JPH0469566B2 - - Google Patents

Info

Publication number
JPH0469566B2
JPH0469566B2 JP60214624A JP21462485A JPH0469566B2 JP H0469566 B2 JPH0469566 B2 JP H0469566B2 JP 60214624 A JP60214624 A JP 60214624A JP 21462485 A JP21462485 A JP 21462485A JP H0469566 B2 JPH0469566 B2 JP H0469566B2
Authority
JP
Japan
Prior art keywords
alumina
film
water
fine particles
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60214624A
Other languages
Japanese (ja)
Other versions
JPS6278106A (en
Inventor
Yoichi Kurokawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP60214624A priority Critical patent/JPS6278106A/en
Publication of JPS6278106A publication Critical patent/JPS6278106A/en
Publication of JPH0469566B2 publication Critical patent/JPH0469566B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/34Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、極めて微細な粒径を有するアルミナ
粒子からなる透明フイルムおよびその製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a transparent film made of alumina particles having an extremely fine particle size and a method for producing the same.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

金属もしくは金属化合物等は、その粒径が
100nm以下の超微粒子になると、比表面積が極め
て大きくなることから、バルク状態の粒子とは異
なつた特性が期待されている。
The particle size of metals or metal compounds, etc.
Ultrafine particles of 100 nm or less have an extremely large specific surface area, so they are expected to have properties different from those of bulk particles.

従来、例えば粒径が20〜500nm程度の微粒子は
公知であり、その製造方法としては、ガス蒸発
法、溶媒凍結法、プラズマ法等が利用されてい
る。しかしながら、これらの方法により製造され
た微粒子は、粒径の均一化、安定性、取り扱い易
さ等の点で、十分に満足できるものではなかつ
た。例えば、従来法で微粒子を製造した場合、一
次粒子として微細な粒子が得られても、それ自体
が高い活性を有することから、各粒子間で凝集が
生じ、このため、結果的に大きな粒子しか得るこ
とができず、また、この凝集した粒子塊を再分散
してより小さな粒子にすることは困難であつた。
Conventionally, fine particles having a particle size of, for example, about 20 to 500 nm have been known, and gas evaporation methods, solvent freezing methods, plasma methods, etc. have been used as methods for producing them. However, the fine particles produced by these methods were not fully satisfactory in terms of uniform particle size, stability, ease of handling, and the like. For example, when fine particles are produced using conventional methods, even if fine particles are obtained as primary particles, since they themselves have high activity, aggregation occurs between each particle, resulting in only large particles. Moreover, it was difficult to redisperse this aggregated particle mass into smaller particles.

このような問題の対策としては、ミクロエマル
ジヨン中で微粒子を生成させ、粒子表面を適当な
界面活性剤で被覆するか、もしくは蒸発法により
得られた粒子を、適当な溶媒と共に凍結凝縮する
方法等が行われている。しかしながらこれらの方
法も、前者は均一なミクロエマルジヨンの生成
と、微粒子の生成条件の設定が困難であり、後者
は、溶媒が除去された時点において二次凝集が生
じ易く、また、いずれの場合も界面活性剤や溶媒
の除去が困難である。
As a countermeasure to this problem, there are two methods: generating fine particles in a microemulsion and coating the particle surface with an appropriate surfactant, or freezing and condensing the particles obtained by evaporation with an appropriate solvent. etc. are being carried out. However, with these methods, it is difficult to produce a uniform microemulsion and to set the conditions for producing fine particles in the former, and in the latter, secondary aggregation tends to occur when the solvent is removed; It is also difficult to remove surfactants and solvents.

