JPH0469999B2 - - Google Patents

Info

Publication number
JPH0469999B2
JPH0469999B2 JP31930689A JP31930689A JPH0469999B2 JP H0469999 B2 JPH0469999 B2 JP H0469999B2 JP 31930689 A JP31930689 A JP 31930689A JP 31930689 A JP31930689 A JP 31930689A JP H0469999 B2 JPH0469999 B2 JP H0469999B2
Authority
JP
Japan
Prior art keywords
dch
epichlorohydrin
dichloro
propanol
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP31930689A
Other languages
Japanese (ja)
Other versions
JPH03180196A (en
Inventor
Naoya Kasai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP31930689A priority Critical patent/JPH03180196A/en
Priority to EP90313340A priority patent/EP0431970B1/en
Priority to US07/623,555 priority patent/US5177007A/en
Priority to DE69022187T priority patent/DE69022187T2/en
Publication of JPH03180196A publication Critical patent/JPH03180196A/en
Publication of JPH0469999B2 publication Critical patent/JPH0469999B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はラセミ体2,3−ジクロロ−1−プロ
パノール(以下、本化合物をβ−DCHと略称す
る。)を微生物処理して得られる光学活性β−
DCHを原料とする光学活性エピクロルヒドリン
の製法に関する。 (従来の技術) 光学活性エピクロルヒドリンは種々の医薬等の
合成に関し重要な原料である。しかしながら、こ
の光学活性エピクロルヒドリンを製造する方法は
Baldwin、ジヤーナル.オブ.オーガニツク.ケ
ミストリー(J.Org.Chem)第43巻、1978年、第
4876頁あるいはEllis、ジヤーナル.ケミカル.
ソサイエテイ.、ケミカルコミニユケーシヨン.、
(J.CHEM.SC.,CHEM.COMMUN.、)1984年、
第1600頁に記載されているが、いずれも高度な合
成技術を要するものであり、簡便な製造方法は知
られていない。 (発明が解決しようとする課題) 本発明者は既にラセミ体β−DCHとR−(+)
−β−DCH資化性菌とを接触させて高純度な光
学活性S−(−)−β−DCHを得る方法(特開昭
61−132196号公報)および、このものをアルカリ
剤と反応させてR−(−)−エピクロルヒドリンを
得る方法(特開昭62−6697号公報)を開発した
が、これらとは逆の光学異性体、すなわちS−
(+)−エピクロルヒドリンの簡便な製造方法は知
られていない。この課題を解決したのが本発明で
ある。 (課題を解決するための手段) 本発明者は微生物処理により上記光学活性エピ
クロルヒドリンを簡便に、また高純度に製造し得
ることを見出し本発明を完成させた。 すなわち本発明は、S−(−)−β−DCH資化
能を有するアルカリゲネス属に属する細菌又はそ
の培養菌体を培地中でラセミ体β−DCHと作用
させて得られるR−(+)−β−DCHにアルカリ
剤を反応させてS−(+)−エピクロルヒドリンを
得ることを特徴とする光学活性なエピクロルヒド
リンの製法である。 本発明者が土壌中より分離採取して本発明にお
いて用いた微生物の菌学的性質は表1に示すとお
りである。
(Industrial Application Field) The present invention relates to the optically active β-
This invention relates to a method for producing optically active epichlorohydrin using DCH as a raw material. (Prior Art) Optically active epichlorohydrin is an important raw material for the synthesis of various medicines. However, the method for producing this optically active epichlorohydrin is
Baldwin, Journal. of. Organic. Chemistry (J.Org.Chem) Volume 43, 1978, No.
Page 4876 or Ellis, Journal. chemical.
Society. , chemical communication. ,
(J.CHEM.SC., CHEM.COMMUN.) 1984,
Although they are described on page 1600, all of them require advanced synthesis techniques, and no simple manufacturing method is known. (Problem to be solved by the invention) The present inventor has already identified racemic β-DCH and R-(+)
- A method for obtaining highly pure optically active S-(-)-β-DCH by contacting it with β-DCH-assimilating bacteria (JP-A-Sho
61-132196) and a method to obtain R-(-)-epichlorohydrin by reacting this product with an alkaline agent (Japanese Patent Application Laid-open No. 62-6697), but the optical isomer opposite to these was developed. , that is, S-
A simple method for producing (+)-epichlorohydrin is not known. The present invention has solved this problem. (Means for Solving the Problems) The present inventors have completed the present invention by discovering that the above optically active epichlorohydrin can be easily produced with high purity by microbial treatment. That is, the present invention provides R-(+)- obtained by allowing bacteria belonging to the genus Alcaligenes or cultured cells thereof having the ability to assimilate S-(-)-β-DCH to react with racemic β-DCH in a medium. This is a method for producing optically active epichlorohydrin, which is characterized by reacting β-DCH with an alkaline agent to obtain S-(+)-epichlorohydrin. The mycological properties of the microorganisms isolated and collected from soil by the present inventor and used in the present invention are shown in Table 1.

