JPH0470128A - Power feeding path switching circuit for underwater branching device and feeding method for submarine cable communication system - Google Patents

Power feeding path switching circuit for underwater branching device and feeding method for submarine cable communication system

Info

Publication number
JPH0470128A
JPH0470128A JP2182151A JP18215190A JPH0470128A JP H0470128 A JPH0470128 A JP H0470128A JP 2182151 A JP2182151 A JP 2182151A JP 18215190 A JP18215190 A JP 18215190A JP H0470128 A JPH0470128 A JP H0470128A
Authority
JP
Japan
Prior art keywords
power supply
path
submarine cable
relay
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2182151A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Inoue
義之 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2182151A priority Critical patent/JPH0470128A/en
Priority to GB9114330A priority patent/GB2248373B/en
Priority to GB9416830A priority patent/GB2280341B/en
Priority to US07/728,190 priority patent/US5214312A/en
Publication of JPH0470128A publication Critical patent/JPH0470128A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To switch feeding paths while forming both end feeding paths as much as possible when a fault is generated in the feeding path by providing specified first - third relays. CONSTITUTION:The driving part 107L of a first relay 107 is arranged at a first electric path 101, and a second connecting terminal 105 is grounded by a switching part 107L while being disconnected from a second electric path 102. The driving part 108L of the second relay 108 is arranged at a second electric path 102, and a first terminal 104 is grounded by a switching part 108L while being disconnected from the first electric path 101. The driving part 109L of the third relay 109 is arranged at a ground electric path 110 between the switching part 107L of the first relay 107 in the second electric path 102 and the ground, and the self-holding circuit 110 of the ground electric path 110 is formed by a first switching part 109C. Thus, when the fault is generated in the feeding path, the feeding path can be reset while forming both end feeding paths between cables except for the defective cable.

Description

【発明の詳細な説明】 [概要] 海底ケーブルを海中で分岐して3局以上の陸揚局間で通
信を行う海底ケーブル通信システムにおける海中分岐装
置の給電路切替回路、およびこの給電路切替回路を用い
た給電方法に関し、給電システムとして信頼性の高い両
端給電を採用し、給電路の障害時には可能な限り両端給
電路を形成できるよう給電路の切替えを行えるようにす
ることを目的とし、 第1.第2、第3の電気路をY字型に結線して各先端に
海底ケーブルの給電路に接続するための第1.第2.第
3の接続端子を夫々配した海中分岐装置の給電路切替回
路において、第1のリレーであってその駆動部が第1の
電気路に配置され、その切替部によって第2の接続端子
を第2の電気路から切り離して接地するものと、第2の
リレーであってその駆動部が第2の電気路に配置され。
[Detailed Description of the Invention] [Summary] A power supply path switching circuit for an underwater branching device in a submarine cable communication system that branches a submarine cable underwater and communicates between three or more landing stations, and this power supply path switching circuit. Regarding the power supply method using 1. The first and third electric paths are connected in a Y-shape and each tip is connected to the power supply path of the submarine cable. Second. In a power supply path switching circuit for an underwater branching device in which third connection terminals are respectively arranged, the first relay has a driving section disposed in the first electrical path, and the switching section switches the second connection terminal to the second connection terminal. a second relay that is separated from the second electrical path and grounded, and a second relay whose driving portion is disposed in the second electrical path.

その切替部によって第1の接続端子を第1の電気路から
切り離して接地するものと、第3のリレーであってその
駆動部が第2の電気路中の第1のリレーの切替部と接地
間の接地電気路に配置され、そのスイッチ部によって接
地電気路の自己保持回路を形成するものとを備えたもの
である。
A third relay whose switching portion disconnects the first connection terminal from the first electrical path and grounds it; and a third relay whose driving portion connects the switching portion of the first relay in the second electrical path to grounding. The switch section is disposed in a grounding electrical path between the two and forming a self-holding circuit for the grounding electrical path.

[産業上の利用分野J 本発明は海底ケーブルを海中で分岐して3局以上の陸揚
局間で通信を行う海底ケーブル通信システムにおける海
中分岐装置の給電路切替回路、およびこの給電路切替回
路を用いた給電方法に間する。
[Industrial Application Field J] The present invention relates to a power supply line switching circuit for an underwater branching device in a submarine cable communication system in which a submarine cable is branched underwater and communication is performed between three or more landing stations, and this power supply line switching circuit. Switch to a power supply method using

海底ケーブル通信システム、特に光海底ケーブル通信シ
ステム等では、光海底ケーブルに間隔を置いて光中継器
が取り付けられており、この光中継器は光海底ケーブル
中の給電路を介して直流定電流給電される。この給電方
法としては、1局の陸揚局からのみ給電を行う片端給電
と2局の陸揚局から給電を行う両端給電とがあるが、給
電システムとしては、より信頼性の高い両端給電を用い
つつ陸揚局の増設にも対処できることが必要であり、ま
た給電路の障害時には可能な限り両端給電路を残しつつ
給電路の切替えを行えることが必要とされている。
In submarine cable communication systems, especially optical submarine cable communication systems, optical repeaters are installed at intervals on the optical submarine cable, and these optical repeaters supply DC constant current power through the power supply line in the optical submarine cable. be done. There are two types of power feeding methods: single-ended feeding, which feeds power from only one landing station, and double-ended feeding, which feeds power from two landing stations.However, as a power feeding system, double-ended feeding is more reliable. It is necessary to be able to cope with the addition of landing stations while using the system, and it is also necessary to be able to switch the power supply line while leaving the power supply line at both ends as much as possible in the event of a failure of the power supply line.

[従来の技術] 第13図には片端給電による光海底ケーブル通信システ
ムの例が示される。図示のように、陸揚局Aと陸揚局8
間を光海底ケーブルOMCにより接続しており、この光
海底ケーブルOMCには光中継器REPが所定間隔で配
置されると共に海中分岐装置BUが取り付けられており
、この海中分岐装置BUは光海底ケーブルOMCを分岐
して3局以上の陸揚局との間での通信を可能にしている
[Prior Art] FIG. 13 shows an example of an optical submarine cable communication system with single-end power supply. As shown, landing station A and landing station 8
The optical submarine cable OMC is connected to the optical submarine cable OMC, on which optical repeaters REP are arranged at predetermined intervals and an underwater branching device BU is attached. The OMC is branched to enable communication with three or more landing stations.

この第13図のシステムでは、各陸揚局A、B、Cから
の光海底ケーブルOMCの給電路は海中分岐装置BUに
おいて海中アースされるようになっている。これにより
陸揚局Aの給電装置と海中分岐装置BU間の給電路、お
よび陸揚局Bの給電装置と海中分岐装置BU間の給電路
および陸揚局Cの給電装置と海中分岐装置BU間の給電
路をそれぞれ独立に形成しており、各給電路は陸揚局へ
側からのみ、または陸揚局B側からのみまたは陸揚局C
側からのみ給電が行われる片端給電路となっている。
In the system shown in FIG. 13, the power supply lines of the optical submarine cables OMC from each landing station A, B, and C are connected to underwater ground at an underwater branching device BU. This creates a power supply line between the power supply device of landing station A and the underwater branching device BU, a power supply path between the power supply device of landing station B and the underwater branching device BU, and a power supply path between the power supply device of landing station C and the underwater branching device BU. The power supply paths are formed independently, and each power supply path can be provided only from the landing station side, only from the landing station B side, or only from the landing station C side.
It is a single-ended power supply path where power is supplied only from the side.

