organic phase and the aqueous phase using a decanter or the like. The aqueous phase after the two-phase reaction contains unreacted hypochlorite, chloride produced by the reaction of hypochlorite, an inorganic base, a part of the catalyst, and various reaction by-products. However, this aqueous phase is either disposed of as is, or if a large amount of unreacted hypochlorite or catalyst is present, the hypochlorite or catalyst is recovered from the aqueous phase. It is also possible to reuse it. Furthermore, the organic phase after the two-phase reaction contains generated HFPO, unreacted HFP, catalyst, and the like. HFPO and HFP are easily isolated from this organic phase by a separation operation such as distillation. HFPO
Since the organic phase from which HFP has been removed contains a catalyst, HFP can be added to this organic phase and recycled for reuse in a two-phase reaction. However, depending on the catalyst, a part of it will transfer to the aqueous phase during the two-phase reaction, reducing the catalyst content in the organic phase, so in that case, it is necessary to replenish the catalyst into the organic phase as appropriate. There is.

以䞋に、実斜䟋及び比范䟋で本発明を曎に詳し
く説明するが、かかる説明は䜕ら本発明を限定す
るものではない。
The present invention will be explained in more detail below using Examples and Comparative Examples, but these explanations are not intended to limit the present invention in any way.

実斜䟋  第図に瀺すような静止型混合噚長さ150mm、
ねじれ矜根型混合゚レメント内臓、管型反応
噚内容積160ml、デカンタヌ、HFPOè’ž
溜塔及び有機盞貯蔵槜内容積1000mlを備
えた連続反応装眮によりHFPよりHFPOを合成
した。静止型混合噚、管型反応噚及びデカン
タヌの郚分は−10℃に冷华され、又、圧力は窒
玠ガスによりKgcm2ゲヌゞに保たれる。た
ず、トリ−−オクチルメチルアンモニりムクロ
ラむド0.045モルを含む−113溶液を、
36mlminの流速で反応装眮内を埪環させ、又、
次亜塩玠酞ナトリりム2.0モル及び氎酞
化ナトリりム0.78モルを含む氎溶液を24
mlminの流速で静止型混合噚に䟛絊し、同時
にデカンタヌより排出する。次にHFPを2.10
min14.0ミリモルminの流速で静止型混
合噚の前の有機盞ラむンに䟛絊し、反応を開始
する。この堎合、管型反応噚の郚分での氎酞化
ナトリりムずHFPのモル比は1.3であり、次亜塩
玠酞ナトリりムずHFPのモル比は3.4である。有
機盞ず氎盞は静止型混合噚内で埮分散され、埮
分散された状態で管型反応噚内を通過するが、
その間に二盞間での反応が進行する。管型反応噚
を通過した反応液は、デカンタヌで有機盞ず
氎盞に分離されお、氎盞は反応装眮倖ぞ排出さ
れ、生成HFPOを含む有機盞はHFPO蒞溜塔ぞ
送られる。HFPO蒞溜塔からは、生成HFPOず
未反応HFPが溜出するが、反応開始より時間
埌から時間埌の間のHFPOの平均溜出速床は
1.59min9.6ミリモルminであり、HFP
の平均溜出速床は0.18min1.2ミリモル
minであ぀た。HFPO及びHFPが溜出された有
機盞は有機盞貯蔵槜に送られ、そこから再び静
止型混合噚ぞ埪環される。
Example 1 A static mixer (length 150 mm,
HFPO is synthesized from HFP using a continuous reaction device equipped with 1 (built-in twisted vane type mixing element), 2 tubular reactors (inner volume 160 ml), 3 decanters, HFPO distillation tower 4, and organic phase storage tank (inner volume 1000 ml) 5. did. The static mixer 1, tubular reactor 2 and decanter 3 are cooled to -10°C, and the pressure is maintained at 3 kg/cm 2 (gauge) with nitrogen gas. First, a F-113 solution containing tri-n-octylmethylammonium chloride (0.045 mol/) was
Circulate inside the reactor at a flow rate of 36 ml/min, and
An aqueous solution containing sodium hypochlorite (2.0 mol/) and sodium hydroxide (0.78 mol/) was added to the
It is supplied to the static mixer 1 at a flow rate of ml/min, and simultaneously discharged from the decanter 3. Then HFP 2.10
The reaction is started by feeding the organic phase line before the static mixer 1 at a flow rate of g/min (14.0 mmol/min). In this case, the molar ratio of sodium hydroxide to HFP in the part of the tubular reactor 2 is 1.3, and the molar ratio of sodium hypochlorite to HFP is 3.4. The organic phase and the aqueous phase are finely dispersed in the static mixer 1 and passed through the tubular reactor 2 in a finely dispersed state.
During this time, the reaction between the two phases progresses. The reaction liquid that has passed through the tubular reactor 2 is separated into an organic phase and an aqueous phase by a decanter 3, the aqueous phase is discharged from the reactor, and the organic phase containing the produced HFPO is sent to the HFPO distillation column 4. The produced HFPO and unreacted HFP are distilled from the HFPO distillation column 4, but the average distillation rate of HFPO from 1 hour to 2 hours after the start of the reaction is
1.59 g/min (9.6 mmol/min), HFP
The average distillation rate is 0.18 g/min (1.2 mmol/
min). The organic phase from which HFPO and HFP have been distilled is sent to the organic phase storage tank 5, and from there it is circulated again to the static mixer 1.