【表】【table】

【表】 以上の結果をもとにバージエイズ・マニユア
ル・オブ・システマテイツク・バクテリオロジイ
(Bergey′s Manual of Systematic
Bacteriology)第1巻の記載に基づき帰属同定
を行うと本菌はアルカリゲネス属の特徴を有す
る。本発明者は本菌をアルカリゲネス
(Alcaligenes)Sp.DS−K−S38と命名した(以
下、本菌をDS−K−S38株という)。なお本菌は
工業技術院微生物工業技術研究所に微工研菌第
11114号(FERM P−11114)として寄託されて
いる。 本発明においては、上記DS−K−S38株、その
変種、変異株ばかりでなく、アルカリゲネス属に
属しS−(−)−2,3−ジクロロ−1−プロパノ
ール資化能を有する細菌であればすべて使用する
ことができる。 本発明は上記細菌によつて上記ラセミ体β−
DCHの光学活性化を行いさらに常法によりアル
カリ剤を反応させて光学活性なエピクロルヒドリ
ンを得る事を骨子とする。本発明においては上記
細菌又はその培養菌体を用いてもよいし、或いは
これらを固定化させても実施できるが上記細菌の
培養方法ならびに固定化方法は通常よく用いられ
る方法でよい。すなわち培養方法は、上記細菌を
ブイヨン培地、あるいは加糖ブイヨン培地等、炭
素源、窒素源、有機栄養源、無機栄養源を含む栄
養培地中で培養せしめ、よく生育させておき、こ
れから得られる培養物あるいは培養菌体を用いれ
ばよい。炭素源としてはグリセリン等の炭水化
物、あるいはクエン酸、マレイン酸、リンゴ酸等
の有機酸及びその塩類を、窒素源としては硫酸ア
ンモニウム、塩化アンモニウム、硝酸アンモニウ
ム、リン酸アンモニウム等の無機態窒素、及びペ
プトン、カゼイン、酵母エキス、肉エキス等の有
機態窒素を用いることができる。その他の無機塩
類としてはリン酸塩、マグネシウム塩、カリ塩、
鉄塩、亜鉛塩、銅塩等が用いられる。その培養条
件は通常、温度約20〜45℃、好ましくは25〜37
℃、PH約5〜9、好ましくはPH6.0〜7.5で振盪あ
るいは通気攪拌等の手段で好気的に行われる。 また、固定化方法は例えばアクリルアミド、k
−カラギ−ナン、寒天、ゼラチン、アルギン酸ナ
トリウム等を用いて生菌体を括する方法でよく、
固定化後、適当な大きさ、形状に破砕して用いれ
ばよい。 上記細菌とラセミ体β−DCHとの反応はラセ
ミ体β−DCHを有する培地、例えば合成培地中
で上記細菌又はその培養菌体、或いはこれらの固
定化物を攪拌しよく接触させればよく、その接触
時間は通常半日〜10日でありβ−DCHの濃度は
培地中約0.1〜0.6容量%程度であればよい。 反応終了後、反応液をとり出して濾過し、培養
菌体と上清液、或いは固定化物と上清液とを分離
し、上清液中に残存するR−(+)−β−DCHを
活性炭カラム処理、エーテル抽出、減圧蒸留等の
操作によつて分取する。この分取物にアルカリ
剤、好ましくは苛性ソーダ、苛性カリ等の苛性ア
ルカリを作用させてエピクロルヒドリンとする。 また本発明方法において固定化させた菌体を使
用すれば遠心分離等の操作が容易になり、さらに
固定化物はくり返し使用できる。 (実施例) 以下実施例により具体的に説明する。例中%は
特記を除いて重量基準である。 実施例 1 酵母エキス1.0%、グリセリン2.0%、ポリペプ
トン1.0%、PH7.0の培地20を30ジヤーフアー
メンターに入れ、常法どおり加熱減菌後、DS−
K−S38株を接種し、次の条件下で24時間培養し
た。 温 度 30℃ PH 初発PH7.0 通気量 20/min 攪拌回転数 300r.p.m 培養終了後、微生物菌体と培養濾液とを遠心分
離機を用いて分離し生菌体600gを得た。続いて、
生菌体は、以下に示す合成培地にけんだくさせ10
容とした後、常法どおりアクリルアミドで固定
化した。固定化物は、ミキサーで0.5〜1mm角の
大きさに破砕し合成培地でよく洗浄した。 合成培地の成分 硫酸アンモニウム 0.05重量% 硝酸アンモニウム 0.05 〃 リン酸水素第2カリウム 0.1 〃 リン酸第1ナトリウム 0.2 〃 リン酸第2ナトリウム 0.1 〃 硫酸マグネシウム 0.05 〃 硫酸鉄、硫酸銅、硫酸マンガン 微量 PH 初発PH6.8 次に、このようにして調製した固定化物100
容ジヤーフアーメンターの中に入れ合成培地とと
もに80とする。そしてさらに、ラセミ体β−
DCHを320ml、炭酸カルシウム160gを加え、以下
の条件下で撹拌した。 温 度 30℃ 通気量 40/min 回転数 300r.p.m 反応開始後72時間後に上清液と固定化物とを濾
別し、この液から残存するβ−DCHを活性炭カ
ラム、エーテル抽出、減圧蒸留によつて分取し
152gを採取した。本物質の同定は次の方法で行
つた。 1) ガスクロマトグラフイーによる同定 カラム担体PEG−20MP、5%、60〜80メツ
シユを用いて市販β−DCHと比較した結果、
その保持時間は全く同じであつた。純度98.2%
以上。 2) IR(赤外吸収スペクトル)による同定 第1図に示したチヤートのように、その吸収
パターンは市販β−DCHと全く同一であつた。 以上から本物質は明らかにβ−DCHである事
が判明した。又本物質がR−(+)−β−DCHで
ある事の確認は以下の方法によつた。 1) 旋光度の測定 市販β−DCH及び本物質の比旋光度は次の
如くである。 市販β−DCH 〔α〕20 D=0.0゜ C=1、ジクロロメタン 本物質 〔α〕20 D=+10.4゜ C=1、ジクロロメタン 2) R−(+)−α−メトキシ−α−トリフルオ
ロメチルフエニルアセテートエステルの調製な
らびに高速液体クロマトグラフイーによる分析 R−(+)−α−メトキシ−α−トリフルオロ
メチルフエニルアセテートクロライドを市販β
−DCHならびに本物質に反応せしめ、そのエ
ステル誘導体を調製した後、液体クロマトグラ
フイーでの分析結果は次のようであつた。 分析条件 カラム担体 ZORBAXODS 4.6mm×25cm(Du Pont 社製) 溶出液 メタノール:水=65:35(V/V) 溶出量 1ml/min 検出法 260nmにおける吸光度 分析結果 市販β−DCH 保持時間50.5及び52.0分に同一
面積をもつ2つのピークを与え
た。 本物質 保持時間52.0分にのみピークを与え
50.5分にはピークを与えなかつ
た。 3) ジクロロプロピル−N−フエニルカルバメ
ートの調製及びその旋光度度 市販β−DCH、及び本物質1gとフエニルイ
ソシアネート0.9gを乾燥アセトン30ml、トリエ
チルアミン0.3mlに加え、約3時間加熱還流し、
そのジクロロプロピル−N−フエニルカルバメ
ートを調製した後、その比旋光度を測定した。 市販β−DCH 〔α〕25 D=0.0゜ C=1、メタノール 本物質 〔α〕25 D=+16.4゜ C=1、メタノール 以上の結果から本物質は、R−(+)−β−
DCHであり、その光学純度は99%以上であるこ
とが判つた。 次にこのR−(+)−β−DCH100gを1.4N苛性
ソーダ水溶液650mlと共に1000mlフラスコ内に混
和させ室温で80分激しく撹拌し、更にエーテルを
200ml加え攪拌の後エーテル層を分離した。続い
てエーテル層は硫酸マグネシウムで乾燥した後、
エーテルを留去し、さらにエピクロルヒドリンを
蒸留して、60.3gを得た。このエピクロルヒドリ
ンの純度は、ガスクロマトグラフイーで測定した
結果99.4%以上であつた。また比旋光度は以下の
ようであつた。 〔α〕22 D=+34.3゜(C=3.4、メタノール) すなわち、得られたエピクロルヒドリンはS−
(+)−エピクロルヒドリンであり、その光学純度
は99%以上であつた。 実施例 2 実施例1と同様に酵母エキス1.0%、ポリペプ
トン1.0%、グリセリン2.0%、PH7.0の培地2を
5容ジヤーフアーメンターに入れ常法どおり、
加熱減菌後、DS−K−S38株を接種し、実施例1
と同じ条件下で24時間培養した。 次に100容ジヤーフアーメンターに実施例1
に示した合成培地80及び炭酸カルシウム160g、
ラセミ体β−DCH320ml、ポリペプトン40gを入
れ、加熱減菌のあと、常法どおり上記培養物を接
種し温度30℃、通気量40/min、回転数