以上に述べたとおり、超微粒子、特に粒径が
100nm未満の超微粒子の製造は困難で、このこと
からこれを利用したフイルムの製造は、ほとんど
不可能であつた。従来公知のフイルムとしては、
例えば、アルコキシドの加水分解を利用したゾル
−ゲル法によるシリカやアルミナのフイルム、層
状化合物のコロイド状物質、もしくは前記コロイ
ド状物質とイミノ基、ビニル基等の官能基を有す
る単量体との混合物からなる無機質フイルムが公
知である(特開昭58−149901および同58−149930
号公報参照)。しかしながらこれらのフイルムは、
含有されている粒子が大きいために、透明性の点
で問題があつた。
As mentioned above, ultrafine particles, especially those with a particle size of
It is difficult to produce ultrafine particles with a diameter of less than 100 nm, and for this reason, it has been almost impossible to produce films using them. Conventionally known films include:
For example, a silica or alumina film produced by a sol-gel method using alkoxide hydrolysis, a colloidal material of a layered compound, or a mixture of the colloidal material and a monomer having a functional group such as an imino group or a vinyl group. An inorganic film consisting of
(see publication). However, these films
Due to the large particles contained, there were problems with transparency.

〔発明の目的〕[Purpose of the invention]

本発明は上記の問題点を解消し、極めて微細な
アルミナ粒子からなり、高い透明性を有するフイ
ルムを提供することを目的とする。
It is an object of the present invention to solve the above-mentioned problems and provide a film that is made of extremely fine alumina particles and has high transparency.

〔発明の概要〕[Summary of the invention]

本発明者は上記の目的を達成するために鋭意研
究を行つた結果、アルミニウム塩よりアルミナを
製造する際の熟成および分解条件を適宜調整する
ことにより、極めて微細なアルミナ粒子を得るこ
とができ、さらにこのアルミナ超微粒子からなる
フイルムが高い透明性を有することを見い出し、
本発明を完成するに到つたのである。
As a result of intensive research to achieve the above object, the present inventors have found that extremely fine alumina particles can be obtained by appropriately adjusting the aging and decomposition conditions when producing alumina from aluminum salt. Furthermore, we discovered that this film made of ultrafine alumina particles has high transparency.
The present invention has now been completed.

すなわち本発明は、非晶質構造のアルミナ微粒
子からなる透明フイルムであつて、前記アルミナ
微粒子の粒径が3〜30nmであることを特徴とす
る透明フイルムおよびその製造方法に関する。
That is, the present invention relates to a transparent film made of fine alumina particles having an amorphous structure, characterized in that the fine alumina particles have a particle size of 3 to 30 nm, and a method for manufacturing the same.

本発明の透明フイルムを構成する非晶質構造の
アルミナ微粒子は、アルミニウム塩水溶液からア
ルミニウムの水酸化物を生成させた後、熟成およ
び分解時の条件を適宜選択することによつて、極
めて微細で、かつ粒径の揃つたアルミナ微粒子を
得ることができる。
The amorphous fine alumina particles constituting the transparent film of the present invention are produced by producing aluminum hydroxide from an aluminum salt aqueous solution, and then by appropriately selecting the aging and decomposition conditions. , and alumina fine particles with uniform particle size can be obtained.

ここで使用するアルミニウム塩としては、硫酸
アルミニウム、塩化アルミニウム、硝酸アルミニ
ウム等を挙げることができる。
Examples of the aluminum salt used here include aluminum sulfate, aluminum chloride, and aluminum nitrate.

これらのアルミニウム塩からアルミニウムの水
酸化物を生成させる方法としては公知の方法を使
用することができる。すなわち、前述したアルミ
ニウム塩を水に溶解させたのち、この液に過剰の
アンモニア水を添加することにより、アルミニウ
ムの水酸化物の沈澱を生成せしめることができ
る。次いで、生成した沈澱物を、そのままの状態
で一定PHの条件下、一定時間熟成を行う。この場
合のPHは、5〜7、好ましくは5.8〜6.3がよい。
PHの調整は、アンモニア水の添加時に、上記PHの
範囲となるように添加量を調整することにより行
う。また、熟成時間は12〜24時間、好ましくは15
〜20時間がよい。
A known method can be used to generate aluminum hydroxide from these aluminum salts. That is, by dissolving the above-mentioned aluminum salt in water and then adding excess aqueous ammonia to this solution, aluminum hydroxide can be precipitated. Next, the produced precipitate is aged as it is under constant pH conditions for a certain period of time. The pH in this case is preferably 5 to 7, preferably 5.8 to 6.3.
The pH is adjusted by adjusting the amount of ammonia water added so that it falls within the above pH range. Also, the aging time is 12-24 hours, preferably 15
~20 hours is good.