この片端給電方式では、陸揚局の給電装置が故障した場
合、その故障した給電装置に代わって他の陸揚局の給電
装置から給電を行うは不可能なため、かかる給電装置の
故障対策として、各陸揚局A、B、Cに現用と予備の給
電装置をそれぞれ設置しておくことが必要となる。
With this single-ended power supply method, if the power supply device of a landing station breaks down, it is impossible to supply power from the power supply device of another landing station in place of the failed power supply device. , it is necessary to install a working power supply device and a backup power supply device at each landing station A, B, and C.

第14図には両端給電による光海底ケーブル通信システ
ムの例が示される。図示のように、陸揚局Aと陸揚局8
間を光海底ケーブルOMCにより接続し、この光海底ケ
ーブルOMCに光中継器REPと海中分岐装置BUを取
り付ける。この海中分岐装置BUは片端給電の場合と相
違して光海底ケーブルOMCの給電路を海中アースする
ことなく接続して陸揚局Aと8間の給電路を形成するよ
うにしている。
FIG. 14 shows an example of an optical submarine cable communication system with power feeding at both ends. As shown, landing station A and landing station 8
An optical submarine cable OMC is used to connect between the two, and an optical repeater REP and an underwater branch unit BU are attached to this optical submarine cable OMC. Unlike the case of single-end power feeding, this underwater branching device BU connects the power feeding path of the optical submarine cable OMC without being grounded underwater to form a power feeding path between landing stations A and 8.

陸揚局AとBの給電装置は一方が正極性である時には他
方が負極性の電流を給電するように構成されており、こ
れにより光海底ケーブル○MCの給電路には陸揚局Aと
Bの双方から給電が行われる。この両端給電方式では、
陸揚局AとBのうちの一方の給電装置に障害が発生して
給電ができなくなっても、残る他方側の陸揚局の給電装
置で全負荷の給電を行うことができ、よって各陸揚局に
予備の給電装置は不要となる。
The power feeding devices of landing stations A and B are configured so that when one has positive polarity, the other feeds negative polarity current, and as a result, landing station A and landing station A are connected to the power feeding path of optical submarine cable○MC. Power is supplied from both sides of B. In this double-ended feeding method,
Even if a failure occurs in the power supply equipment of one of the landing stations A and B and power cannot be supplied, the remaining power supply equipment of the other landing station can supply power to the full load, so each landing station There is no need for a backup power supply device at the station.

このように片端給電方式と両端給電方式とでは、信頼度
、経済性および使用電圧などの面からみて両端給電方式
が望ましい。
As described above, between the single-end power feeding method and the both-end power feeding method, the both-end power feeding method is preferable from the viewpoints of reliability, economy, working voltage, and the like.

ところで、光海底ケーブル通信システムでは、従来は3
局の陸揚局間で伝送路を構成する場合が多かったが、近
年は海中分岐装置を複数使用して更に多くの陸揚局間を
結ぶ場合が増えている。このような光海底ケーブル通信
システムの給電方式としては、例えば特開平1−276
937号公報記載の光海底給電方式などが提案されてい
る。
By the way, in the optical submarine cable communication system, 3
In many cases, a transmission line was constructed between the landing stations of a station, but in recent years, it has become increasingly common to use multiple underwater branching devices to connect even more landing stations. As a power supply method for such an optical submarine cable communication system, for example, Japanese Patent Application Laid-Open No. 1-276
An optical submarine power supply system described in Publication No. 937 has been proposed.

[発明が解決しようとする課題] 従来の一般的な給電方式は海中分岐装置において全ての
給電路が接地されて片端給電となる方式であるので、給
電システムの信頼性が低くなるという問題点がある。
[Problems to be Solved by the Invention] In the conventional general power supply system, all the power supply paths in the underwater branching device are grounded and power is supplied at one end, so there is a problem that the reliability of the power supply system becomes low. be.

本発明はかかる問題点に鑑みてなされたものであり、そ
の目的とするところは、給電システムとして信頼性の高
い両端給電を採用し、給電路の障害時には可能な限り両
端給電路を形成しつつ給電路の切替えを行える海中分岐
装置の給電路切替回路とその給電路切替回路を用いた給
電方法を提供することにある。
The present invention has been made in view of these problems, and its purpose is to adopt a highly reliable double-end power supply as a power supply system, and to form a double-end power supply route as much as possible in the event of a failure in the power supply route. An object of the present invention is to provide a power supply path switching circuit for an underwater branching device that can switch the power supply path, and a power supply method using the power supply path switching circuit.

[課題を解決するための手段] 第1図は本発明に係る原理説明図である。[Means to solve the problem] FIG. 1 is a diagram explaining the principle of the present invention.

本発明に係る海中分岐装置の給電路切替回路は、第1、
第2、第3の電気路101.102.103をY字型に
結線して各先端に海底ケーブルの給電路に接続するため
の第1、第2、第3の接続端子104.105.106
を夫々配した海中分岐装置の給電路切替回路において、
第1のリレー107であってその駆動部107Lが第1
の電気路101に配置され、その切替部107Cによっ
て第2の接続端子105を第2の電気路102から切り
離して接地するものと、第2のリレ108であってその
駆動部108Lが第2の電気路102に配置され、その
切替部108Gによって第1の接続端子104を第1の
電気路101がら切り離して接地するものと、第3のリ
レー109であってその駆動部109Lが第2の電気路
IO2中の第1のリレー107の切替部107Lと接地
間の接地電気路110に配置され、その第1のスイッチ
部109Cによって接地電気路110の自己保持回路を
形成するものとを備えたものである。
The power supply line switching circuit for an underwater branching device according to the present invention includes a first,
First, second, and third connection terminals 104.105.106 for connecting the second and third electric paths 101.102.103 in a Y-shape and connecting them to the power supply path of the submarine cable at each tip.
In the power supply line switching circuit of the underwater branching device, each of which is equipped with
The first relay 107 has a driving section 107L that is the first relay 107.
The second relay 108 is arranged in the electric path 101 and the switching part 107C disconnects the second connection terminal 105 from the second electric path 102 and grounds it. A third relay 109, whose drive unit 109L connects the second electrical The first switch section 109C is arranged in the ground electrical path 110 between the switching section 107L of the first relay 107 in the path IO2 and the ground, and the first switch section 109C forms a self-holding circuit for the ground electrical path 110. It is.

また本発明に係る海中分岐装置の給電路切替回路は、他
の形態として、上述の形態の給電路切替回路において、
第3のリレー109が、第1のスイッチ部109Cと同
時に、第2の電気路102をリレー108の駆動部10
8Cとリレー107の切替部107Cの間で開放する第
2のスイッチ部109CCを更に備えたものである。
In addition, the power supply line switching circuit of the underwater branching device according to the present invention has, as another form, the power supply line switching circuit of the above-mentioned form,
The third relay 109 connects the second electrical path 102 to the drive unit 10 of the relay 108 at the same time as the first switch unit 109C.
8C and the switching section 107C of the relay 107, the second switch section 109CC is opened.