300rpmの条件下で培養しながら反応させた。 反応開始後48時間後に反応液は、遠心処理機に
て、上清液と菌体、沈澱物とに分離し、上清液か
ら残存するβ−DCHを、実施例1と同様に分取
し、R−(+)−β−DCH148gを得た。 得られたR−(+)−β−DCHの比旋光度は
〔α〕20 D=+10.4゜(C=1.0、ジクロロメタン)であ
り、実施例1と同様に分析した結果、光学純度は
99%以上であつた。又、R−(+)−β−DCHか
らS−(+)−エピクロルヒドリンへの変換は、や
はり実施例1と同じようにし、比旋光度〔α〕22 D
=+34.3゜(C=3.4、メタノール)光学純度99%以
上のS−(+)−エピクロルヒドリンを得た。 (発明の効果) 本発明によれば壌中より分離したアルカリゲネ
ス属に属する細菌を利用して2,3−ジクロロ−
1−プロパノールより簡便に且つ高純度に光学活
性なR−(+)−2,3−ジクロロ−1−プロパノ
ールを経て光学活性なS−(+)−エピクロルヒド
リンを得ることができる。
[Table] Based on the above results, Bergey's Manual of Systematic Bacteriology
Based on the description in Volume 1 of Bacteriology, this bacterium has characteristics of the genus Alcaligenes. The present inventor named this bacterium Alcaligenes Sp. DS-K-S38 (hereinafter, this bacterium is referred to as DS-K-S38 strain). This bacterium was submitted to the Institute of Microbial Technology, Agency of Industrial Science and Technology.
It has been deposited as No. 11114 (FERM P-11114). In the present invention, not only the above-mentioned DS-K-S38 strain, its variants and mutants, but also any bacteria belonging to the genus Alcaligenes and having the ability to assimilate S-(-)-2,3-dichloro-1-propanol can be used. All can be used. The present invention provides the racemic β-
The main point is to optically activate DCH and then react with an alkaline agent using a conventional method to obtain optically active epichlorohydrin. In the present invention, the above-mentioned bacteria or their cultured cells may be used, or they may be immobilized. However, the methods for culturing and immobilizing the above-mentioned bacteria may be commonly used methods. That is, the culture method involves culturing the above-mentioned bacteria in a nutrient medium containing a carbon source, a nitrogen source, an organic nutrient source, and an inorganic nutrient source, such as a bouillon medium or a sweetened bouillon medium, allowing them to grow well, and culturing the resulting culture. Alternatively, cultured bacterial cells may be used. Carbon sources include carbohydrates such as glycerin, or organic acids such as citric acid, maleic acid, and malic acid and their salts; nitrogen sources include inorganic nitrogen such as ammonium sulfate, ammonium chloride, ammonium nitrate, and ammonium phosphate, and peptone. Organic nitrogen such as casein, yeast extract, meat extract, etc. can be used. Other inorganic salts include phosphates, magnesium salts, potassium salts,
Iron salts, zinc salts, copper salts, etc. are used. The culture conditions are usually about 20-45°C, preferably 25-37°C.
The reaction is carried out aerobically at a temperature of about 5° C. and a pH of about 5 to 9, preferably 6.0 to 7.5, by means of shaking or aeration. In addition, the immobilization method may be, for example, acrylamide, k
- A method of enclosing live bacterial cells using carrageenan, agar, gelatin, sodium alginate, etc. is sufficient;
After immobilization, it may be used by crushing it into an appropriate size and shape. The reaction between the above-mentioned bacteria and racemic β-DCH can be carried out by stirring the above-mentioned bacteria, their cultured cells, or their immobilized products in a medium containing racemic β-DCH, such as a synthetic medium, and bringing them into good contact. The contact time is usually half a day to 10 days, and the concentration of β-DCH in the medium may be about 0.1 to 0.6% by volume. After the reaction is completed, the reaction solution is taken out and filtered to separate the cultured cells and the supernatant, or the immobilized material and the supernatant, and the R-(+)-β-DCH remaining in the supernatant