このようにして生成したアルミニウム水酸化物
の沈澱を熟成後、遠心分離もしくは過等の方法
で沈澱を分離し、十分に水洗する。次いで、前記
沈澱に、酢酸および水を加えた後、65〜85℃で加
熱・還流せしめることにより、粒径が3〜30nm
の非晶質構造のアルミナ微粒子からなるドープ液
を得ることができる。この場合の酢酸および水の
添加量は、沈澱物重量に対して、それぞれ6〜20
%、および100〜300%、好ましくは10〜16%、お
よび150〜250%がよい。また、加熱・還流は、
3.5〜6時間が好ましい。
After aging the aluminum hydroxide precipitate thus produced, the precipitate is separated by centrifugation or filtration, and thoroughly washed with water. Next, acetic acid and water were added to the precipitate, and the mixture was heated and refluxed at 65 to 85°C to reduce the particle size to 3 to 30 nm.
A dope liquid consisting of alumina fine particles having an amorphous structure can be obtained. In this case, the amount of acetic acid and water added is 6 to 20% each based on the weight of the precipitate.
%, and 100-300%, preferably 10-16%, and 150-250%. In addition, heating and reflux are
3.5 to 6 hours is preferred.

次いで、このようにして得られたアルミナドー
プ液を、適当な平滑面上、例えばシリコーン樹脂
で被覆した金属板もしくはガラス板またはポリエ
チレン板等の離型性のある基板上に、流延もしく
は吹き付け法等により均一になるように流延す
る。この場合の流延する量は特に限定されない
が、形成されるフイルムの厚さが10〜50μである
ことが好ましい。
Next, the alumina dope solution obtained in this way is cast or sprayed onto a suitable smooth surface, for example, onto a releasable substrate such as a metal plate or glass plate coated with silicone resin or a polyethylene plate. etc. to make it uniform. Although the amount of casting in this case is not particularly limited, it is preferable that the thickness of the formed film is 10 to 50 microns.

その後基板上に形成されたフイルムを、20〜30
℃で、20〜60時間かけてゆつくりと水分を蒸発さ
せることにより、無色透明の非晶質構造のアルミ
ナ微粒子からなるフイルムを得ることができる。
Then the film formed on the substrate, 20-30
By slowly evaporating water at ℃ for 20 to 60 hours, a colorless and transparent film consisting of alumina fine particles with an amorphous structure can be obtained.

このようにして得られた本発明のフイルムは、
1000℃近くの温度においても非晶質構造を保持
し、透明性を有することから、例えば高温で熱分
解を生じ、着色する希土類の塩、例えば、Pr
(NO33(緑)、Nd(NO33(紫)、Sm(NO33
(黄)、Eu(NO33等をアルミナドープ液に添加
し、フイルム化したのち焼結させることにより、
透明で、かつ着色したフイルムを得ることができ
る。
The film of the present invention thus obtained is
Because it maintains its amorphous structure and is transparent even at temperatures close to 1000°C, it is suitable for rare earth salts that thermally decompose and become colored at high temperatures, such as Pr.
(NO 3 ) 3 (green), Nd (NO 3 ) 3 (purple), Sm (NO 3 ) 3
(yellow), Eu(NO 3 ) 3 , etc. are added to the alumina dope solution, formed into a film, and then sintered.
A transparent and colored film can be obtained.

また、アルミナドープ液に、官能基を有するポ
リマーもしくはモノマーを添加し、フイルム化す
ることにより、可とう性に富んだフイルムとする
こともできる。このポリマーもしくはモノマーの
配合量は、ドープ液中のアルミナ重量に対して30
〜80%程度である。ここで使用するポリマーもし
くはモノマーとしては、ポリビニルアルコール、
ポリアクリル酸、ポリメタクリル酸、ポリアクリ
ルアミド、ポリエチレンイミン、カルボキシメチ
ルセルロース等のポリマー、もしくはそれらを構
成するモノマー等を挙げることができる。
Furthermore, a highly flexible film can be obtained by adding a polymer or monomer having a functional group to the alumina dope and forming it into a film. The blending amount of this polymer or monomer is 30% based on the weight of alumina in the dope solution.
~80%. Polymers or monomers used here include polyvinyl alcohol,
Examples include polymers such as polyacrylic acid, polymethacrylic acid, polyacrylamide, polyethyleneimine, and carboxymethyl cellulose, and monomers constituting them.