また本発明に係る海底ケーブル通信システムの給電方法
は、海底ケーブルを海中分岐装置で分岐して3以上の陸
揚局を接続する海底ケーブル通信システムにおける給電
方法において、給電路切替回路として上述の各形態の給
電路切替回路が用いられ、通常時には給電路切替回路の
第1と第3の接続端子104.106にそれぞれ接続さ
れる陸揚局間で両端給電を行った後に、第2の接続端子
105に接続される陸揚局から片端給電を行うことで給
電路を形成し、第1の接続端子104に接続される陸揚
局からの給電路に障害が発生した場合には第2と第3の
接続端子105.106に接続される陸揚局間で両端給
電を行うことで第1の接続端子104に接続された障害
給電路を切り離して給電路を形成するようにしたもので
ある。
Further, the power supply method for a submarine cable communication system according to the present invention is a power supply method for a submarine cable communication system in which a submarine cable is branched by an underwater branching device to connect three or more landing stations, and the above-mentioned power supply path switching circuit is used as a power supply path switching circuit. A feed line switching circuit of the form A power supply path is formed by supplying power from the landing station connected to the first connection terminal 105 at one end, and if a failure occurs in the power supply path from the landing station connected to the first connection terminal 104, the second and second connection terminals By performing power feeding at both ends between the landing stations connected to the third connection terminals 105 and 106, a faulty power feed path connected to the first connection terminal 104 is separated to form a power feed path.

また本発明に係る海底ケーブル通信システムの給電方法
は、海底ケーブルを2以上の海中分岐装置で分岐して4
以上の陸揚局を接続する海底ケーブル通信システムにお
ける給電方法において、海中分岐装置の給電路切替回路
として上述の各給電路切替回路が用いられ、給電路切替
回路の第1と第3の接続端子104,106間の電気路
101.103を海底ケーブルを介して複数の海中分岐
装置についてカスケードに接続して主給電路を形成し、
この主給電路の両端に接続される二つの陸揚局間で両端
給電を行った後に、各給電路切替回路の第2の接続端子
105に接続された陸揚局から片端給電を行うことで給
電路を形成するものである。
In addition, the power supply method for the submarine cable communication system according to the present invention is such that the submarine cable is branched by two or more underwater branching devices.
In the power supply method in the submarine cable communication system that connects the above landing stations, each of the above-mentioned power supply route switching circuits is used as the power supply route switching circuit of the underwater branching device, and the first and third connection terminals of the power supply route switching circuit are used. connecting the electrical paths 101 and 103 between 104 and 106 in cascade for a plurality of underwater branching devices via submarine cables to form a main power feed path;
By performing both-end power feeding between the two landing stations connected to both ends of this main power feeding path, and then performing one-end power feeding from the landing station connected to the second connection terminal 105 of each power feeding path switching circuit. It forms a power supply path.

また本発明に係る海底ケーブル通信システムの給電方法
は、上述の給電方法において、複数の給電路切替回路の
第1のリレーはそれぞれ動作電流が異なるように設定さ
れ、主給電路に流す給電電流を変えることで、各給電路
切替回路の第1のリレー107を順次に駆動するように
したものである。
Further, in the power feeding method for a submarine cable communication system according to the present invention, in the above-described power feeding method, the first relays of the plurality of power feeding path switching circuits are set to have different operating currents, and the feeding current flowing through the main power feeding path is controlled. By changing this, the first relays 107 of each power supply path switching circuit are sequentially driven.

また本発明に係る海底ケーブル通信システムの給電方法
は、上述の給電方法において、給電路切替回路として前
述の本発明の各給電路切替回路とそれ以外の回路構成の
給電路切替回路とを用いて給電路を形成するものである
Further, the power feeding method for a submarine cable communication system according to the present invention uses, as the power feeding path switching circuit, each of the power feeding path switching circuits of the above-described present invention and a power feeding path switching circuit having a circuit configuration other than that of the power feeding path switching circuit. It forms a power supply path.

[作用] 本発明に係る海中分岐装置の給電路切替回路を用いての
基本的な給電方法としては、通常時に、給電路切替回路
の第1と第3の接続端子104゜106にそれぞれ接続
される陸揚局間で両端給電を行い、それにより第1のリ
レー107を駆動してその切替!!107Cにより第2
の接続端子105を接地し、その後に、第2の接続端子
105に接続される陸揚局から片端給電を行うことでリ
レー109を駆動してそのスイッチ部109Cで自己保
持を行いつつ給電路を形成する。そして第1の接続端子
104に接続される陸揚局からの給電路に障害が発生し
た場合には、第2と第3の接続端子105.106に接
続される陸揚局間で両端給電を行うことで、リレー10
8を駆動してその切替部108Cにより第1の接続端子
104に接続された障害給電路を切り離して給電路を形
成する。
[Function] As a basic power supply method using the power supply line switching circuit of the underwater branching device according to the present invention, in normal times, the power supply line switching circuit is connected to the first and third connection terminals 104 and 106, respectively. Power is supplied at both ends between the landing stations, which drives the first relay 107 and switches it! ! 2nd by 107C
By grounding the connection terminal 105 of the second connection terminal 105 and then supplying power from one end of the landing station connected to the second connection terminal 105, the relay 109 is driven and the power supply path is maintained while self-holding is performed by the switch section 109C. Form. If a failure occurs in the power supply path from the landing station connected to the first connection terminal 104, the power supply at both ends is switched between the landing stations connected to the second and third connection terminals 105 and 106. Relay 10 by doing
8 and the switching unit 108C disconnects the faulty power supply path connected to the first connection terminal 104 to form a power supply path.

海底ケーブルを2以上の海中分岐装置で分岐して4以上
の陸揚局を接続する海底ケーブル伝送システムに本発明
に係る給電路切替回路を用いる場合には、給電路切替回
路の第1と第3の接続端子104.106間の電気路1
01.103を海底ケーブルを介して複数の海中分岐装
置についてカスケードに接続して主給電路を形成し、こ
の主給電路の両端に接続される二つの陸揚局間で両端給
電を行って各給電路切替回路のリレー107を駆動し、
その切替接点107Cにより各給電路切替回路の接続端
子105を接地する。その後に、各給電路切替回路の第
2の接続端子105に接続された陸揚局から片端給電を
行うことで給電路を形成する。
When using the power feed line switching circuit according to the present invention in a submarine cable transmission system in which a submarine cable is branched by two or more underwater branching devices to connect four or more landing stations, Electrical path 1 between connection terminals 104 and 106 of 3
01.103 are connected in cascade to multiple underwater branching devices via submarine cables to form a main power feed path, and both ends of the power feed are provided between two landing stations connected to both ends of this main power feed path. Drives the relay 107 of the power supply path switching circuit,
The connection terminal 105 of each power supply path switching circuit is grounded by the switching contact 107C. After that, a power feeding path is formed by performing one-end power feeding from a landing station connected to the second connection terminal 105 of each power feeding path switching circuit.

上述の給電方法において、各海中分岐装置の給電路切替
回路の第1のリレー107はそれぞれ動作電流が異なる
ように設定し、主給電路に流す給電電流を変えることで
、各給電路切替回路の第1のリレー107を順次に駆動
するようにし、それによりリレーのホットスイッチイン
クを防止できるようにする。
In the above-mentioned power supply method, the first relays 107 of the power supply path switching circuit of each underwater branch device are set to have different operating currents, and by changing the power supply current flowing through the main power supply path, the power supply path switching circuit of each power supply path switching circuit can be adjusted. The first relays 107 are driven sequentially, thereby preventing hot switching of the relays.