is removed. It is fractionated by operations such as activated carbon column treatment, ether extraction, and vacuum distillation. This fraction is treated with an alkaline agent, preferably a caustic alkali such as caustic soda or caustic potash, to produce epichlorohydrin. Furthermore, if immobilized bacterial cells are used in the method of the present invention, operations such as centrifugation become easy, and the immobilized product can be used repeatedly. (Example) The present invention will be specifically explained below using examples. In the examples, percentages are by weight unless otherwise specified. Example 1 Medium 20 containing yeast extract 1.0%, glycerin 2.0%, polypeptone 1.0%, pH 7.0 was placed in a 30 jar fermenter, and after sterilization by heating in the usual manner, DS-
K-S38 strain was inoculated and cultured for 24 hours under the following conditions. Temperature: 30°C PH: Initial pH: 7.0 Aeration rate: 20/min Stirring speed: 300 rpm After the cultivation was completed, the microbial cells and the culture filtrate were separated using a centrifuge to obtain 600 g of viable bacterial cells. continue,
Suspend the viable bacterial cells in the synthetic medium shown below10.
After adjusting the volume, it was fixed with acrylamide in a conventional manner. The immobilized product was crushed into pieces of 0.5 to 1 mm square using a mixer and thoroughly washed with a synthetic medium. Components of synthetic medium Ammonium sulfate 0.05% by weight Ammonium nitrate 0.05 〃 Potassium hydrogen phosphate 0.1 〃 Sodium phosphate 0.2 〃 Disodium phosphate 0.1 〃 Magnesium sulfate 0.05 〃 Iron sulfate, copper sulfate, manganese sulfate Trace amounts PH Initial PH6. 8 Next, the immobilized product prepared in this way 100
Place in a jar fermenter and adjust to 80 ml with synthetic medium. Furthermore, racemic β-
320 ml of DCH and 160 g of calcium carbonate were added and stirred under the following conditions. Temperature: 30℃ Aeration rate: 40/min Rotation speed: 300r.pm 72 hours after the start of the reaction, the supernatant liquid and immobilized material were filtered, and the remaining β-DCH was extracted from this liquid using an activated carbon column, ether extraction, and vacuum distillation. Sort and separate
152g was collected. The substance was identified using the following method. 1) Identification by gas chromatography As a result of comparison with commercially available β-DCH using column carrier PEG-20MP, 5%, 60-80 mesh,
The retention times were exactly the same. Purity 98.2%
that's all. 2) Identification by IR (infrared absorption spectrum) As shown in the chart shown in Figure 1, its absorption pattern was exactly the same as that of commercially available β-DCH. From the above, this substance was clearly found to be β-DCH. The following method was used to confirm that this substance was R-(+)-β-DCH. 1) Measurement of optical rotation The specific optical rotations of commercially available β-DCH and this substance are as follows. Commercially available β-DCH [α] 20 D = 0.0゜ C = 1, dichloromethane actual substance [α] 20 D = +10.4゜ C = 1, dichloromethane 2) R-(+)-α-methoxy-α-trifluoro Preparation of methyl phenyl acetate ester and analysis by high performance liquid chromatography R-(+)-α-methoxy-α-trifluoromethyl phenyl acetate chloride was commercially available β