さらに、アルミナドープ液に、無機酸化物微粒
子のゾル状もしくは液状物質、または水溶性金属
化合物の水溶液を添加し、以下、前述した方法と
同様にして、透明な複合フイルムとすることもで
きる。
Furthermore, a sol or liquid substance of inorganic oxide fine particles or an aqueous solution of a water-soluble metal compound can be added to the alumina dope liquid, and then a transparent composite film can be obtained in the same manner as described above.

複合フイルムの他成分として使用可能な無機酸
化物としてはSiO2,CuO,MgO,CaO,BaO,
SrO,SnO2,MnO2,NiO,CoO,TiO2
ThO2,ZnO,PbO,ZrO2,Fe2O3,V2O5等を挙
げることができる。
Inorganic oxides that can be used as other components of the composite film include SiO 2 , CuO, MgO, CaO, BaO,
SrO, SnO 2 , MnO 2 , NiO, CoO, TiO 2 ,
Examples include ThO 2 , ZnO, PbO, ZrO 2 , Fe 2 O 3 and V 2 O 5 .

これらの無機酸化物を、その微粒子のゾル状も
しくは液状物質に調整する方法としては、例え
ば、以下のとおりである。
Examples of methods for preparing these inorganic oxides into fine particle sol or liquid substances are as follows.

(1) SiO2;Si(OC2H5)液をアルミナドープ液中
に添加することにより、ドープ液中の水分によ
つて加水分解されゾル状物質となる。
(1) SiO 2 ; By adding Si(OC 2 H 5 ) liquid to the alumina dope, it is hydrolyzed by the water in the dope and becomes a sol-like substance.

(2) TiO2;TiC4液を用い、(1)と同様にする。(2) TiO 2 ; Proceed as in (1) using 4 TiC liquids.

(3) SnO2;SnC4の濃厚溶液を用い、(1)と同様
にする。
(3) SnO 2 ; Proceed as in (1) using a concentrated solution of SnC 4 .

(4) V2O5;10%NH4VO3水溶液に、0.5N塩酸を
添加し、析出した赤色の沈澱をろ過後、水洗す
る。水洗後の初めのろ液は捨て、解膠され赤色
の液となつたろ液を分散し、ゾル液とする。
(4) V 2 O 5 ; Add 0.5N hydrochloric acid to a 10% NH 4 VO 3 aqueous solution, filter the red precipitate, and then wash with water. The initial filtrate after washing with water is discarded, and the filtrate, which is peptized and turns into a red liquid, is dispersed and used as a sol solution.

(5) Fe2O3;沸騰水700mlに30%FeC3溶液12ml
を添加し、水溶液とする。
(5) Fe 2 O 3 ; 12 ml of 30% FeC 3 solution in 700 ml of boiling water
to make an aqueous solution.

(6) ZrO2;0.2モルZrOC2・8H2O水溶液を90
℃で5〜6時間加熱後冷却し、水溶液とする。
(6) ZrO 2 ; 0.2 mol ZrOC 2 8H 2 O aqueous solution at 90%
After heating at ℃ for 5 to 6 hours, it is cooled to form an aqueous solution.

(7) ThO2;ThC4・2H2O25gを水300mlに溶解
された水溶液を、90℃で5〜6〜時間後、冷却
し、水溶液とする。
(7) ThO 2 ; An aqueous solution in which 25 g of ThC 4 .2H 2 O is dissolved in 300 ml of water is heated to 90° C. for 5 to 6 hours, and then cooled to form an aqueous solution.

これらの無機酸化物のゾル状もしくは液状物質
は、アルミナドープ液のアルミナ重量に対して
0.1〜5%になるように混合して使用する。
These inorganic oxide sol or liquid substances are based on the alumina weight of the alumina dope liquid.
Mix and use at a concentration of 0.1 to 5%.