海底ケーブル通信システムに用いる給電路切替回路とし
ては、本発明に係る給電路切替回路とそれ以外の回路構
成の給電路切替回路とを組み合わせて用いることもでき
る。
As a power supply line switching circuit used in a submarine cable communication system, a combination of the power supply line switching circuit according to the present invention and a power supply line switching circuit having a circuit configuration other than that can be used.

[実施例] 以下、図面を参照して本発明の詳細な説明する。[Example] Hereinafter, the present invention will be described in detail with reference to the drawings.

本発明の一実施例としての海中分岐装置の給電路切替回
路が第2図に示される。この実施例は光海底ケーブル通
信システムに適用した場合のものであり、図中には光フ
アイバ回路を除いた給電路切替回路だけが示されている
。第2図中、BUは海中分岐装置であり、3つの接続端
子Tl、T2、T3を有し、各接続端子T1、T2、T
3はそれぞれ光海底ケーブルの給電路を介して陸揚局A
、B、Cの給電装置に接続される。ここで陸揚局AとB
の給電装置は正極性〜、陸揚局Cの給電装置は負極性の
給電電流をそれぞれ光海底ケーブルの給電路に供給する
ように構成されている。
FIG. 2 shows a power supply line switching circuit for an underwater branching device as an embodiment of the present invention. This embodiment is applied to an optical submarine cable communication system, and only the power supply switching circuit excluding the optical fiber circuit is shown in the figure. In Fig. 2, BU is an underwater branching device, and has three connection terminals Tl, T2, and T3.
3 are respectively connected to landing station A via the optical submarine cable power supply line.
, B, and C. Here landing stations A and B
The power supply device of C is configured to supply power supply current of positive polarity to the power supply device of landing station C, and the power supply device of landing station C is configured to supply power supply current of negative polarity to the power supply path of the optical submarine cable.

海中分岐装置BU中の給電回路としては、電気路I、■
、■がY字型に結線されており、各電気路I、■、■の
先端には前述の接続端子T1.T2、T3がそれぞれ接
続される。電気路IにはリレーRLIの駆動コイル(以
下、リレーコイルRLlと記する)が挿入され、電気路
■にはリレーRL3の駆動コイル(以下、リレーコイル
RL3と記する)が挿入される。リレーRLIの切替接
点rβlは電気路■内の接続端子T2とリレーコイルR
L3の間に置かれ、この切替接点rI21のブレーク接
点側が接続端子T2とリレーコイルRL3間に、メーク
接点側が端子T2と接地間に挿入される。同様に、リレ
ーRL3の切替接点r123は電気路!内の接続端子T
IとリレーコイルRLlの間に挿入され、この切替接点
rI23のブレーク接点側が接続端子TIとリレーコイ
ルRL1間に、メータ接点側が端子Tlと接地間に挿入
される。
The power supply circuit in the underwater branch unit BU is electric path I, ■
, ■ are connected in a Y-shape, and the above-mentioned connection terminals T1. T2 and T3 are connected respectively. A drive coil for the relay RLI (hereinafter referred to as relay coil RLl) is inserted into the electric path I, and a drive coil for the relay RL3 (hereinafter referred to as relay coil RL3) is inserted into the electric path (2). The switching contact rβl of the relay RLI connects the connection terminal T2 in the electric path ■ and the relay coil R.
The break contact side of this switching contact rI21 is inserted between the connection terminal T2 and relay coil RL3, and the make contact side is inserted between the terminal T2 and ground. Similarly, switching contact r123 of relay RL3 is an electric path! Connection terminal T inside
The break contact side of this switching contact rI23 is inserted between the connection terminal TI and the relay coil RL1, and the meter contact side is inserted between the terminal Tl and ground.

切替接点rρ1と接地間の経路にはリレーRL2の駆動
コイルC以下、リレーコイルRL2と記する)が挿入さ
れており、このリレーRL2のメーク接点rQ2−2は
自己保持回路を形成する接点として切替接点rJ21の
メータ接点側と並列に挿入される。またブレーク接点r
β2−1は切替接点rJ21とリレーコイルRLB間に
挿入される。
A drive coil C of relay RL2 (hereinafter referred to as relay coil RL2) is inserted in the path between switching contact rρ1 and the ground, and make contact rQ2-2 of this relay RL2 is switched as a contact forming a self-holding circuit. It is inserted in parallel with the meter contact side of contact rJ21. Also break contact r
β2-1 is inserted between switching contact rJ21 and relay coil RLB.

各リレーRLI〜RL3は図中に矢印で示された方向に
動作電流(感動電流)が流れた時のみ駆動されるように
なっている。またリレーRLI、RL2、RL3として
−は真空リレーなどの高電圧用リレーが用いられている
Each of the relays RLI to RL3 is driven only when an operating current (moving current) flows in the direction indicated by the arrow in the figure. Furthermore, high voltage relays such as vacuum relays are used as relays RLI, RL2, and RL3.

以下、この実施例の給電路切替回路を用いて各陸揚局A
、B、Cからの光海底ケーブルに給電を行う方法を第3
図〜第6図を参照しつつ説明する。
Hereinafter, each landing station A will be
, B, and C to the optical submarine cable.
This will be explained with reference to FIGS.

まず第3図に示されるように、陸揚局Cと陸揚局A間で
給電を行い、図中の矢印方向に給電電流を流し、それに
よりリレーRLIを励磁して動作させる。したがって陸
揚局Cと陸揚局A間では両端給電を行う給電路が形成さ
れることになる。またリレーRLIの動作によりその切
替接点rβ1は接続端子T2 (すなわち陸揚局Bから
の光海底ケーブルの給電路)を接地するように切り替わ
る。
First, as shown in FIG. 3, power is supplied between landing station C and landing station A, and a power supply current is passed in the direction of the arrow in the figure, thereby exciting and operating relay RLI. Therefore, a power supply path is formed between the landing station C and the landing station A in which power is supplied at both ends. Further, by the operation of relay RLI, its switching contact rβ1 is switched to ground connection terminal T2 (that is, the power supply path of the optical submarine cable from landing station B).

次に第4図に示されるように陸揚局Bから給電をかけて
陸揚局B側の光海底ケーブルに給電を行う。これにより
リレーRL2が励磁されて動作する。するとメータ接点
rI22−2が閉じられて接地経路の自己保持回路が形
成されると共に、ブレーク接点rj22−2が開かれて
リレーコイルRL3を切替接点rβlから切り離す。
Next, as shown in FIG. 4, power is supplied from landing station B to the optical submarine cable on the landing station B side. As a result, relay RL2 is excited and operates. Then, the meter contact rI22-2 is closed to form a self-holding circuit of the ground path, and the break contact rj22-2 is opened to disconnect the relay coil RL3 from the switching contact rβl.

このリレーRL2は運用時に陸揚局Aまたは陸揚局C側
の光海底ケーブルに障害が発生した場合に給電路が切り
替わるのを防止する役割をするものであり、メータ接点
r!22−2が自己保持用の接点となる。ブレーク接点
rβ2−1は切替接点rI21が接地側からリレーコイ
ルRLa側に戻った時に接点に生じるアーク放電で切替
接点rβ■が破損されることを防ぐための接点であり、
リレーRL2による自己保持中は切替接点rβ1はブレ
ーク接点r92−1によりリレーコイルRLl側から切
り離されるようになっている。かがる機能のリレーは例
えば特開昭63−189025号公報などにも記載され
ている。
This relay RL2 serves to prevent the power supply path from being switched in the event that a failure occurs in the optical submarine cable on the landing station A or landing station C side during operation, and the meter contact r! 22-2 serves as a self-holding contact. The break contact rβ2-1 is a contact for preventing the switching contact rβ■ from being damaged by arc discharge that occurs at the contact when the switching contact rI21 returns from the ground side to the relay coil RLa side.
During self-holding by relay RL2, switching contact rβ1 is disconnected from relay coil RLl side by break contact r92-1. A relay with a bending function is also described in, for example, Japanese Patent Laid-Open No. 189025/1983.