After reacting with -DCH and this substance to prepare its ester derivative, the analysis results by liquid chromatography were as follows. Analysis conditions Column carrier ZORBAXODS 4.6mm x 25cm (manufactured by Du Pont) Eluent Methanol:water = 65:35 (V/V) Elution volume 1ml/min Detection method Absorbance analysis results at 260nm Commercially available β-DCH Retention times 50.5 and 52.0 Two peaks with the same area were given in minutes. This substance gives a peak only at a retention time of 52.0 minutes.
No peak was observed at 50.5 minutes. 3) Preparation of dichloropropyl-N-phenyl carbamate and its optical rotation Commercially available β-DCH, 1 g of this substance, and 0.9 g of phenyl isocyanate were added to 30 ml of dry acetone and 0.3 ml of triethylamine, and heated under reflux for about 3 hours.
After preparing the dichloropropyl-N-phenyl carbamate, its specific rotation was measured. Commercially available β-DCH [α] 25 D = 0.0゜ C = 1, methanol This substance [α] 25 D = +16.4゜ C = 1, methanol From the above results, this substance is R-(+)-β-
It was found that it was DCH and its optical purity was over 99%. Next, 100 g of this R-(+)-β-DCH was mixed with 650 ml of 1.4N caustic soda aqueous solution in a 1000 ml flask, stirred vigorously at room temperature for 80 minutes, and then ether was added.
After adding 200 ml and stirring, the ether layer was separated. Subsequently, the ether layer was dried with magnesium sulfate, and then
Ether was distilled off, and epichlorohydrin was further distilled to obtain 60.3 g. The purity of this epichlorohydrin was 99.4% or more as measured by gas chromatography. Further, the specific optical rotation was as follows. [α] 22 D = +34.3° (C = 3.4, methanol) That is, the obtained epichlorohydrin is S-
It was (+)-epichlorohydrin, and its optical purity was 99% or more. Example 2 As in Example 1, culture medium 2 containing 1.0% yeast extract, 1.0% polypeptone, 2.0% glycerin, and pH 7.0 was placed in a 5-volume jar fermenter, and as usual.
After heat sterilization, DS-K-S38 strain was inoculated, and Example 1
Cultured for 24 hours under the same conditions. Next, Example 1 was placed in a 100-volume jar fermenter.
80g of synthetic medium shown in and 160g of calcium carbonate,
Add 320 ml of racemic β-DCH and 40 g of polypeptone, heat sterilize, inoculate the above culture as usual, temperature 30℃, aeration rate 40/min, rotation speed.
The reaction was performed while culturing at 300 rpm. 48 hours after the start of the reaction, the reaction solution was separated into supernatant, bacterial cells, and precipitate using a centrifuge, and the remaining β-DCH was collected from the supernatant in the same manner as in Example 1. , 148 g of R-(+)-β-DCH was obtained. The specific optical rotation of the obtained R-(+)-β-DCH was [α] 20 D = +10.4° (C = 1.0, dichloromethane), and as a result of analysis in the same manner as in Example 1, the optical purity was
It was over 99%. Further, the conversion of R-(+)-β-DCH to S-(+)-epichlorohydrin was carried out in the same manner as in Example 1, and the specific optical rotation [α] 22 D
=+34.3° (C=3.4, methanol) S-(+)-epichlorohydrin with an optical purity of 99% or more was obtained. (Effects of the Invention) According to the present invention, 2,3-dichloro-
Optically active S-(+)-epichlorohydrin can be obtained more easily and with higher purity than 1-propanol via optically active R-(+)-2,3-dichloro-1-propanol.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1により得られた本発明の原料
であるR−(+)−2,3−ジクロロ−1−プロパ
ノールおよび市販品の同物質の赤外線吸収スペク
トルである。−は市販β−DCHを、−−−はR−
(+)−β−DCHを示す。
FIG. 1 shows infrared absorption spectra of R-(+)-2,3-dichloro-1-propanol, a raw material of the present invention, obtained in Example 1 and a commercially available product of the same substance. - is commercially available β-DCH, --- is R-
(+)-β-DCH is shown.