また、複合フイルムの他成分として水溶性金属
化合物の水溶液を使用する場合、この水溶性金属
化合物を、5〜10重量%の水溶液として使用する
ことが好ましい。この場合の水溶性金属化合物と
しては、Ni(NO32,Co(NO32,ZnC2,MnC
2,RhC3,RuC3,IrC3,Cu(NO32
ZrOC2,NaNO3,KNO3,Fe(NO32,Pb
(NO32,Fe(NO33,LiNO3等を挙げることがで
きる。
Further, when an aqueous solution of a water-soluble metal compound is used as another component of the composite film, it is preferable to use the water-soluble metal compound as an aqueous solution of 5 to 10% by weight. In this case, water-soluble metal compounds include Ni(NO 3 ) 2 , Co(NO 3 ) 2 , ZnC 2 , MnC
2 , RhC 3 , RuC 3 , IrC 3 , Cu(NO 3 ) 2 ,
ZrOC 2 , NaNO 3 , KNO 3 , Fe(NO 3 ) 2 , Pb
Examples include (NO 3 ) 2 , Fe(NO 3 ) 3 and LiNO 3 .

この水溶性金属はアルミナドープ液のアルミナ
重量に対して0.1〜5%になるように混合して使
用する。
This water-soluble metal is mixed in an amount of 0.1 to 5% based on the weight of alumina in the alumina dope.

本発明のフイルムは、フイルムを形成後、400
〜900℃の温度で、10〜24時間加熱し、焼結せし
めることにより、フイルム中にその直径が50〜
20nmの微細孔を有する多孔性フイルムとするこ
とができる。この多孔性フイルムは、ガス分離
膜、導電膜、触媒作用を有する分離膜として使用
することができる。
The film of the present invention can be used for 400 min after forming the film.
By heating and sintering at a temperature of ~900℃ for 10~24 hours, the diameter of the film becomes 50~90℃.
It can be made into a porous film having micropores of 20 nm. This porous film can be used as a gas separation membrane, a conductive membrane, and a separation membrane with catalytic action.

本発明のフイルムを、アルミナと無機酸化物も
しくは水溶性金属化合物からなる複合フイルムと
した場合、この複合フイルムを空気中、もしくは
還元的雰囲気中で加熱分解することによりアルミ
ナ担持触媒とすることもできる。
When the film of the present invention is a composite film made of alumina and an inorganic oxide or a water-soluble metal compound, it is also possible to make an alumina-supported catalyst by thermally decomposing the composite film in air or in a reducing atmosphere. .

〔発明の実施例〕[Embodiments of the invention]

以下、実施例を掲げ本発明をさらに詳述する。 Hereinafter, the present invention will be explained in further detail with reference to Examples.

実施例 塩化アルミニウム50gを水200mlに溶解し、こ
の液を攪拌しながら3時間かけて6Nアンモニア
水100mlを添加し、水酸化アルミニウムの沈澱を
生成させた。添加後のPHは6に調整した。その
後、常温で24時間放置熟成後、遠心分離により、
沈澱を分離し、1の水で洗浄した。この沈澱物
10gに、水20mlと酢酸2mlを加え、十分に攪拌し
たのち、80℃で5時間加熱還流し、粒径が5〜
10nmのアルミナ微粒子からなるドープ液を得た。
このドープ液をガラス板上に、厚さが30μmとな
るように流延したのち、20℃で、60時間かけて乾
燥し、透明フイルムを得た。
Example 50 g of aluminum chloride was dissolved in 200 ml of water, and 100 ml of 6N ammonia water was added to this solution over 3 hours while stirring to form a precipitate of aluminum hydroxide. The pH after addition was adjusted to 6. Then, after aging at room temperature for 24 hours, centrifugation
The precipitate was separated and washed with 1 portion of water. This precipitate
Add 20 ml of water and 2 ml of acetic acid to 10 g, stir thoroughly, and heat under reflux at 80°C for 5 hours until the particle size is 5 to 5.
A dope solution consisting of 10 nm alumina fine particles was obtained.
This dope solution was cast onto a glass plate to a thickness of 30 μm, and then dried at 20° C. for 60 hours to obtain a transparent film.