いよ第5図に示されるように陸揚局A側の光海底ケーブ
ルに障害が発生したものとする。この場合、リレーRL
Iが励磁されなくなるので、切替接点rfflは接地側
からリレーコイルRLB側に戻るが、陸揚局Bからの給
電路はリレーRL2の自己保持機能により維持される。
Assume now that a failure has occurred in the optical submarine cable on the landing station A side, as shown in FIG. In this case, relay RL
Since I is no longer excited, the switching contact rffl returns from the ground side to the relay coil RLB side, but the power supply path from landing station B is maintained by the self-holding function of relay RL2.

ここで、残りの陸揚局B、C間で両端給電を行うため、
全ての陸揚局で給電を一旦停止し、その後に第6図に示
されるように陸揚局Cと陸揚局8間で給電を開始する。
Here, in order to perform both-end power supply between the remaining landing stations B and C,
Power supply is temporarily stopped at all landing stations, and then power supply is started between landing station C and landing station 8 as shown in FIG.

これによりリレーRL3が励磁され、その切替接点rf
f3が接地側に切り替わり、給電路から陸揚局A側の光
海底ケーブルを切り離す。これにより陸揚局Bと陸揚局
C間で両端給電による給電路が設定される。
This energizes relay RL3, and its switching contact rf
f3 switches to the ground side and disconnects the optical submarine cable on the landing station A side from the power supply line. As a result, a power feeding path is established between landing station B and landing station C with power feeding at both ends.

なおこのシステムでは陸揚局C側の光海底ケーブルに障
害が発生した場合は、何れの陸揚局の給電も不可能とな
り、システムダウンとなる。従って、他の箇所の障害の
影響を受けない経路は陸揚局Aと陸揚局C間であるとい
えるので、システムの中で最も重要と考えられる陸揚局
間を陸揚局A、Cとし、この間で両端給電を行うように
する。
In this system, if a failure occurs in the optical submarine cable on the landing station C side, it becomes impossible to supply power to any of the landing stations, and the system goes down. Therefore, it can be said that the route that is not affected by failures in other places is between landing stations A and C. During this period, power is supplied to both ends.

第7図には海中分岐装置BUを2台用いて4局の陸揚局
A、B、C,D間を接続する光海底ケーブル通信システ
ムに上述の給電路切替回路を適用した実施例が示される
。ここでBUIとBO2は海中分岐装置であり、その給
電路切替回路は第2図の実施例のものと同じ構成である
FIG. 7 shows an example in which the above-mentioned power supply line switching circuit is applied to an optical submarine cable communication system that uses two underwater branching devices BU to connect four landing stations A, B, C, and D. It will be done. Here, BUI and BO2 are underwater branching devices, and their power supply path switching circuits have the same configuration as that of the embodiment shown in FIG.

この通信システムでは、陸揚局Aと陸揚局8間に主とな
る光海底ケーブルを設定してその間で両端給電を行い、
海中分岐装置BUIとBO2でこの主となる光海底ケー
ブルを途中の2箇所から分岐してそれぞれ陸揚局C1陸
揚局りへの光海底ケーブルを接続するようにしており、
陸揚局C1Dは各々片端給電を行うようになっている。
In this communication system, a main optical submarine cable is set up between landing station A and landing station 8, and power is supplied at both ends between them.
Undersea branching devices BUI and BO2 are used to branch this main optical submarine cable from two points along the way and connect the optical submarine cables to landing station C1, respectively.
Each landing station C1D is configured to supply power at one end.

通常の運用方法は、第8図に示されるように、まず陸揚
局Aと陸揚局8間で給電を行い、主となる光海底ケーブ
ルに給電を行う。これにより海中分岐装置BUIのリレ
ーRLI■と海中分岐装置BU2のリレーRLI■とが
励磁され、それぞれ切替接点rI21■とrβ1■が接
地側に切り替えられることで、陸揚局Cからの給電路と
陸揚局りからの給電路をそれぞれ接地する。次に、第9
図に示されるように、陸揚局Cと陸揚局りがそれぞれ給
電を開始し、各分岐光海底ケーブルに給電をかける。こ
れによりリレーRL2■とRL2■がそれぞれ励磁され
て給電路の自己保持がなされる。
In a normal operation method, as shown in FIG. 8, power is first supplied between landing station A and landing station 8, and then to the main optical submarine cable. As a result, the relay RLI■ of the underwater branching device BUI and the relay RLI■ of the underwater branching device BU2 are energized, and the respective switching contacts rI21■ and rβ1■ are switched to the ground side, thereby connecting the power supply path from the landing station C. Ground each power supply line from the landing station. Next, the ninth
As shown in the figure, the landing station C and the landing station each start supplying power, and supply power to each branch optical submarine cable. As a result, relays RL2■ and RL2■ are each excited, and the power supply path is self-maintained.

ここで、海中分岐装置BLII、BO2の給電路切替回
路のリレーRLI■とRLI■はそれぞれ異なる動作電
流(感動電流)で動作するように構成されている。これ
はリレーのホットスイッチングを防止するためである。
Here, the relays RLI■ and RLI■ of the power supply path switching circuits of the underwater branching devices BLII and BO2 are configured to operate with different operating currents (sensing currents), respectively. This is to prevent hot switching of the relay.

すなわち、海中分岐装置BUのリレーを駆動する際、そ
の接点が接地側に切り替えられる時、その接点のある給
電路の対地電位が大きいと、その電位差により切替えに
際してリレー接点が損傷することがある。
That is, when driving the relay of the underwater branching device BU, when the contact is switched to the ground side, if the ground potential of the power supply line where the contact is located is large, the relay contact may be damaged during switching due to the potential difference.

このリレー接点の損傷を防ぐためには、リレーを駆動す
る時に、海中分岐装置BUの給電路の対地電位がゼロと
なるようにする必要がある。例えば主となる光海底ケー
ブルの両端の陸揚局A、 B間で給電を行うにあたって
は、各陸揚局A、Bのそれぞれの給電電圧/電流を光海
底ケーブルでの電圧降下を考慮しつつ適当な電圧値に調
整して海中分岐装置BUにおいて給電電位がゼロとなる
ようにするのであるが、海中分岐装置BUが2台ある場
合には、この方法では2台の海中分岐装置BUl、BU
2を同時に対地電位ゼロとすることはできない。
In order to prevent this relay contact from being damaged, it is necessary to make sure that the ground potential of the power supply path of the underwater branch unit BU becomes zero when driving the relay. For example, when feeding power between landing stations A and B at both ends of the main optical submarine cable, the power supply voltage/current of each landing station A and B should be adjusted while taking into account the voltage drop across the optical submarine cable. This method adjusts the voltage to an appropriate value so that the power supply potential becomes zero at the underwater branch unit BU, but if there are two underwater branch units BU, this method will cause the two underwater branch units BUl, BU to
2 cannot be set to zero ground potential at the same time.