Claims (1)

【特許請求の範囲】 1 S−(−)−2,3−ジクロロ−1−プロパノ
ール資化能を有するアルカリゲネス属に属する細
菌、又はその培養菌体を、培地中でラセミ体2,
3−ジクロロ−1−プロパノールと作用させて得
られるR−(+)−2,3−ジクロロ−1−プロパ
ノールにアルカリ剤を反応させてS−(+)−エピ
クロルヒドリンを得ることを特徴とする光学活性
エピクロルヒドリンの製法。 2 S−(−)−2,3−ジクロロ−1−プロパノ
ール資化能を有するアルカリゲネス属に属する細
菌、又はその培養菌体を固定化して使用する特許
請求の範囲第1項記載の製法。
[Scope of Claims] 1. Bacteria belonging to the genus Alcaligenes having the ability to assimilate S-(-)-2,3-dichloro-1-propanol, or cultured cells thereof, are treated in a culture medium with racemic 2,
An optical system characterized by reacting R-(+)-2,3-dichloro-1-propanol obtained by reacting with 3-dichloro-1-propanol with an alkali agent to obtain S-(+)-epichlorohydrin. Process for producing active epichlorohydrin. 2. The production method according to claim 1, wherein bacteria belonging to the genus Alcaligenes having the ability to assimilate S-(-)-2,3-dichloro-1-propanol or cultured cells thereof are used after being immobilized.
JP31930689A 1989-12-08 1989-12-08 Production of optically active epichlorohydrin Granted JPH03180196A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP31930689A JPH03180196A (en) 1989-12-08 1989-12-08 Production of optically active epichlorohydrin
EP90313340A EP0431970B1 (en) 1989-12-08 1990-12-07 Process for producing optically active R-(+)-2, 3,-dichloro-1-propanol using microorganism
US07/623,555 US5177007A (en) 1989-12-08 1990-12-07 Process for producing optically active r-(+)-2,3-dichloro-1-propanol using microorganism
DE69022187T DE69022187T2 (en) 1989-12-08 1990-12-07 Process for the production of optically active R - (+) - 2,3-dichloro-1-propanol using microorganisms.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31930689A JPH03180196A (en) 1989-12-08 1989-12-08 Production of optically active epichlorohydrin