比范䟋  実斜䟋の管型リアクタでの反応の堎合ず同様
の反応液組成での反応を、内容積300mlの耐圧ガ
ラスオヌトクレヌブでのバツチ反応で行぀た。な
お、この堎合、反応噚の冷华は、倖郚を−10℃の
冷媒で冷华し、曎に、内郚からもステンレス補の
蛇管に−10℃の冷媒を埪環しお冷华した。
Comparative Example 1 A reaction with the same reaction solution composition as in the reaction in the tubular reactor of Example 1 was carried out in a batch reaction in a pressure-resistant glass autoclave with an internal volume of 300 ml. In this case, the reactor was cooled by cooling the outside with a -10°C refrigerant, and further cooling the reactor by circulating a -10°C refrigerant from the inside through a stainless steel corrugated tube.

反応液組成は次の、及びからなる。 The reaction solution composition consists of the following and.

トリ−−オクチルメチルアンモニりムクロ
ラむド0.045モルを含む−113溶液
72ml 次亜塩玠酞ナトリりム2.0モルおよ
び氎酞化ナトリりム0.78モルを含む氎
溶液48ml HFP4.2028ミリモル 反応液枩床が−10℃にな぀た埌、反応埌を撹拌
し、反応を開始したずころ、2.6分埌のHFP転化
率は玄99で、HFPO遞択率は49であ぀た。
F-113 solution containing tri-n-octylmethylammonium chloride (0.045 mol/):
72ml Aqueous solution containing sodium hypochlorite (2.0 mol/) and sodium hydroxide (0.78 mol/): 48 ml HFP: 4.20 g (28 mmol) After the reaction solution temperature reaches -10°C, stir the reaction mixture. When the reaction was started, the HFP conversion rate after 2.6 minutes was approximately 99%, and the HFPO selectivity was 49%.

比范䟋  実斜䟋の管型リアクタでの反応ず同様の反応
液組成で、ただ觊媒濃床を1/3ずしお、槜型リア
クタでの流通反応を行぀た。
Comparative Example 2 A flow reaction was carried out in a tank reactor with the same reaction solution composition as in the reaction in the tubular reactor of Example 1, except that the catalyst concentration was reduced to 1/3.

槜型リアクタずしおは、比范䟋で䜿甚したも
のず同じ内容積300mlの耐圧ガラス補のオヌトク
レヌブを䜿甚した。
As the tank-type reactor, an autoclave made of pressure-resistant glass and having an internal volume of 300 ml, which is the same as that used in Comparative Example 1, was used.

反応原料を連続的に槜型リアクタに䟛絊し、か
぀、槜型リアクタ内の反応液量が玄120mlずなる
ように連続的に反応液を抜き出す事により流通反
応を行぀た。
A flow reaction was carried out by continuously supplying the reaction raw material to the tank reactor and continuously drawing out the reaction liquid so that the amount of reaction liquid in the tank reactor was about 120 ml.

反応原料の䟛絊速床を倉化させる事により槜型
リアクタ内の平均滞留時間を倉化させお反応成瞟
の倉化を調べた。
Changes in the reaction results were investigated by changing the average residence time in the tank reactor by changing the feed rate of the reaction raw materials.

なお、反応成瞟の確認は、流出液のガスクロマ
トグラフむヌ分析により行぀た。
The reaction results were confirmed by gas chromatography analysis of the effluent.

その結果、滞留時間10分でのHFP転化率は54
であ぀たが、滞留時間を30分にしおもHFP転
化率は56であり、HFP転化率は殆ど増加しお
いなか぀た。
As a result, the HFP conversion rate at a residence time of 10 minutes was 54
%, but even when the residence time was increased to 30 minutes, the HFP conversion rate was 56%, and the HFP conversion rate hardly increased.