そこで海中分岐装置BUIとBU2のリレーRLl■と
RLI■の動作電流を異なる値に設定しておく。例えば
リレーRLI■の動作電流をリレーRLI■の動作電流
より小さく設定する。陸揚局Aと陸揚局B間で給電を行
うにあたっては、まず海中分岐装置BUIにおいて給電
路の対地電位がゼロとなるように陸揚局A、Bの給電電
圧を調整し、かつ給電電流としてはリレーRLI■の動
作電流の大きさのものを流す。これにより海中分岐装置
BUIのリレーRLI■は動作するが、海中分岐装置B
U2のリレーRLI■はリレーRLl■よりも動作電流
が大きいためその時の給電電流では動作しない。よって
海中分岐装置BU2のこの時の給電路の対地電位がゼロ
になっていなくとも、リレーRLI■が動作しないので
切替接点r9.1■の破損は生じない。
Therefore, the operating currents of relays RLl■ and RLI■ of the underwater branching devices BUI and BU2 are set to different values. For example, the operating current of relay RLI■ is set to be smaller than the operating current of relay RLI■. In order to supply power between landing station A and landing station B, first adjust the power supply voltage of landing stations A and B so that the ground potential of the power supply path becomes zero at the underwater branch unit BUI, and then adjust the power supply current. For example, a current having the magnitude of the operating current of relay RLI■ is applied. As a result, relay RLI■ of underwater branch unit BUI operates, but
Since relay RLI■ of U2 has a larger operating current than relay RLl■, it does not operate with the current power supply current. Therefore, even if the ground potential of the power supply line of the underwater branching device BU2 at this time is not zero, the relay RLI■ does not operate, so the switching contact r9.1■ is not damaged.

このようにして海中分岐装置BUIのリレーRL1■を
動作させた後に、今度は海中分岐装置BU2の給電路の
対地電位がゼロとなるように陸揚局Aと陸揚局Bの給電
電位を調整し、かつ給電電流としてリレーRLI■の動
作電流の大きさのものを流す。これにより海中分岐装置
BU2のリレーRLI■が動作される。以上のようにし
て、海中分岐装置ButとBU2のリレーのホットスイ
ッチングを防止できる。
After operating the relay RL1■ of the underwater branch unit BUI in this way, the power supply potential of the landing station A and the landing station B is adjusted so that the ground potential of the power supply path of the underwater branch unit BU2 becomes zero. At the same time, a current having the magnitude of the operating current of relay RLI2 is supplied as a power supply current. As a result, relay RLI■ of underwater branching device BU2 is activated. As described above, hot switching of the relays of the underwater branching devices But and BU2 can be prevented.

この第7図の通信システムで設定可能な給電路が障害時
を含めて第10図に示される。図中(a)は通常時、(
b)〜(f)は障害時である。給電可能な光海底ケーブ
ルは実線で示され、その矢印は給電方向を表す。障害に
より使用不可能な光海底ケーブルは点線で示される。
The power supply path that can be set in the communication system of FIG. 7 is shown in FIG. 10, including when there is a failure. In the figure, (a) is normal, (
b) to (f) are at the time of failure. Optical submarine cables that can be supplied with power are shown as solid lines, and their arrows indicate the direction of power supply. Optical submarine cables that are unusable due to failure are indicated by dotted lines.

通常時には、(a)に示されるように陸揚局Aと陸揚局
B間で両端給電、陸揚局Cと陸揚局りからそれぞれ片端
給電が行なわれる。(b)または(e)に示されるよう
に陸揚局C側または陸揚局り側の光海底ケーブルに障害
が発生した場合には残りの給電路は変更されることなく
、そのまま給電が行われる。(C)に示されるように陸
揚局A側の光海底ケーブルに障害が発生した場合には海
中分岐装置BU2側だけが給電可能であり、その場合、
陸揚局りと陸揚局B間で両端給電が行われるように給電
路の切替えが行われる。同様に(f)に示されるように
陸揚局B側の光海底ケーブルに障害が発生した場合には
海中分岐装置BUl側だけが給電可能となり、陸揚局A
と陸揚局C間で両端給電が行われるように給電路の切替
えが行われる。(d)に示されるように海中分岐装置B
Ulと海中分岐装置BU2間を接続する光海底ケーブル
に障害が発生した場合には、海中分岐装置BUI側では
陸揚局Aと陸揚局C間で、また海中分岐装置BU2側で
は陸揚局りと陸揚局B間でそれぞれ両端給電が行われる
ように給電路の切替えが行われる。このように何れの箇
所の光海底ケーブルに障害が発生した場合にも、残る陸
揚局間で両端給電路を形成することができる。
Normally, as shown in (a), power is supplied at both ends between landing station A and landing station B, and power is supplied at one end from landing station C and the landing station. If a failure occurs in the optical submarine cable on the landing station C side or the landing station side as shown in (b) or (e), the remaining power supply path will continue to be supplied without any changes. be exposed. As shown in (C), if a failure occurs in the optical submarine cable on the landing station A side, only the underwater branch unit BU2 side can supply power, and in that case,
The power supply path is switched so that power is supplied at both ends between the landing station and the landing station B. Similarly, as shown in (f), if a failure occurs in the optical submarine cable on the landing station B side, only the underwater branch unit BUl side can supply power, and the landing station A
The power supply path is switched so that power is supplied at both ends between the landing station C and the landing station C. Undersea branching device B as shown in (d)
If a failure occurs in the optical submarine cable connecting Ul and the underwater branching unit BU2, there will be a problem between landing stations A and C on the underwater branching unit BUI side, and between landing stations A and C on the underwater branching unit BU2 side. The power supply path is switched so that power is supplied at both ends between landing station A and landing station B. In this way, even if a failure occurs in the optical submarine cable at any location, a two-end power supply path can be formed between the remaining landing stations.

第11図には海中分岐装置BUの数を4台として陸揚局
を6局に増加させた光海底ケーブル通信システムにおけ
る給電回路が示される。図示のように、陸揚局Aと陸揚
局B間に主となる光海底ケーブルを設置し、4台の海中
分岐装置BUI〜BU4でこの主となる光海底ケーブル
から各陸揚局C,D、E、Fへの光海底ケーブルを分岐
する。このシステムでは、陸揚局Aと陸揚局8間では両
端給電が行われ、他の陸揚局C,D、E、Fからはそれ
ぞれ片端給電が行われる。また各海中分岐装置BUI〜
BU4のリレーRLI■、RL1■、RLI■、RLI
■は前述の同じ理由でそれぞれ動作電流の大きさが異な
っている。
FIG. 11 shows a power supply circuit in an optical submarine cable communication system in which the number of underwater branching units BU is increased to four and the number of landing stations is increased to six. As shown in the figure, a main optical submarine cable is installed between landing station A and landing station B, and four underwater branching devices BUI to BU4 connect this main optical submarine cable to each landing station C, Branch optical submarine cables to D, E, and F. In this system, power is supplied at both ends between landing station A and landing station 8, and power is supplied at one end from each of the other landing stations C, D, E, and F. Also, each underwater branch unit BUI~
BU4 relay RLI■, RL1■, RLI■, RLI
(2) have different operating currents for the same reason as mentioned above.