このフイルムを、さらに500〜900℃で焼結する
ことにより、40〜100Åの孔径の微細孔を有する
無色透明フイルムを得た。このフイルムの20℃に
おけるガス透過係数P(×109)は、H2;1.5,
He;0.8,CH4;1.3,N2;0.4,O2;0.8,CO2
3.6であつた。
This film was further sintered at 500 to 900°C to obtain a colorless transparent film having micropores with a diameter of 40 to 100 Å. The gas permeability coefficient P (×10 9 ) of this film at 20°C is H 2 ; 1.5,
He; 0.8, CH 4 ; 1.3, N 2 ; 0.4, O 2 ; 0.8, CO 2 ;
It was 3.6.

参考例 実施例で調整したアルミナドープ液と0.1Mの
Ni(NO32水溶液を容量比で2:1の割合に混合
したのち、ガラス板上に流延し、緑色透明のフイ
ルムを形成した。このフイルムを、その含水率が
20〜30%になるまでゆつくりと乾燥し、その後一
挙に400℃まで加熱後、さらに水素気流中にて、
450℃で2時間還元することにより、直径45Åの
Ni微粒子を含む、非晶質アルミナ担持ニツケル
触媒を得た。この触媒を用いてシクロオクタジエ
ンおよび4−tert−ブチル−メチレンシクロヘキ
センを還元したところ、モノエンおよびシクロヘ
キサンへの反応性および選択性がRaney Niに比
べて優れていた。
Reference example Alumina dope solution prepared in the example and 0.1M
Ni(NO 3 ) 2 aqueous solution was mixed at a volume ratio of 2:1 and then cast onto a glass plate to form a green transparent film. This film has a moisture content of
Slowly dry until it becomes 20-30%, then heat it all at once to 400℃, and then in a hydrogen stream.
By reducing at 450℃ for 2 hours, a diameter of 45Å was obtained.
An amorphous alumina-supported nickel catalyst containing Ni fine particles was obtained. When cyclooctadiene and 4-tert-butyl-methylenecyclohexene were reduced using this catalyst, the reactivity and selectivity to monoene and cyclohexane were superior to that of Raney Ni.

〔発明の効果〕〔Effect of the invention〕

以上に述べたとおり、本発明の製造方法によれ
ば、従来その製造が不可能であつた粒径が3〜
30nmの非晶質構造のアルミナ超微粒子を容易に
生成することができ、このアルミナ超微粒子を用
いて、非常に透明性の高いフイルムを得ることが
できる。さらに、この本発明の透明フイルムは、
一定条件下で加熱・焼結せしめることにより、ガ
ス分離能等を有する多孔性フイルムとすることが
でき、その工業的価値は極めて大である。
As described above, according to the production method of the present invention, particle sizes of 3 to 3
Alumina ultrafine particles with a 30 nm amorphous structure can be easily produced, and a highly transparent film can be obtained using these alumina ultrafine particles. Furthermore, the transparent film of the present invention is
By heating and sintering it under certain conditions, it can be made into a porous film with gas separation ability, etc., and its industrial value is extremely large.

Claims (1)

【特許請求の範囲】 1 非晶質構造のアルミナ微粒子からなる透明フ
イルムであつて、前記アルミナ微粒子の粒径が3
〜30nmであることを特徴とする透明フイルム。 2 アルミニウム塩水溶液にアンモニウム水を添
加し、放置熟成後、生じた沈殿を分離し、洗浄
し、次いで前記沈殿に酢酸および水を添加後、攪
拌して65〜85℃で加熱することにより得られる非
晶質構造のアルミナ微粒子を含有するアルミナド
ープ液を、直接基板上に流延し、乾燥することを
特徴とする透明フイルムの製造方法。
[Scope of Claims] 1. A transparent film made of alumina fine particles having an amorphous structure, wherein the alumina fine particles have a particle size of 3.
A transparent film characterized by ~30nm. 2 Obtained by adding ammonium water to an aqueous aluminum salt solution, leaving it to ripen, separating the resulting precipitate, washing it, adding acetic acid and water to the precipitate, stirring and heating at 65 to 85°C. A method for producing a transparent film, which comprises directly casting an alumina dope containing alumina fine particles with an amorphous structure onto a substrate and drying it.
JP60214624A 1985-09-30 1985-09-30 Transparent film and production thereof Granted JPS6278106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60214624A JPS6278106A (en) 1985-09-30 1985-09-30 Transparent film and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60214624A JPS6278106A (en) 1985-09-30 1985-09-30 Transparent film and production thereof