Publications (2)

Publication Number Publication Date
JPH03180196A JPH03180196A (en) 1991-08-06
JPH0469999B2 true JPH0469999B2 (en) 1992-11-09

Family

ID=18108724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31930689A Granted JPH03180196A (en) 1989-12-08 1989-12-08 Production of optically active epichlorohydrin

Country Status (1)

Country Link
JP (1) JPH03180196A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4793131B2 (en) * 2006-06-28 2011-10-12 ダイソー株式会社 Process for producing optically active 2,3-dichloro-2-methyl-1-propanol and optically active 2-methylepichlorohydrin

Also Published As

Publication number Publication date
JPH03180196A (en) 1991-08-06

Similar Documents

Publication Publication Date Title
JPS5886093A (en) Biological preparation of amide
JPH03119996A (en) Enzymayic resolution method
JPH0469999B2 (en)
JPH03191794A (en) Production of r-(-)-3-halogeno-1,2-propanediol by microbial treatment
JPH0751069B2 (en) Method for producing D-glyceric acid
JPH0155879B2 (en)
JPS58201992A (en) Preparation of beta-substituted propionic acid or amide thereof by microorganism
JPH0379996B2 (en)
JPH06141888A (en) Production of d-mandelic acid
JPH0539B2 (en)
JP3705046B2 (en) Preparation of optically active 4-halogeno-1,3-butanediol and its derivatives by microorganisms
JPS6155955B2 (en)
JPH0473999B2 (en)
JPS5923794B2 (en) Manufacturing method of dihydroxyacetone
JP3030916B2 (en) Method for producing β-glucooligosaccharide
KR20050072066A (en) Method for producing optically active 3-chloro-2-methyl-1,2-propanediol taking advantage of microorganism
JPH0151999B2 (en)
NO155698B (en) PROCEDURE FOR THE PREPARATION OF STEREOSPECIFIC CARBUM MOLD DERIVATIVES OF AAA HYDROXY ACIDS.
JP2651703B2 (en) Preparation of optically active dihalogenopropanol by microbial treatment
JPS58116690A (en) Preparation of d-beta-hydroxyamino acid
EP0431970B1 (en) Process for producing optically active R-(+)-2, 3,-dichloro-1-propanol using microorganism
JP2708536B2 (en) Rhodococcus bacteria and method for producing 2-hydroxybutyric acid using the same
JPH02257895A (en) Preparation of optically active epichlorohydrin
JPH0135640B2 (en)
JPS5830038B2 (en) Production method of coenzyme Q↓1↓0

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081109

Year of fee payment: 16

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091109

Year of fee payment: 17

LAPS Cancellation because of no payment of annual fees