このように、第12図に概念的に示されるように、主と
なる光海底ケーブルの給電ルート(第12図では陸揚局
Aと陸揚局8間の給電ルート)を決めると、その給電路
上に入るリレー(各海中分岐装置BUI−BTJ4のリ
レーRLI■〜RLI■)の動作電流をそれぞれ異なら
せることで、主となる給電ルートから何本でも分岐の給
電ルートを得ることができる。よって、リレー動作電流
の大きさが異なる海中分岐装置を更に増やすことにより
上述の実施例よりも更に多くの陸揚局に分岐できる光海
底ケーブル通信システムを構築することが可能である。
In this way, as conceptually shown in Fig. 12, once the main optical submarine cable power feeding route (in Fig. 12, the power feeding route between landing station A and landing station 8) is determined, the power feeding route is determined. By varying the operating currents of the relays that enter the road (relays RLI■ to RLI■ of each underwater branch device BUI-BTJ4), any number of branch power supply routes can be obtained from the main power supply route. Therefore, by further increasing the number of underwater branching devices with different magnitudes of relay operating currents, it is possible to construct an optical submarine cable communication system that can branch to more landing stations than the above embodiment.

なお以上の実施例では海中分岐装置のリレーとして真空
リレー等の機械式の有接点リレーを用いたが、もちろん
本発明はこれに限られるものではなく、ソリッドステー
トリレー等の無接点リレーを用いたものであってもよい
。この場合、切替接点やメーク/ブレーク開閉接点の代
わりに半導体スイッチが用いられることになる。
In the above embodiment, a mechanical contact relay such as a vacuum relay was used as the relay of the underwater branching device, but the present invention is of course not limited to this, and a non-contact relay such as a solid state relay may be used. It may be something. In this case, a semiconductor switch is used instead of a switching contact or a make/break switching contact.

[発明の効果] 以上に説明したように、本発明によれば、陸揚局の増設
に対処できる両端給電を用いた信頼性の高い給電システ
ムを提供できる。また給電路の障害時には障害ケーブル
以外のケーブル間で両端給電路を形成しつつ給電路の再
設定ができるようになる。
[Effects of the Invention] As described above, according to the present invention, it is possible to provide a highly reliable power supply system using double-end power supply that can cope with the addition of landing stations. Furthermore, in the event of a failure in the power supply path, the power supply path can be reset while forming a power supply path at both ends between cables other than the faulty cable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る原理説明図、 第2図は本発明の一実施例としての海中分岐装置の給電
路切替回路を示す図、 第3図〜第6図は第2図実施例装置の動作説明図、 第7図は第2図実施例装置を2台用いた光海底ケーブル
通信システムの給電回路を示す図、第8図、第9図は第
7図実施例装置の動作説明図、 第1O図は第7図実施例装置の設定可能な給電路を説明
する図、 第11図は第2図実施例装置を4台用いた光海底ケーブ
ル通信システムの給電回路を示す図、第12図は海中分
岐装置を複数台用いた光海底ケーブル通信システムの給
電回路を概念的に説明する図、 第13図は従来の片端給電方式を説明する図、 第14図は従来の両端給電方式を説明する図である。 図において、 RLI、RL2、RL3・・−リレーコイルrffl、
r122−1%rI22−2、rI23・・・リレー接
点 BU、BUl、BU2、BU3、BU4−・−海中分岐
装置
Fig. 1 is a diagram illustrating the principle of the present invention, Fig. 2 is a diagram showing a power supply line switching circuit of an underwater branching device as an embodiment of the present invention, and Figs. Figure 7 is a diagram showing the power supply circuit of an optical submarine cable communication system using two of the apparatuses according to the embodiment shown in Figure 2, and Figures 8 and 9 are diagrams explaining the operation of the apparatus according to the embodiment shown in Figure 7. , Figure 1O is a diagram explaining the power supply path that can be set for the embodiment device in Figure 7, Figure 11 is a diagram showing the power supply circuit of an optical submarine cable communication system using four units of the embodiment equipment in Figure 2, Figure 12 is a diagram conceptually explaining the power supply circuit of an optical submarine cable communication system using multiple underwater branching devices, Figure 13 is a diagram explaining the conventional single-end power supply system, and Figure 14 is the conventional double-end power supply system. FIG. In the figure, RLI, RL2, RL3... - relay coil rffl,
r122-1%rI22-2, rI23...Relay contacts BU, BUl, BU2, BU3, BU4--Undersea branching device

Claims (1)