Publications (2)

Publication Number Publication Date
JPS6278106A JPS6278106A (en) 1987-04-10
JPH0469566B2 true JPH0469566B2 (en) 1992-11-06

Family

ID=16658811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60214624A Granted JPS6278106A (en) 1985-09-30 1985-09-30 Transparent film and production thereof

Country Status (1)

Country Link
JP (1) JPS6278106A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100408079B1 (en) * 2000-12-06 2003-12-01 주식회사 한국특수절연 Method of preparing alumina sols from aluminium chloride solution
KR100400178B1 (en) * 2000-12-07 2003-10-01 주식회사 한국특수절연 Method of preparing alumina sols of high thixotropy and viscosity
CZ302399B6 (en) * 2009-12-04 2011-04-27 Výzkumný ústav anorganické chemie, a. s. Process for preparing aluminium salicylate
KR101212626B1 (en) 2010-03-05 2012-12-14 연세대학교 산학협력단 Metal oxide thin film, preparation method thereof, and solution for the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5978925A (en) * 1982-10-29 1984-05-08 Mitsubishi Chem Ind Ltd Alumina sol
JPS60235719A (en) * 1984-05-08 1985-11-22 Murata Mfg Co Ltd Production of thin film of alumina

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5978925A (en) * 1982-10-29 1984-05-08 Mitsubishi Chem Ind Ltd Alumina sol
JPS60235719A (en) * 1984-05-08 1985-11-22 Murata Mfg Co Ltd Production of thin film of alumina

Also Published As

Publication number Publication date
JPS6278106A (en) 1987-04-10

Similar Documents

Publication Publication Date Title
JP5920478B2 (en) Composite photocatalyst and photocatalyst material
US7632769B2 (en) Zirconia porous body and manufacturing method thereof
JP2875993B2 (en) Anatase dispersion and method for producing the same
KR100528330B1 (en) Method for coating surface of inorganic powder and coated inorganic powder manufactured using the same
JPH1053437A (en) Coating with amorphous type titanium peroxide
US12043580B2 (en) Lithium-mixed oxide particles encapsulated in aluminum oxide and titanium dioxide, and method for using same
KR20140043938A (en) /- method for producing composites from aluminium oxide and cerium/zirconium mixed oxides
CN111848161B (en) Preparation method of nano zirconia powder
CN113740390B (en) Nickel-doped indium oxide nano-particle and preparation method and application thereof
CN1470323A (en) Magnetic nano solid base catalyst and its preparnig method
US6311545B1 (en) Anhydrous zinc antimonate semiconductor gas sensor and method for producing the same
JPH0469566B2 (en)
EP0889005B1 (en) Yttrium oxide-aluminum oxide composite particles and method for the preparation thereof
CN110745851A (en) Spherical alpha-alumina fire retardant and preparation method thereof
JP2844011B2 (en) Conductive fine powder and method for producing the same
KR101782861B1 (en) Flaky aluminum oxide and method of producing thereof
US20140147661A1 (en) Method for producing alumina-crystal-particle-dispersed alumina sol, alumina-crystal-particle-dispersed alumina sol obtained by the method, and aluminum coated member produced using the sol
JP4958088B2 (en) Gas sensor element using cerium oxide thick film and manufacturing method thereof
JP2858271B2 (en) Method for producing conductive fine powder
CN111092196A (en) Silicon oxide and nickel hydroxide composite material and synthesis method thereof
JPH0769631A (en) Flaky electric conductive zinc oxide and production thereof
JPS58161725A (en) Production of magnetic metallic iron powder
JP2644707B2 (en) Method for producing ceramics containing fine metal particles or fine metal oxide particles
JPH0558604A (en) Production of metal oxide thin film
JP2844012B2 (en) Conductive fine powder and method for producing the same