比范䟋  リアクタずしお耐圧ガラス補の倚段槜型リアク
タ槜数、総容積240mlを䜿甚する以倖、比
范䟋ず同様の反応方法で、流通反応を行぀た。
滞留時間を30分たで延長しおも、HFP転化率は
頭打ちずなり、85以䞊の転化率を埗るこずは出
来なか぀た。
Comparative Example 3 A flow reaction was carried out in the same manner as in Comparative Example 2, except that a multi-stage reactor made of pressure-resistant glass (8 tanks, total volume 240 ml) was used as the reactor.
Even when the residence time was extended to 30 minutes, the HFP conversion rate reached a ceiling and it was not possible to obtain a conversion rate of 85% or higher.

比范䟋  実斜䟋ず同様の操䜜を、次亜塩玠酞ナトリり
ム2.0モル及び氎酞化ナトリりム0.78
モルを含む氎溶液の代わりに、次亜塩玠酞
ナトリりム2.0モル及び氎酞化ナトリり
ム0.02モルを含む氎溶液PH12.4を
甚いお行぀た。この堎合、管型反応噚の郚分で
の氎酞化ナトリりムずHFPのモル比は0.03であ
り、次亜塩玠酞ナトリりムずHFPのモル比は3.4
である。この結果、蒞溜塔よりのHFPOの平均
溜出速床は0.96min5.81ミリモルminで
あり、HFPの平均溜出速床は0.67min4.48
ミリモルminであ぀た。
Comparative Example 4 The same operation as in Example 1 was carried out using sodium hypochlorite (2.0 mol/) and sodium hydroxide (0.78 mol/).
Instead of an aqueous solution containing sodium hypochlorite (2.0 mol/) and sodium hydroxide (0.02 mol/), an aqueous solution (PH=12.4) was used. In this case, the molar ratio of sodium hydroxide to HFP in the section of tubular reactor 2 is 0.03, and the molar ratio of sodium hypochlorite to HFP is 3.4.
It is. As a result, the average distillation rate of HFPO from distillation column 4 was 0.96 g/min (5.81 mmol/min), and the average distillation rate of HFP was 0.67 g/min (4.48 mmol/min).
mmol/min).

【図面の簡単な説明】[Brief explanation of the drawing]

第図は、本発明の方法によりHFPから
HFPOを連続的に補造する実斜装眮の䟋を瀺
す。
Figure 1 shows the results obtained from HFP by the method of the present invention.
An example of an implementation apparatus for continuously producing HFPO is shown.

Claims (1)

【特蚱請求の範囲】  次亜塩玠酞塩を酞化剀ずしお䜿甚し、觊媒の
存圚䞋で、氎盞ず有機盞の二盞系で反応を行い、
ヘキサフルオロプロピレンよりヘキサフルオロプ
ロピレンオキシドを補造するにあたり、ヘキサフ
ルオロプロピレンモルに察し、0.1グラム圓量
以䞊の無機塩基の存圚䞋で、か぀、管型リアクタ
ヌ䞭で流通反応を行うこずを特城ずするヘキサフ
ルオロプロピレンオキシドの連続的補造法。  次亜塩玠酞塩を酞化剀ずしお䜿甚し、觊媒の
存圚䞋で、氎盞ず有機盞の二盞系で反応を行い、
ヘキサフルオロプロピレンよりヘキサフルオロプ
ロピレンオキシドを補造するにあたり、ヘキサフ
ルオロプロピレンモルに察し、0.1グラム圓量
以䞊の無機塩基の存圚䞋で、か぀、管型リアクタ
ヌ䞭で流通反応を行い、ヘキサフルオロプロピレ
ンオキシドを合成した埌、有機盞ず氎盞を盞分離
し、盞分離した有機盞からヘキサフルオロプロピ
レンオキシドを単離し、觊媒を含む残存有機盞に
ヘキサフルオロプロピレンを添加しお二盞反応に
再䜿甚しお、連続的にヘキサフルオロプロピレン
オキシドを補造するこずを特城ずするヘキサフル
オロプロピレンオキシドの連続的補造法。
[Claims] 1. Using hypochlorite as an oxidizing agent, the reaction is carried out in a two-phase system of an aqueous phase and an organic phase in the presence of a catalyst,
In producing hexafluoropropylene oxide from hexafluoropropylene, a flow reaction is carried out in a tubular reactor in the presence of an inorganic base of 0.1 gram equivalent or more per mole of hexafluoropropylene. Continuous production method for fluoropropylene oxide. 2 Using hypochlorite as an oxidizing agent, the reaction is carried out in a two-phase system of an aqueous phase and an organic phase in the presence of a catalyst,
In producing hexafluoropropylene oxide from hexafluoropropylene, a flow reaction is carried out in a tubular reactor in the presence of an inorganic base of 0.1 gram equivalent or more per mole of hexafluoropropylene. After synthesis, the organic phase and the aqueous phase are separated, hexafluoropropylene oxide is isolated from the phase-separated organic phase, hexafluoropropylene is added to the remaining organic phase containing the catalyst, and it is reused in the two-phase reaction. , a method for continuously producing hexafluoropropylene oxide, which comprises continuously producing hexafluoropropylene oxide.
JP57015539A 1981-05-06 1982-02-04 Synthetic method of hexafluoropropylene oxide Granted JPS58134086A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP57015539A JPS58134086A (en) 1982-02-04 1982-02-04 Synthetic method of hexafluoropropylene oxide
EP82103810A EP0064293B1 (en) 1981-05-06 1982-05-04 Process for the production of hexafluoropropylene oxide
DE8282103810T DE3274643D1 (en) 1981-05-06 1982-05-04 Process for the production of hexafluoropropylene oxide
CA000402298A CA1220216A (en) 1981-05-06 1982-05-05 Process for the production of hexafluoropropylene oxide
US07/072,189 US4902810A (en) 1981-05-06 1987-07-06 Process for the production of hexafluoropropylene oxide
US07/346,667 US4925961A (en) 1981-05-06 1989-05-03 Process for the production of hexafluoropropylene oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57015539A JPS58134086A (en) 1982-02-04 1982-02-04 Synthetic method of hexafluoropropylene oxide