【特許請求の範囲】 1、第1、第2、第3の電気路(101、102、10
3)をY字型に結線して各先端に海底ケーブルの給電路
に接続するための第1、第2、第3の接続端子(104
、105、106)を夫々配した海中分岐装置の給電路
切替回路において、 第1のリレー(107)であってその駆動部(107L
)が該第1の電気路(101)に配置され、その切替部
(107C)によって該第2の接続端子(105)を該
第2の電気路(102)から切り離して接地するものと
、 第2のリレー(108)であってその駆動部(108L
)が該第2の電気路(102)に配置され、その切替部
(108C)によって該第1の接続端子(104)を該
第1の電気路(101)から切り離して接地するものと
、 第3のリレー(109)であつてその駆動部(109L
)が該第2の電気路中の該第1のリレーの切替部(10
7C)と接地間の接地電気路(110)に配置され、そ
の第1のスイッチ部(109C)によって該接地電気路
(110)の自己保持回路を形成するものとを備えた海
中分岐装置の給電路切替回路。 2、第3のリレー(109)は第1のスイッチ部(10
9C)と同時に、第2の電気路(102)をリレー(1
08)の駆動部(108L)とリレー(107)の切替
部(107C)の間で開放する第2のスイッチ部(10
9CC)を更に備えた請求項1記載の海中分岐装置の給
電路切替回路。 3、海底ケーブルを海中分岐装置で分岐して3以上の陸
揚局を接続する海底ケーブル通信システムにおける給電
方法において、 給電路切替回路として請求項1または2記載のものが用
いられ、 通常時には該給電路切替回路の第1と第3の接続端子(
104、106)にそれぞれ接続される陸揚局間で両端
給電を行った後に、該第2の接続端子(105)に接続
される陸揚局から片端給電を行うことで給電路を形成し
、 第1の接続端子(104)に接続される陸揚局からの給
電路に障害が発生した場合には該第2と第3の接続端子
(105、106)に接続される陸揚局間で両端給電を
行うことで該第1の接続端子(104)に接続された障
害給電路を切り離して給電路を形成するようにした海底
ケーブル通信システムの給電方法。 4、海底ケーブルを2以上の海中分岐装置で分岐して4
以上の陸揚局を接続する海底ケーブル通信システムにお
ける給電方法であって、 給電路切替回路として請求項1または2記載のものが用
いられ、 該給電路切替回路の第1と第3の接続端子(104、1
06)間の電気路を海底ケーブルを介して複数の海中分
岐装置についてカスケードに接続して主給電路を形成し
、この主給電路の両端に接続される二つの陸揚局間で両
端給電を行った後に、該各給電路切替回路の第2の接続
端子(105)に接続された陸揚局から片端給電を行う
ことで給電路を形成する海底ケーブル通信システムの給
電方法。 5、請求項4記載の海底ケーブル通信システムの給電方
法において、 該複数の給電路切替回路の第1のリレー(107)はそ
れぞれ動作電流が異なるように設定され、該主給電路に
流す給電電流を変えることで、各給電路切替回路の第1
のリレー(107)を順次に駆動するようにした海底ケ
ーブル通信システムの給電方法。 6、請求項4記載の海底ケーブル通信システムの給電方
法において、 給電路切替回路として請求項1または2記載の給電路切
替回路とそれ以外の回路構成の給電路切替回路とを用い
て給電路を形成する海底ケーブル通信システムの給電方
法。
[Claims] 1, first, second, and third electric paths (101, 102, 10
3) in a Y-shape and each end has first, second, and third connection terminals (104
, 105, 106), the first relay (107) and its drive section (107L
) is arranged in the first electrical path (101), and the switching part (107C) separates the second connection terminal (105) from the second electrical path (102) and grounds it; 2 relay (108) and its driving part (108L
) is arranged in the second electric path (102), and the first connection terminal (104) is disconnected from the first electric path (101) and grounded by the switching part (108C); 3 relay (109) and its driving part (109L)
) is the switching section (10) of the first relay in the second electrical path.
7C) and a device disposed in the grounding electrical path (110) between the ground and forming a self-holding circuit of the grounding electrical path (110) by its first switch section (109C). road switching circuit. 2. The third relay (109) is connected to the first switch section (10
9C), simultaneously connect the second electrical path (102) to the relay (1
08) and the switching section (107C) of the relay (107).
9CC). The power supply path switching circuit for an underwater branching device according to claim 1, further comprising: 9CC). 3. In a power supply method in a submarine cable communication system in which a submarine cable is branched by an underwater branching device to connect three or more landing stations, the power supply line switching circuit according to claim 1 or 2 is used, and normally the The first and third connection terminals of the power supply path switching circuit (
104, 106), and then one-end power feeding from the landing station connected to the second connection terminal (105) to form a power feeding path; If a failure occurs in the power supply line from the landing station connected to the first connection terminal (104), the power supply line between the landing stations connected to the second and third connection terminals (105, 106) A power feeding method for a submarine cable communication system in which a power feeding path is formed by disconnecting a faulty power feeding path connected to the first connection terminal (104) by performing power feeding at both ends. 4. Branch the submarine cable with two or more underwater branching devices.
A power feeding method in a submarine cable communication system connecting the above landing stations, wherein the power feeding path switching circuit according to claim 1 or 2 is used, and the first and third connection terminals of the feeding path switching circuit are used. (104, 1
06) A main power feed path is formed by cascading the electrical paths between the two via submarine cables for multiple underwater branching devices, and both ends of the power feed are connected between two landing stations connected to both ends of this main power feed path. A power feeding method for a submarine cable communication system in which a power feeding path is formed by performing one-end power feeding from a landing station connected to a second connection terminal (105) of each of the feeding path switching circuits. 5. The power supply method for a submarine cable communication system according to claim 4, wherein the first relays (107) of the plurality of power supply path switching circuits are set to have different operating currents, and the power supply current flowing through the main power supply path is set to be different. By changing the
A power supply method for a submarine cable communication system in which relays (107) are sequentially driven. 6. In the power feeding method for a submarine cable communication system according to claim 4, a power feeding path is established using the power feeding path switching circuit according to claim 1 or 2 and a power feeding path switching circuit having a circuit configuration other than that of claim 1 or 2 as the power feeding path switching circuit. A power supply method for submarine cable communication systems to be formed.
JP2182151A 1990-07-10 1990-07-10 Power feeding path switching circuit for underwater branching device and feeding method for submarine cable communication system Pending JPH0470128A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2182151A JPH0470128A (en) 1990-07-10 1990-07-10 Power feeding path switching circuit for underwater branching device and feeding method for submarine cable communication system
GB9114330A GB2248373B (en) 1990-07-10 1991-07-03 Power feed line switching circuit for submarine branching device and method of feeding power to submarine cable communication system
GB9416830A GB2280341B (en) 1990-07-10 1991-07-03 Power feed line switching circuit for submarine branching device and method of feeding power to submarine cable communication system
US07/728,190 US5214312A (en) 1990-07-10 1991-07-10 Power feed line switching circuit for submarine branching device and method of feeding power to submarine cable communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2182151A JPH0470128A (en) 1990-07-10 1990-07-10 Power feeding path switching circuit for underwater branching device and feeding method for submarine cable communication system

Publications (1)

Publication Number Publication Date
JPH0470128A true JPH0470128A (en) 1992-03-05

Family

ID=16113253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2182151A Pending JPH0470128A (en) 1990-07-10 1990-07-10 Power feeding path switching circuit for underwater branching device and feeding method for submarine cable communication system

Country Status (1)

Country Link
JP (1) JPH0470128A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07123049A (en) * 1993-03-03 1995-05-12 Stc Submarine Syst Ltd Branch device for underwater communication system
JPH09181654A (en) * 1995-12-21 1997-07-11 Kokusai Denshin Denwa Co Ltd <Kdd> Feeding path changeover circuit
JPH09233004A (en) * 1996-02-20 1997-09-05 Kokusai Denshin Denwa Co Ltd <Kdd> Feeding path changeover circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07123049A (en) * 1993-03-03 1995-05-12 Stc Submarine Syst Ltd Branch device for underwater communication system
JPH09181654A (en) * 1995-12-21 1997-07-11 Kokusai Denshin Denwa Co Ltd <Kdd> Feeding path changeover circuit
JPH09233004A (en) * 1996-02-20 1997-09-05 Kokusai Denshin Denwa Co Ltd <Kdd> Feeding path changeover circuit

Similar Documents

Publication Publication Date Title
JP3679140B2 (en) Branch device for underwater communication system
US5214312A (en) Power feed line switching circuit for submarine branching device and method of feeding power to submarine cable communication system
JP3694053B2 (en) Branch device for submarine communication system
US5196984A (en) Submarine telecommunications systems
EP0495509B1 (en) Feeding system and feeding method for a submarine cable communication system
EP0843917A1 (en) Improvements in or relating to power switching of optical fibre cable branching units
JPS63189025A (en) Switching circuit for feeder path
JP2786524B2 (en) Feeding line switching circuit for undersea branching device and method for feeding power in undersea cable communication system
JPH0470128A (en) Power feeding path switching circuit for underwater branching device and feeding method for submarine cable communication system
US4462058A (en) Switching apparatus for devices for alternating current parallel remote feed
JP2624499B2 (en) Power supply branch switching method and switching device for submarine cable transmission line
US5347417A (en) Power supply protection system applied to optical subscriber network
JP3967382B2 (en) Branch device for optical fiber transmission system
US7067940B2 (en) Submarine branching unit having asymmetrical architecture
JPH0253332A (en) Feeder switching circuit
EP1294113B1 (en) Branching unit for an optical transmission system
JPH05327561A (en) Feeding path switching circuit
JP3171862B2 (en) Power supply system and method for communication cable
JPH04341018A (en) Feeder line switching circuit for submarine branching device and feeding method for submarine communication system
JP3341246B2 (en) Power supply line switching circuit
JP2632905B2 (en) Transmission line feeder switching circuit
JP2691218B2 (en) Submarine power feed path configuration method and submarine power feed switching circuit
JPH01276937A (en) Optical submarine feeding system
EP1322046B1 (en) Submarine branching unit having asymmetrical architecture
JPH0470129A (en) Power feeding path switching circuit for underwater branching device and feeding method for submarine cable communication system