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1025053A Division JPH01246270A (en) 1989-02-03 1989-02-03 Synthesis of hexafluoropropylene oxide

Publications (2)

Publication Number Publication Date
JPS58134086A JPS58134086A (en) 1983-08-10
JPH0470314B2 true JPH0470314B2 (en) 1992-11-10

Family

ID=11891597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57015539A Granted JPS58134086A (en) 1981-05-06 1982-02-04 Synthetic method of hexafluoropropylene oxide

Country Status (1)

Country Link
JP (1) JPS58134086A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11566177B2 (en) 2017-02-28 2023-01-31 Central Glass Company, Limited Dry etching agent, dry etching method and method for producing semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58131976A (en) * 1982-01-29 1983-08-06 Daikin Ind Ltd Preparation of hexafluoro-1,2-epoxypropane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58131976A (en) * 1982-01-29 1983-08-06 Daikin Ind Ltd Preparation of hexafluoro-1,2-epoxypropane

Also Published As

Publication number Publication date
JPS58134086A (en) 1983-08-10

Similar Documents

Publication Publication Date Title
EP0064293B1 (en) Process for the production of hexafluoropropylene oxide
EP0100488B1 (en) Fluoroepoxides and a process for production thereof
US5352785A (en) Continuous process for purifying perfluorochemical compositions
JPH0470314B2 (en)
EP0084158A1 (en) Process for producing 4-hydroxy-2,4,6,-trimethylcyclohexa-2,5-diene-1-one
US4053525A (en) Process for production of glycerine
US5276189A (en) Process for the treatment of quaternary onium salts and its application to the preparation of hexafluoropropylene oxide
JPH0432068B2 (en)
EP0414569A2 (en) Three-liquid-phase epoxidation of perfluoroolefins
JP3564979B2 (en) Method for producing perfluoroalkylcarboxylic acid
JPS6411021B2 (en)
EP0366084B1 (en) Process for the treatment of quaternary onium salts and its application to the preparation of hexafluoropropylene oxide
EP0685459A1 (en) Process for producing diazomethane derivative
JP4147363B2 (en) Process for producing 1,2-epoxy-5,9-cyclododecadiene
KR100340212B1 (en) Continuous process for preparing perfluoroethyliodide using solid catalyst
JPH0328429B2 (en)
JP2805358B2 (en) Method for producing hexafluoropropylene oxide
JPH0330593B2 (en)
WO2021037677A1 (en) Process for producing 4,4'-dichlorodiphenyl sulfone
Hisatsune et al. Low-temperature infrared studies of the styrene-ozone reaction. Formation of an unusual ozonide
JPH0113709B2 (en)
JPH0329074B2 (en)
JPH03154683A (en) Treatment of waste water
US2067392A (en) Treatment of unsaturated monohalides
JPH0827137A (en) Production of cyclohexene oxide